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ABSTRACT

Wavefront tomography is an efficient and stable tool for the generation of smooth velocity mod-
els. As input it requires first and second-order attributes, which describe slope and curvature of the
measured wavefronts. These wavefront attributes can be extracted from the data by multi-parameter
stacking schemes such as the common-reflection-surface (CRS) stack. While the slopes are stable and
relatively easy to determine, the wavefront curvatures can become unreliable in the case of sparsely-
sampled data or strong lateral heterogeneity. Since wavefront tomography is mainly driven by the
misfit of modeled and measured wavefront curvatures, curvatures of bad quality may compromise its
convergence. A possible solution to overcome this problem are diffractions, which have a unique
property that can be exploited for better constraining the inversion: all measurements belonging to the
same diffracted event are connected to the same subsurface structure, although registered at different
positions on the recording surface. In recent work, we introduced an event-tagging scheme that auto-
matically assigns a unique tag to each diffraction in the data. We propose to use this information to
constrain the inversion by enforcing all diffracted measurements with the same tag to focus in depth,
thus overcoming the sole dependency of wavefront tomography on second-order attributes. Results
for diffraction-only data with vertical and lateral heterogeneity confirm that it is possible to obtain
depth velocity models for zero-offset data without using curvature information and that the suggested
approach may help to increase the stability of wavefront tomography in complex settings.

INTRODUCTION

While traditional seismic imaging has often been designed to favor reflections, the true potential of the weak
diffracted wavefield has rarely been recognized (Krey, 1952). In the last two decades, however, diffractions
have gained importance and numerous applications have been proposed (e.g. Landa and Keydar, 1998;
Fomel et al., 2007; Moser and Howard, 2008; Klokov and Fomel, 2012; Bauer et al., 2016, 2017; Schwarz,
2019). The main motivation for this change of mind is the fact that seismic diffractions occur at small-scale
subsurface structures, which are often related to interesting geological features such as faults and pinch-
outs and thus contain high-resolution information about the subsurface (Khaidukov et al., 2004). Since
Snell’s law does not hold for diffractions, any seismic diffraction can be recorded at various positions of
the recording surface, which implies a better illumination of the subsurface compared to reflected waves.

In the recent years, wavefront attributes – initially being a by-product of multi-parameter stacking
schemes such as the common-reflection-surface stack (CRS, Jäger et al., 2001) – have proven to be a
powerful tool for seismic data analysis. While they are physical properties of hypothetical wavefronts in
the reflection case, for diffractions they describe the actual wavefronts. Wavefront attributes can not only
be used for imaging (e.g. Eisenberg-Klein et al., 2008; Baykulov and Gajewski, 2009; Dell and Gajewski,
2011; Bauer et al., 2016; Walda and Gajewski, 2017; Schwarz and Gajewski, 2017; Schwarz, 2019), but
also for velocity model building with wavefront tomography (Duveneck, 2004). Recently, we have shown
that the unique physical properties of diffractions can help to improve the resolution of depth velocity
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(a) Reflection case: NIP wave (b) Reflection case: normal wave (c) Diffraction case

Figure 1: The 2D wavefront attributes α, RNIP and RN. In the general reflection case, the NIP wave (left)
is excited by a point source placed on the reflector’s point of normal incidence (NIP) and the normal wave
(middle) is excited by an exploding reflector segment (CRS) around the NIP. In the case of a diffraction
(right), the exploding reflector segment shrinks to a point that is the actual diffractor acting as a secondary
source. As a result, RNIP and RN coincide and the NIP wave is no longer fictitious, but it describes the
actual diffracted wavefront.

models obtained with wavefront tomography (Bauer et al., 2017). A drawback of existing techniques for
velocity-model building such as stereotomography (Billette and Lambaré, 1998), its successor adjoint slope
tomography (Tavakoli F et al., 2017) or full-waveform inversion (e.g. Virieux and Operto, 2009) is that
these methods require seismic data with sufficiently large offsets. However, the acquisition of seismic data
with large offsets is expensive and merely feasible for the hydrocarbon industry, while academic institutions
often have to cope with low-cost acquisitions and short streamers. Owing to their focusing nature, we
argue that diffractions may serve as a solution to overcome this problem. However, a requirement for
further benefitting from the properties of diffractions is the identification of measurements connected to
the same diffraction – and thus the same subsurface structure – in the data. For this purpose, we recently
proposed a scheme, which utilizes the local similarity of zero-offset wavefront attributes to globally assign
tags to every diffraction in a zero-offset section (Bauer et al., 2019). While every data point is treated
independently in conventional wavefront tomography, the availability of these event tags allows for both
event-consistent statistics, that is, quality control or uncertainty analysis of the obtained velocity models
(Bauer et al., 2019), and further constraining the inversion algorithm by enforcing diffraction focusing in
depth.

In this work, we introduce diffraction wavefront tomography, a modified implementation of wavefront
tomography, in which all diffractions with the same tag are forced to focus in depth. As a by-product, this
new constraint reduces the dependency of wavefront tomography on the curvature-related second-order
wavefront attributes. If curvatures are not taken into account at all, the new method evolves into a zero-
offset slope tomography for diffractions. This allows its application to data, in which the determination
of curvatures is challenging, such as settings with strong lateral heterogeneity or zero-offset data with
few traces. Applications to synthetic diffraction data with vertical and lateral heterogeneity confirm the
potential of the modified implementation, which is likewise applicable to passive seismic data (Diekmann
et al., 2019).

WAVEFRONT ATTRIBUTES

The input for the inversion algorithm used in this work are the so-called zero-offset wavefront attributes
(Hubral, 1983), which can be determined via multi-parameter stacking schemes such as the common-
reflection-surface stack (CRS, Jäger et al., 2001). The wavefront attributes are encoded in the first and
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second derivatives of the traveltime moveout ∆t given by

∆t2(t0, x0) = (t0 + 2p∆x)2 + 2t0(MNIPh
2 +MN∆x2) , (1)

where t0 is the zero-offset time sample under consideration, ∆x = x− x0 is the distance from the central
midpoint x0 and h is the half-offset. The first derivative of ∆t is the horizontal slowness p that can be
expressed in terms of the emergence angle α of the wavefront measured at the recording surface,

p =
sinα

v0
, (2)

where v0 denotes the near-surface velocity. The second-order quantitiesMNIP andMN can be parametrized
by the radii of two fictitious wavefronts, RNIP and RN,

MNIP =
cos2 α

v0RNIP
, MN =

cos2 α

v0RN
. (3)

In the general case of a seismic reflection, RNIP is the radius of a wavefront excited by a hypothetical point
source placed on the reflector’s point of normal incidence (NIP, compare Figure 1(a)) and RN is the radius
of a wavefront excited by an exploding reflector segment around the NIP (Figure 1(b)). Consequently,RNIP

is related to the depth of a reflector and RN is related to its curvature. However, in the case of a diffraction,
the point source is no longer hypothetical, but it is the diffractor acting as a secondary source, and the
reflector segment reduces to the NIP (Figure 1(c)). Therefore, RNIP and RN coincide for diffractions and
the NIP wave is the actual wavefront measured at the recording surface. Hence, in contrast to the reflection
case, where offsets in the data are required for the estimation of wavefront attributes, diffraction wavefront
attributes can also be determined for zero-offset data. Moreover, note that the moveout of a passive seismic
event can be described by the same quantities, except for the additionally unknown source excitation time,
as the moveout of an active seismic diffraction (Schwarz et al., 2016). As a result, the inversion scheme
presented in this work is equally applicable to passive seismic data (Diekmann et al., 2019). While the first-
order slopes p in general are easy to extract from the data, the determination of second-order curvatures,
that is MNIP and MN, is more challenging. Particularly in complex settings with a laterally heterogeneous
subsurface the successful determination of curvatures strongly depends on the chosen aperture.

The results of the CRS stack, namely a zero-offset section with improved signal-to-noise ratio, a coher-
ence section and the wavefront attributes p and MNIP, are a prerequisite for the application of wavefront
tomography, which we will introduce in the following.

WAVEFRONT TOMOGRAPHY

Wavefront tomography is an efficient and stable method for the determination of smooth depth-velocity
models. In the following, we will shortly describe conventional wavefront tomography (Duveneck, 2004),
which can be applied to both reflections and diffractions (Bauer et al., 2017). Afterwards, we will introduce
a modified implementation of wavefront tomography for diffraction-only data, in which diffractions are
forced to focus in depth.

Conventional approach

As input for wavefront tomography, data points di have to be picked in the zero-offset sections. This can
be done in an automatic fashion based on the semblance value associated to the measurements,

di = (x0, T, p,MNIP)i , i = 1, . . . , npicks , (4)

where x0 is the midpoint coordinate and T = t0/2 is the one-way zero-offset traveltime. The velocity
model is defined in terms of 2D B-splines,

v(x, z) =

nx∑
k=1

nz∑
l=1

vklβk(x)βl(z) , (5)
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Figure 2: Illustration of five initial ray paths of conventional wavefront tomography for a simple data
example with one diffraction. The ray paths of the downward and upward ray tracing coincide. As a result,
the initial misfit only depends on MNIP.

where nx and nz are the number of knots in x- and z direction, respectively, and vkl are the velocity
values at the corresponding locations. Accordingly, the model space m is defined by the nx × nz B-spline
velocity coefficients, subsurface locations (x, z)i and ray take-off angles θi associated to each data point.
In the inversion algorithm, downward kinematic ray tracing into the given initial velocity model yields first
guesses of the localizations (x, z)i of each data point. As a next step, upward dynamic ray tracing starting
from (x, z)i provides the modeled data d̃. After the initial modeling, due to the reciprocity of downward
und upward ray paths, the modeled attributes d̃ and the measured attributes d only differ in the values of
MNIP, which are calculated during the dynamic ray tracing. Figure 2 illustrates five ray paths of the initial
modeling for a simple diffraction example. Due to the wrong initial model, the localizations (x, z)i of the
five data points, which would coincide in a correct velocity model, still form a hyperbola. For the inversion
scheme, the misfit between measured and modeled data ∆d = d− d̃ is defined in terms of a cost function

Ψ(m) =
1

2
‖d− d̃‖22 + Λ (∂xxv(x, z)), ∂zzv(x, z)) , (6)

which is minimized in a least-squares sense by an LSQR algorithm (Paige and Saunders, 1982). The
second term Λ of the cost function is responsible for regularization and ensures a smooth velocity model
by minimizing its second derivatives. For more details on the iterative solution of the inverse problem we
refer to the original work of Duveneck (2004). In order to account for the different units of the attributes
(x0, T, p,MNIP), they are weighted with given factors (wx, wT , wp, wM ) that have to be chosen by the user
depending on the attribute quality and the problem at hand. However, since the initial misfit of conventional
wavefront tomography only depends on the values of MNIP, the weighting factor wM must not be set to
zero. Consequently, in complex settings, where the estimation of second-order attributes is challenging,
this may lead to an unstable behavior of the inversion scheme.

Diffraction wavefront tomography

While in conventional wavefront tomography all data points are treated independently, diffractions allow
the introduction of an additional constraint into the algorithm: all data points that belong to the same
diffraction are connected to the same subsurface structure and therefore, all localizations connected to
the same diffraction have to focus in depth. However, the implementation of this constraint requires the
previous identification and tagging of diffractions, such that a unique identifier, that is, an event tag, is
assigned to every diffraction present in the data. Bauer et al. (2019) recently introduced a scheme that
identifies and tags diffractions in an unsupervised fashion by analyzing the local similarity of wavefront
attributes.

Accordingly, the diffraction wavefront tomography we propose requires an additional input parameter:
the event tag associated with each data point. The data space d is then given by

di = (x0, T, p,MNIP, j)i , i = 1, . . . , npicks , j = 1, . . . , nevents , (7)
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(a) Downward ray paths

(b) Upward ray paths

Figure 3: Illustration of five initial ray paths of diffraction wavefront tomography for a simple data example
with one diffraction. The ray paths of the (a) downward and (b) upward ray tracing differ, because all
localizations are set to their mean value after the downward ray tracing. As a result, the initial misfit
mainly depends on x0 and T .

where j denotes the event tag and nevents is the number of different diffractions identified in the data. As
in the original implementation, the first step of the initial modeling consists of downward kinematic ray
tracing into the initial velocity model, which yields first guesses of the subsurface locations (x, z)i related
to each data point. These initial downward ray paths are illustrated in Figure 3(a). While in the original
implementation upward dynamic ray tracing starting from (x, z)i with the take-off angles θi provides the
modeled data d̃, in our modified implementation, the mean subsurface locations of all data points with the
same event tag (x̄, z̄)j are calculated and the upward dynamic ray tracing is started from these locations.
In this case, the ray take-off angles are calculated from the measured slowness values pi. The resulting
initial upward ray paths for the simple diffraction example are illustrated in Figure 3(b). Since they differ
from the downward ray paths, this results in an initial misfit ∆d, which does not only depend on MNIP, but
mainly on x0 and T . Consequently, the modified implementation allows setting the weighting factor wM
to zero, thereby evolving into a zero-offset slope tomography for diffractions.

DATA EXAMPLES

In this section, we present synthetic data examples comparing diffraction wavefront tomography to the
conventional approach and analyzing the stability of the proposed method in the presence of lateral hetero-
geneity.

Simple diffraction data with vertical heterogeneity

The first example consists in an application of both conventional wavefront tomography and our modified
implementation to synthetic diffraction data obtained in a vertically inhomogeneous velocity model with
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(a) Picked data points (b) Initial model

Figure 4: Panel (a) shows the automatically picked data points plotted onto the zero-offset semblance, (b)
the event tags obtained in an automatic fashion.

a velocity gradient of 0.5 s−1. The dataset contains a total of eight point diffractors. The input for the
inversion, 879 automatically picked data points, is displayed in Figure 4(a) plotted onto the zero-offset
semblance section provided by the CRS stack. Figure 4(b) shows the event tags that have been obtained
in an unsupervised fashion based on the local similarity of the corresponding wavefront attributes (Bauer
et al., 2019). The inversion results are presented in Figure 5. In the upper row, the results of conventional
wavefront tomography are shown: starting from a constant initial model, displayed in Figure 5(a), con-
sisting in the near-surface velocity v0 with the initial localizations (black asterisks) connected to all data
points, the inversion algorithm converged to the final model displayed in Figure 5(b) with the final local-
izations. Figure 5(c) shows the constant initial model of diffraction wavefront tomography with the initial
scatterer localizations (x̄, z̄)j connected to each event tag (black dots). For all inversion runs, an initial grid
of 6× 5 B-spline knots with a spacing of 1000 m each was used. In a cascaded approach, the knot spacing
was halved three times during the inversions, thus ending up with a 41× 33-grid with a spacing of 125 m
each. While Figure 5(b) is the result obtained with conventional wavefront tomography, Figures 5(d) and
5(e) are the models obtained with our modified implementation. In the latter, we set the weight for the
curvatures wM to zero, that is, no curvature information was used in the inversion. While this would imply
a vanishing misfit and no convergence in the original implementation, in the modified implementation this
approach provides a result of at least the same quality as the conventional implementation compared to the
correct model (Figure 5(f)). Still, for this dataset without lateral heterogeneity it is possible to obtain good
results with both implementations and both with or without relying on curvature information in diffraction
wavefront tomography.

Simple diffraction data with lateral and vertical heterogeneity

The results for the second example, presented in Figure 6, are based on a zero-offset dataset, which con-
tains both vertical and lateral heterogeneity and a total of nine point diffractors. Figure 6(a) shows the
7452 automatically picked data points plotted onto the coherence section obtained during the CRS attribute
analysis. The event tags, which could be assigned successfully to each diffraction in an automated fashion
(Bauer et al., 2019), are displayed in Figure 6(b), where each diffraction has a distinct color. As in the
previous example, we applied both conventional wavefront tomography and diffraction wavefront tomog-
raphy with and without using curvature information. For all inversion runs, we used an initial grid of 11× 6
B-spline knots with a spacing of 1000 m each, which was halved three times during each inversion, thus
ending up with a 81× 41 grid with a spacing of 125 m each. The initial model of conventional wavefront
tomography, for which again merely the near-surface velocity v0 was assumed, is plotted in Figure 6(c)
along with the initial localizations of all data points. Figure 6(d) shows the inverted model using the con-
ventional scheme, in which the overall velocity distribution (compare Figure 6(h)) could be retrieved fairly
well and the – independently treated – data points focus in the correct nine distinct subsurface regions. In
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(a) Initial model with conventional approach (b) Inverted model with conventional approach

(c) Initial model with new approach (d) Inverted model with curvature information

(e) Inverted model without curvature information (f) Correct model

Figure 5: Results for synthetic data with vertical heterogeneity: (a) the initial model with the initial lo-
calizations (black asterisks) using conventional wavefront tomography, (b) the inverted model with the
conventional approach without enforced diffraction focusing with the final localizations (black asterisks),
(c) the initial model of the new approach with the initial localizations (black dots), (d) the inverted model of
the new approach obtained using curvature information with the final localizations, (e) the inverted model
obtained without using curvature information with the final localizations, (f) the correct model with the
correct diffractor positions.



112 Annual WIT report 2019

(a) Picked data points (b) Event tags

(c) Initial model with conventional approach (d) Inverted model with conventional approach

(e) Initial model with new approach (f) Inverted model with curvature information

(g) Inverted model without curvature information (h) Correct model

Figure 6: Results for synthetic data with vertical and lateral heterogeneity: (a) the picked data points (black
asterisks) plotted into the zero-offset semblance section, (b) the event tags, (c) the initial model with the
initial localizations (black asterisks) of conventional wavefront tomography, (d) the conventional inverted
model with the final localizations, (e) the initial model with the initial localizations (black dots) of the
modified approach, (f) the inverted model obtained using curvature information with the final localizations,
(g) the inverted model obtained without using curvature information with the final localizations, (h) the
correct model with the correct diffractor positions.



Annual WIT report 2019 113

diffraction wavefront tomography, the data points connected to each event are not treated independently
anymore, which leads to the initial localizations plotted in Figure 6(e) as black dots onto the constant
initial model. Figures 6(f) and 6(g) are the velocity models and localizations obtained with the modified
implementation that enforces diffraction focusing. While in the first, curvature information was used, the
latter was obtained by setting the curvature weight wM to zero, that is, the second-order attributes were
not taken into account during the inversion. A comparison to the correct model with the correct diffractor
positions (Figure 6(h)) reveals that the result obtained without using curvature information is the one clos-
est to the correct model. This observation leads to the assumption that an inversion algorithm relying on
curvatures may become less stable in settings with considerable lateral heterogeneity. However, the unique
properties of diffractions allow to overcome this issue by enforcing their focusing in depth. This finding is
supported by the fact that the conventional implementation of wavefront tomography, whose initial misfit
exclusively depends on curvatures, for this example only converges, if the weight of the regularization term
is increased.

CONCLUSIONS

We have presented a modified implementation of wavefront tomography (Duveneck, 2004; Bauer et al.,
2017), which makes use of the unique physical properties of diffractions by forcing all measurements be-
longing to one diffraction to focus in the same subsurface location. A requirement for the application of
the modified implementation is the a priori knowledge, which measurements in the data belong to the same
diffraction. Once these event tags (Bauer et al., 2019) are available, all data points with the same event
tag are forced to focus in depth by calculating a mean subsurface location for each event and assigning it
to the corresponding data points during the inversion. While the initial misfit of conventional wavefront
tomography exclusively depends on second-order wavefront attributes, which can be difficult to determine
in complex settings, the modified implementation relies primarily on zero-order and first-order attributes,
whose estimation is generally more stable. As the new approach allows not to take into account second-
order attributes it evolves into a zero-offset slope tomography for diffractions in this case. Results for
synthetic diffraction data confirm the potential of our approach and suggest that it benefits from the im-
proved stability in settings with lateral heterogeneity. Future work comprises further improvement of the
event-tagging algorithm (Bauer et al., 2019), the application to field data and the extension to 3D. Owing
to their focusing nature, it can be demonstrated that the method is likewise applicable to passive-seismic
events (Diekmann et al., 2019).
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