
134

COMPARISON BETWEEN TWO ITERATIVE SCHEMES FOR
THE ONE DIMENSIONAL MARCHENKO EQUATION

J. Magalhães, J. Schleicher, and A. Novais

email: candido.magalhaes@hotmail.com, js@ime.unicamp.br
keywords: Marchenko, inversion, one-way

ABSTRACT

Solving the 1D Marchenko equation by means of iterative schemes allows to obtain the redatumed
Green’s function at an arbtrary focusing position. We compare two algorithms proposed in the liter-
ature to achieve this goal. Our careful implementations have demonstrated that while kinematically
equivalent, these algorithms lead not to fully identical results. While the older algorithm is somewhat
faster, the newer one provides superior amplitudes and separates up and downgoing components of
the recovered Green’s function.

INTRODUCTION

The one dimensional Marchenko equation is a well-known integral equation that solves the inverse scat-
tering problem for a constant background medium with some localized scattering region (Burridge, 1980;
Aktosun, 1987).

Rose (2002) developed an iterative way to construct a particular initial waveform in such a way that it
reduces to a δ-pulse at a particular time, called the focusing time. He also proved that by constructing this
waveform we are solving the Marchenko equation.

Broggini and Snieder (2012) demonstrated that combining the solution of this scheme with its time-
reversed version allows to obtain the redatumed Green’s function at a focusing position without knowledge
of the velocity profile. Wapenaar et al. (2013) extended this principle to three dimensions and derived, via
Green’s theorem, the coupled Marchenko equations, which constitute a relationship between the Green’s
function and the fundamental solutions of the inverse scattering problem. van der Neut et al. (2015) later
developed an alternative iterative scheme to solve the coupled Marchenko equations. His scheme bears
some similarity to Rose’s iterative scheme.

The coupled Marchenko equations can be used in several seismic applications, ranging from redatuming
(Meles et al., 2016; Cui et al., 2018), imaging (Wapenaar et al., 2014; Singh et al., 2015; Meles et al., 2018),
velocity analysis (Mildner et al., 2017) to inversion (Semih, 2018).

In this paper, we present a derivation of the one dimensional coupled Marchenko equations, discuss
the differences of the two algorithms, and numerically compare the two schemes in two different velocity
models.

THEORY

The Marchenko Integral Equation is a relation that attempts to solve the perturbed Helmholtz equation,
also known as time-independent Schrödinger equation (Lamb, 1980). In a one-dimensional medium, it is
given by

d2

dx2
û(x, ω) +

ω2

c20
[1 + α(x)] û(x, ω) = 0 . (1)
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Figure 1: Right-going fundamental solution of equation (1). A wavefield u+(x, t) consisting of a δ-pulse
and a coda incides from the left (red arrow) on the localized scattering region (α(x) 6= 0), producing a
scattered wavefield u−(x, t) (blue arrow) propagating to the left and a δ-pulse (black arrow) propagating
to the right. All right-going scattered events produced by the incident δ-pulse are canceled by the coda.

Here, û(x, ω) is the fundamental solution for this type of problem, c0 is the background wave velocity
(assumed to be constant) and α(x) is the medium perturbation, also called the localized scattering potential.

It is well-known that a second-order differential equation like (1) has two fundamental solutions. One
example of such a pair of fundamental solutions consists of a right-going waveform inciding from the left-
hand side, crossing the scattering region in such a way that on its right-hand side only a δ-pulse propagates
to the right, and a symmetrically constructed left-going waveform (Lamb, 1980). For reasons of brevity,
here we consider only the right-going fundamental solution. This fundamental solution can be represented
in the time domain as

u(x, t) = c0δ(x− c0t) + c0H(c0t− x)C(x, c0t) , (2)

where C(x, c0t) is the so-called coda. A waveform u(x, t) of this form is the searched-for fundamental
solution of equation (1) if, when the coda passes throught the scattering region, it cancels all other left-
to-right going pulses created by the leading δ-pulse, such that to the right of the scattering region, only a
δ-pulse remains with the same propagation direction of u (Figure 1).

Wapenaar et al. (2013) denominate the fundamental solution u(x, t) focusing function, because to the
right of the scattering region, it consists of a right-going δ-pulse only. We can think of it as focusing at time
t = 0 at some focusing point xf to the right of the perturbed region. For this reason, we can relate it with
the Green’s function G(x, ω;xs), i.e., the solution of the Helmholtz equation with a point source,

d2

dx2
Ĝ(x, ω;xs) +

ω2

c(x)2
Ĝ(x, ω;xs) = δ(x− xs) , (3)

where xs denotes the source point. Actually, in a homogeneous 1D unbounded medium, the solution to
equation (3) is (Bleistein et al., 2001)

G(x, t;xs) =
c0
2
H(c0t− |x− xs|) . (4)

However, in our numerical solution, we want to see a propagating unitary pulse. Therefore, we consider a
modified version of equation (3) with a time derivative and a normalization applied to the source term, i.e.,

d2

dx2
Ĝ(x, ω;xs) +

ω2

c(x)2
Ĝ(x, ω;xs) = 2i

ω

c0
δ(x− xs) . (5)

A comparison of equations (3) and (5) reveals that the functions Ĝ and Ĝ relate to each other as

Ĝ = 2i
ω

c0
Ĝ . (6)
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Figure 2: Velocity model for the two functions under consideration. Attention to the region where the
velocity for both functions are equal.

To derive a relationship between the focusing function û and the Green’s function Ĝ, we multiply
equation (1) by Ĝ(x, ω;xs), and equation (5) by û(x, ω) and subtract the results. We then integrate the
differences from a point xi slightly beyond the source point xs to a point xe slightly beyond the desired
focusing point xf (see points xi and xe in Figure 2) and apply the 1D version of Green’s theorem (see, e.g.,
Bleistein et al., 2001). In this way, in the limit of very small ε, we find

lim
ε→0+

∣∣∣∣(Ĝ+ + Ĝ−
) d

dx

[
û+ + û−

]
−
(
û+ + û−

) d

dx

[
Ĝ+ + Ĝ−

]∣∣∣∣xf+ε

xs+ε

= 0 , (7)

where we have assumed that the velocity distribution c(x) in equation (3) equals the one in equation (1)
within the interval (xs, xf ) and that the velocity is constant in small vicinities of size ε to the right of xs
and xf , including points xi and xe, respectively. Moreover, we have written the involved wavefields as
sums of their left-going (superscript −) and right-going (superscript +) components.

Using a high frequency approximation for both wavefields, we can show that at xs and xf (Wapenaar
et al., 2013),

Ĝ−
d

dx
û− ≈ û−

d

dx
Ĝ− and Ĝ+ d

dx
û+ ≈ û+ d

dx
Ĝ+ , (8)

Ĝ−
d

dx
û+ ≈ −û+ d

dx
Ĝ− and Ĝ+ d

dx
û− ≈ −û− d

dx
Ĝ+ . (9)

Thus, equation (7) simplifies to

lim
ε→0+

[
Ĝ+ d

dx
û− + Ĝ−

d

dx
û+

]∣∣∣∣
x=xf+ε

= − lim
ε→0+

[
û+ d

dx
Ĝ− + û−

d

dx
Ĝ+

]∣∣∣∣
x=xs+ε

. (10)

Our fundamental solution u(x, t) has to satisfy some convenient constraints. We require it to pass at
focusing point xf at t = 0, which implies that it has to pass at xs (the source injection position for
G(x, t;xs)) at t = −tf , where tf is the one-way traveltime between xs and xf . Moreover, beyond xf , u+

is given, by construction, by a δ-pulse and u− vanishes. These requirements translate into the conditions

d

dx
û−(xf + ε, ω) = 0 , (11)

d

dx
û+(xf + ε, ω) = i

ω

c0
eiωε/c0 . (12)

Moreover, since the medium is assumed to be homogeneous to the left of xs, the right-going part of G
slightly to the right of xs must still be equal to what it would be in a homogeneous medium. Thus, taking
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the derivative and Fourier Transform of equation (4) and making use of equation (6), we find

d

dx
Ĝ+(xs + ε, ω, xs) = i

ω

c0
eiωε/c0 . (13)

Finally, the left-going part of the Green’s function is related to the reflection response R(xs, t, xs) of the
medium. Taking the spatial derivative of its Fourier transform, we therefore have

d

dx
Ĝ−(xs + ε, ω, xs) ≈ −i

ω

c0
R̂(xs + ε, ω;xs) , (14)

where R̂(x, ω;xs) is the reflection response of the medium for the normalized source according to equation
(5).

Substituting these boundary conditions in equation (10) and taking the limits results in the following
time and frequency-domain expressions:

Ĝ−(xf , ω;xs) = R̂(xs, ω;xs)û
+(xs, ω)− û−(xs, ω) , (15)

G−(xf , t;xs) = R(xs, t;xs) ∗ u+(xs, t)− u−(xs, t) . (16)

The same procedure applied to the time reversed version of u, i.e., using the complex conjugate of
equation (1), yields

Ĝ+(xf , ω;xs) = −R̂(xs, ω;xs)û
−∗(xs, ω) + û+∗(xs, ω) , (17)

G+(xf , t;xs) = −R(xs, t;xs) ∗ u−(xs,−t) + u+(xs,−t) . (18)

Expressions (15) and (17), or (16) and (18) in the time domain, are called the coupled Marchenko equations
(Wapenaar et al., 2013).

Broggini and Snieder’s method

On the basis of the work of Rose (2002), Broggini and Snieder (2012) developed an iterative scheme
that focuses an initial pulse at a prescribed time tf using data recorded with a zero-offset configuration. To
graphically demonstrate the underlying operations, we use the model depicted in Figure 3 with the focusing
point at 4 km.

The procedure proposed by Rose (2002) consists in first injecting at xs a known pulse Q(t) = q(t) ≡
2

c(xs)
δ(t + tf )δ(x − xs) shifted to −tf and record the medium response S0(xs, t;xs). Because the so-

lution of the one dimensional wave equation integrates the initial wavelet (since the Green’s function is a
Heaviside function), by injecting d

dtQ(t) the recorded wavefield will have the desired wavelet shape Q(t).
Second, to obtain the reflection response R0(xs, t;xs) simply take the difference between the recorded
wavefield at xs and the injected pulse,

R0(xs, t;xs) = S0(xs, t;xs)−Q0(t) . (19)

(Figure 4) shows this result for a model with two high-velocity zones between xs and xf . R0(xs, t;xs)
can be replaced by a recorded reflection response, R(xs, t;xs), if available.

The third step consists of applying a window operatorH(tf −t) to the reflection responseR0(xs, t;xs)
and reversing it in time. This time reversed version, called coda (Figure 5), is given by

coda0(t) = R0(xs,−t;xs)H(tf + t) . (20)

Next, the injected pulse is updated by taking the difference between the initial wavelet Q0(t) and the
coda coda0(t) to produce the new wavelet Q1(t) (Figure 6). The procedure starts then over by injecting
d
dtQ

1(t), recording the new response R1(xs, t;xs), and calculating the new coda1(t). At each iteration,
Qk(t) is obtained by subtracting the coda from Q0. The process continues iteratively k times until it
reaches convergence to obtain Qk(t).

Broggini and Snieder (2012) showed that G(xf , w;xs) can be obtained by convolving the original
seismic reflection response R(xs, t;xs) at xs with the injected wavelet Q(t) as described above, i.e., after
k iterations, u(xs, t) = R(xs, t;xs) ∗t Qk(t) (Figure 7), and adding its time reversed version u(xs,−t)
(Figure 8(a)). Figure 7 shows the result of this procedure after four iterations. The algorithm is summarized
in Table 1.
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Figure 3: Velocity model with a high velocity zone (2.5 km/s). Markers denoted by a black cross, red
asterisk, and blue triangle represents the chosen focusing point, source and observation point, respectively.
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Figure 4: Broggini and Snieder’s Algorithm: The
Gaussian wavelet Q0(t) = Q(t) simulating a
δ-pulse used at the first iteration (dashed green
line) and the corresponding recorded seismogram
S0(xs, t;xs) (solid black line).
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Figure 5: Broggini and Snieder’s Algorithm: Time
reversed and windowed reflection response at the
first iteration, coda0(t), obtained according to equa-
tion (20).

van der Neut’s method

For the coupled Marchenko equations, van der Neut et al. (2015) developed the following iterative scheme:
First, think of u+ as composed of an initial unitary direct pulse ud and a following coda corresponding to
equation (2), i.e.,

u+ = ud + ucoda . (21)

Note again that the designed focusing function is subject to some constraints: ud has to pass at xs at a
specified focusing time −tf so as to reach the focusing point xf at t = 0. Hence, without any knowledge
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Figure 6: Wavelet Q1(t) after first iteration update.
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Figure 7: Seismogram recorded after 4 interations,
i.e., injecting d

dtQ
3(t).

of the velocity model, the obtained Green’s function will be simulated at an unknown position.
Consistent with the boundary conditions, design a window operator Θ = H(tf − |t|), that preserves

the field between −tf and tf , and zeroes the field outside this interval. Windowing u−, u+, and G results
in

Θ{G} = 0 , (22)

Θ{u+} = ucoda , (23)

Θ{u−} = u− . (24)

It is important to recognize that there is no field registered before tf at xs because the Green’s function
localized at xf is causal. Thus, masking the Green’s function with Θ gives zero. On the other hand, the
leftward propagating part of u exists only within the time window between −tf and tf , so that it is not
affected by the masking.

The masking of u+ in the prescribed two-way traveltime window (−tf to tf ) is done in such a way that
the direct field ud is removed, but all primaries and multiples that will possibly arrive at xs are preserved.
Using this window operator on the time domain coupled Marchenko equations yields

Θ{R(xs, t;xs) ∗ u+(xs, t)} = u−(xs, t) , (25)

Θ{R(xs, t;xs) ∗ u−(xs,−t)} = u+
coda(xs,−t) . (26)

The algorithm starts by setting u0
coda = 0 and u0

d = δ(c0(t + tf) − |x − xs|) in the first iteration. The
use of these initial values in equation (25) yields u−0, which, upon substitution in equation (26), provides
u1
coda. This iterative process can be repeated until it meets some convergence criterion. Upon reaching

convergence, G+ and G− are calculated by equations (16) and (18). Figure 8(b) shows the complete
Green’s function obtained with this iterative scheme. The algorithm is summarized in Table 2.

Figure 8 shows the redatumed Green’s function for the velocity model depicted in Figure 3. The dashed
black line represents the Finite-Differences reference solution with source position at the focusing point,
i.e., xs = xf recorded at position xg = 0. The solid red line in Figures 8(a) and 8(b) represents the solution
for the Broggini and Snieder’s; and van der Neut’s algorithms, respectively. We see that both algorithms
produce an event at −tf , though of different magnitude and that Broggini and Snieder’s algorithm also
produces some minor artifacts that are not present in the result of van der Neut’s algorithm.

NUMERICAL EXAMPLES

We performed numerical tests in two different velocity models, shown in Figure 9 both using a Ricker
wavelet with unitary peak amplitude.
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Broggini and Snieder’s Algorithm

1. k ← 0

2. Qk(t)← δ(t+ tf )

3. Inject Qk and record Sk at xs

4. Rk ← Sk −Qk

5. codak ← Rk(−t)H(tf + t)

6. Qk+1(t)← Q0 − codak

7. k ← k + 1;

8. If Qk does not satisfy convergence crite-
rion: Goto step 3

9. After convergence:
Inject Qk and record u(t)

10. Gk ← u(t) + u(−t)

Table 1: Broggini and Snieder’s Algorithm.

van der Neut’s Algorithm

1. ud(t)← δ(t+ tf )

2. k ← 0

3. ukcoda ← 0

4. u+k ← ud + ukcoda

5. u−k ← Θ{R ∗ u+k}

6. u+(k+1)
coda (xs,−t)← Θ{R ∗ u−k(−t)}

7. k ← k + 1;

8. If u+k
coda does not satisfy convergence cri-

terion: Goto step 4

9. After convergence:
G−k ← R(t) ∗ u+k(t)− u−k(t)

10. G+k ← −R(t) ∗ u−k(−t) + u+k(−t)

11. Gk ← G+k +G−k

Table 2: van der Neut’s Algorithm.
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(a) Numerical result using Broggini and Snieder’s iterative algo-
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(b) Numerical result using van der Neut’s iterative algorithm
based on the coupled Marchenko equations.

Figure 8: Results for the focusing time tf = 2 s corresponding to xf = 4 km (black cross in Figure 3).

The first velocity model (Figure 9(a)) has two high velocity zones in a constant background velocity,
and we chose two focusing points, being one inside the first high velocity zone where c(xs) 6= c(xf1) and
another one in between the two high velocity zones where c(xs) = c(xf2).

The second velocity model is a vertical profile from the Marmousi model extracted at lateral position
x = 1 km. We chose 3 focusing points at vertical positions z = 1.7 km, z = 2.3 km, and z = 2.5 km, as
shown in Figure 9(b).
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Figure 9: Two velocity models used in our numerical experiments.

Simple model

Figures 10 and 11 compare the iterative solutions of Broggini and Snieder’s scheme and van der Neut’s
scheme, respectively, to finite-difference solutions for sources at the focusing points. For the simple model
with two high velocity zones it is clear that both iterative schemes successfully recovered the kinematics of
the redatumed Green’s function.

On the other hand, Figures 10(a), 10(b), 11(a) and 11(b) demonstrate that the neither scheme correctly
recovers the dynamics when the velocity at the focusing point s different from that at the source point,
c(xf ) 6= c(xs). This effect is a consequence of the scaling of the source strength with the source velocity.

Marmousi vertical profile

Figures 12 to 14 compare the results of both iterative schemes for the vertical velocity profile of the Mar-
mousi model to the corresponding FD solutions. Overall, we see a very good match of the recovered
focusing functions (without any knowledge of the velocity model) and the modeled Green’s functions. Par-
ticluarly, we observe almost perfect kinematics, while the dynamics are wrong by a constant scale factor,
caused by wrong source scaling where c(xf ) 6= c(xs).

The blue arrows in Figures 12(a), 12(c), 13(a), 13(c), 14(a) and 14(c) indicate event locations where the
differences between the results of the two iterative schemes are more visible. We can conclude from these
figures that Broggini and Snieder’s algorithm is somewhat more susceptible to generating spurious noise.
This noise is caused by small phase-shifts when the direct wave is subtracted from the recorded data in
order to determine the reflection response. We note that these spurious events tend to grow in amplitude as
the focusing time increases, probably because the amplitudes tend to decrease as the wave scatters through
the velocity model. The spurious noise produced during the iterative process propagates in every iteration
and can introduce artifacts, as indicated by green arrows in Figures 13(b) and 14(a), or even cancel out
some events, as indicated by brown arrows in Figures 12(d) and 14(d).

Another effect that can be observed in the results from our numerical experiments is the presence of
acausal events, indicated by magenta arrows in Figures 13 and 14. Note that these acausal events appear at
positive time, arriving as precursors just before the direct wave. Note that the causal part of a propagating
wave with source at xf , observed at xg (in these experiments, the receiver was located at xg = 0 km)
will not arrive before the focusing time tf . Again these spurious events tend to be more prominent as the
focusing time increases. Overall, we conclude that both iterative schemes suffer the more from spurious
noise the more the focusing time increases.
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(a) First focusing point, inside high velocity zone, for Broggini and
Snieder’s scheme.
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(b) Zoom between 3 and 4 seconds of Figure 10(a). Green arrow
stresses amplitude discrepancy between the iterative scheme and FD
scheme solution.
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(c) Second focusing point, outside of the high velocity zone, for
Broggini and Snieder’s scheme.
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scheme solution.

Figure 10: Broggini and Snieder’s and FD Green’s function reference solution for the two chosen focusing
points in the two high velocity zone model (Figure 9(a)).

CONCLUSION

Two slightly different iterative algorithms for solving the 1D Marchenko equation to construct the Green’s
function for a point source at an arbitrary focusing point have been proposed in the literature. In this work,
we have investigated these two procedures theoretically and numerically. Our careful implementations
have demonstrated that both algorithms can recover very good approximations of the Green’s functions at
the focusing point.

However, we note that, while kinematically equivalent, these algorithms lead not to fully identical
results. The algorithm of Broggini and Snieder (2012) is somewhat faster than the one of van der Neut
et al. (2015), because the latter needs two wavefield propagations per iteration instead of a single one.
However, it allows only the construction of the complete Green’s function, where van der Neut’s algorithm
allows for the separate calculation of the up and downgoing components. Both algorithms suffer from
some the generation of some spurious events that increase for larger focusing times. Since the spurious
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(a) First focusing point, inside the high velocity zone, for van der
Neut’s scheme.
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(b) Zoom between 3 and 4 seconds of Figure 11(a). Green arrow
stresses amplitude discrepancy between the iterative scheme and FD
scheme solution.
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(c) Second focusing point, outside the high velocity zone, for the
de van der Neut’s scheme.
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Figure 11: van der Neut’s and FD Green’s function reference solution for the two chosen focusing points
in the two high velocity zone model (Figure 9(a)).

events generated by the two algorithms are different, a possible way to reduce their influence is to sum the
two results.
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(c) First focusing point using van der Neut’s scheme.
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indicate non-recovered events.

Figure 12: Iterative solution of the two iterative schemes for focusing point 1 in the Marmousi vertical
profile (Figure 9(b)).
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(a) Second focusing point using Broggini and Snieder’s scheme.
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(b) Zoom between 1 and 2 seconds of Figure 13(a). Green arrows
indicate spurious events due errors in the iterative procedure.
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(c) Second focusing point using van der Neut’s scheme.
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(d) Zoom between 1 and 2 seconds of Figure 13(c).

Figure 13: Iterative solution of the two iterative schemes for focusing point 2 in the Marmousi vertical
profile (Figure 9(b)).
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(a) Third focusing point using Broggini and Snieder’s scheme.
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(b) Zoom between 1 and 2 seconds of Figure 14(a). Green arrows
indicate spurious events due errors in the iterative procedure.
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(c) Third focusing point using van der Neut’s scheme.
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(d) Zoom between 1 and 2 seconds of Figure 14(c). Brown arrows
indicate non-recovered events.

Figure 14: Iterative solution of the two iterative schemes for focusing point 3 in the Marmousi vertical
profile (Figure 9(b)).
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