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ABSTRACT

Joint Migration Inversion (JMI) is an independent approach to solve the seismic inverse problem,
based on decoupled imaging and inversion operators. Here, we review the background equations in
their continuous form. Furthermore, the general expression for the migration gradient seems to pro-
vide a new imaging condition. We then proceed to test the JMI methodology using the multiparameter
Gauss–Newton method to estimate simultaneously image and slowness updates, and we compare the
results to those of the conventionally used steepest-descent method. Our numerical results show that
the Gauss–Newton method can provide velocity models with improved resolution, albeit at a higher
cost. These results also demonstrate that the JMI implementation under the assumptions discussed
here can provide a good depth migrated image and a satisfying initial velocity model for a subsequent
Full Waveform Inversion.

INTRODUCTION

Joint Migration Inversion (JMI) has been proposed as a new approach to the seismic inverse problem
(Berkhout, 2014b). The method’s distinguishing characteristics are the ability to reproduce intrabed multi-
ples even in a smooth velocity model and a computational cost which is lower than that of finite-difference
based methods. JMI is built upon the seismic wavefield decomposition into its downgoing and upgo-
ing components. This approach intrinsically decouples high spatial frequency information, represented by
scattering operators, from low spatial frequency information, represented by the velocity model (Wapenaar,
1996).

By means of the migration part, the velocity model allows for the positioning of events. In turn, from
the resulting image, scattering operators are built to update the velocity model. Since the methodology
deals mainly with reflections below the critical angle, it is conceptually analogous to Reflection Waveform
Inversion (Xu et al., 2012).

Because of the higher cost of wave-based methods, ray-based tomography methods are still routinely
used in oil and gas exploration (Jones, 2010; Santos, 2015). In terms of cost and quality, JMI offers
an intermediate solution between ray-based methods and Full Waveform Inversion (FWI), accounting for
finite frequency effects, but not demanding event picking and with lower computational cost than finite-
difference solutions of the wave equation.

This work aims at presenting continuous versions of the JMI equations and at solving the inverse prob-
lem using the Gauss–Newton method to estimate simultaneously image and slowness updates. Usually,
the methodology is presented in the discrete matrix form, and the parameters are updated by alternating
between imaging and tomography (Masaya and Verschuur, 2018). In the continuous form, the equations
may be slightly more cumbersome, but they help to state the method and its assumptions as clearly as pos-
sible. The results of our implementation indicate that JMI is a promising methodology for velocity model
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building with the potential to assist in reducing the number of necessary iterations in a subsequent FWI
application, allowing it to be integrated within a robust initial-velocity-model building workflow (see, e.g.,
Santos et al., 2015, 2016b,a,c).

FORWARD PROBLEM

In this section, we discuss the two-dimensional acoustic constant-density modeling equations. First, we
show the differential formulation to provide a general understanding about the problem under considera-
tion. Then, we present the integral formulation, being the approach adopted in the implementation. Finally,
using the integral formulation, we discuss the discrete recursive modeling algorithm. Note that we adopt
the following Fourier convention:

F (ω) =

∫
R
f(t)e−iωtdt , (1)

f(t) =
1

2π

∫
R
F (ω)eiωtdω . (2)

Differential modeling equations

Consider the constant-density acoustic wave equation decomposed into its downgoing and upgoing com-
ponents. Similar to Ursin et al. (2012) and Wapenaar (1996), the downgoing P+(x, ω) and upgoing wave-
fields P−(x, ω) in the space-frequency domain (x, ω) for a downgoing source S+ must satisfy

∂P+

∂z
= −iĤ1P

+ + T̂ +
c P

+ + R̂−c P− + S+ , (3)

∂P−

∂z
= iĤ1P

− − T̂ −c P− − R̂+
c P

+ , (4)

where i is the imaginary unit and x = (x, z) is the observation point, with x the horizontal axis and z
the depth axis increasing downward. Moreover, Ĥ1 is the square-root operator, R̂c and T̂c are the reflec-
tivity the transmissivity operators, respectively, with the superscript + indicating incidence from above a
model position and the superscript − indicating incidence from below. Note that as a consequence of the
directional decoupling, horizontally propagating waves are not defined (Ursin et al., 2012).

The square-root operator Ĥ1 is defined such that its twofold application results in the lateral Helmholtz
operator Ĥ2, i.e.,

Ĥ2 = Ĥ1Ĥ1 , (5)

and it is formally defined as

Ĥ1 =

[
ω2σ2 +

∂2

∂x2

]1/2

, (6)

in which σ is the slowness.
In a laterally invariant model, the square-root operator in the frequency-wavenumber domain is equiv-

alent to the vertical wavenumber
kz = ω

√
σ2 − k2

x/ω
2 , (7)

where kx is the horizontal wavenumber. The square-root operator and the scattering operators represent
convolutions in the horizontal coordinate, viz.,(

Ĥ1P
±
)

(x, ω) =

∫
R
H1(x, z, ω;x′)P±(x′, z, ω)dx′ , (8)

(R̂+
c P

+)(x, ω) =

∫
R
R̂+
c (x, z, ω;x′)P+(x′, z, ω)dx′ . (9)

A detailed discussion about the square-root operator can be found in Grimbergen et al. (1998).
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Scattering operators and coefficients

The scattering operators in a constant-density model are defined as

R̂±c = T̂ ±c = ∓1

2
Ĥ−1

1

∂Ĥ1

∂z
. (10)

More details about these equations can be found in Wapenaar (1996), in which the coupled one-way wave
equations are developed using a flux-normalized decomposition of the two-way wave operator. Here, we
consider pressure normalization, so that the sum P+ + P− provides the total two-way wavefield P .

The scattering operators act on a wavefield via the convolution integral as detailed in equation (9).
In the angle-independent case, the scattering operators action on a wavefield is performed by a direct
multiplication and they are approximately given by

R̂±c = T̂ ±c ≈ ∓
1

2c

∂c

∂z
. (11)

where c = 1/σ is the acoustic wavespeed. This approximation to the reflectivity R̂+
c is well-known in the

literature, see, e.g., Berteussen and Ursin (1983). The reflectivity and transmissivity operators relate to the
reflection and transmission operators as

R̂±c ∆z ≈ R̂± and T̂ ±c ∆z ≈ I + T̂ ± . (12)

In a discontinuous model we recover the conventional acoustic reflection and transmission coefficients,
e.g.,

R+ → R+ =
c(x, z + ∆z)− c(x, z −∆z)

c(x, z + ∆z) + c(x, z −∆z)
, (13)

which satisfy (Berkhout, 2014b)

T+ = 1 +R+ , (14)

R− = −R+ , (15)

T− = 1−R+ , (16)

where T± are the transmission coefficients from above and below and R± are the corresponding reflection
coefficients.

Integral modeling equations

The downgoing G+ and upgoing G− Green’s functions for our modeling equations, in a model vertically
homogeneous, must satisfy

∂G+

∂z
= −iĤ1G

+ −∆zδ(x− x′) , (17)

∂G−

∂z
= iĤ1G

− + ∆zδ(x− x′) . (18)

Using Green’s theorem (see, e.g., Schleicher et al., 2007), we can build integral representations for the
differential equations (3) and (4). The resulting equations are

P+(x, ω) = − 1

∆z

∫
R
G+(x, z, ω;x′, z′)

(
T+P+ +R−P− + S+∆z

)
(x′, z′, ω)dx′ , (19)

P−(x, ω) = − 1

∆z

∫
R
G−(x, z, ω;x′, z′)

(
T−P− +R+P+

)
(x′, z′, ω)dx′ . (20)

These equations allow us to extrapolate wavefields from a depth level z′ to another depth level z.
Between depth levels, we consider the velocity model vertically homogeneous. At the boundary between
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two layers, vertical discontinuities in the velocity model may occur and are accounted for by the scattering
coefficients.

Introducing the operators Ĝ+ and Ĝ− that represent the integrals over the lateral coordinate, we obtain

P+(z) = Ĝ+(z; z′)
(
T+P+ +R−P− + S+∆z

)
(z′) , (21)

P−(z) = Ĝ−(z; z′)
(
T−P− +R+P+

)
(z′) , (22)

where we exhibit only the depth coordinate to simplify notation. These equations account for full scattering.

Discrete recursive modeling

Using a procedure similar to the Born expansion, it is possible to obtain a recursive relationship between
the wavefields that accounts for higher order scattering. This can be done by defining two downgoing
wavefields. One is related to the downgoing transmission of the physical source term S+, namely the
incident downgoing wavefield. The other one is the perturbed downgoing wavefield resulting from the
reflection of the total upgoing wavefield. The corresponding quantities for the upgoing wavefield can be
defined upon reflection of the incident and scattered downgoing wavefields. Applying this procedure to the
integral formulation, equations (21) and (22), we obtain the recursive equations

P+
j+1(zn+1) = Ĝ+(zn+1; zn)

(
R−P−j + T+P+

j+1 + S+∆z
)

(zn) , (23)

P−j+1(zn−1) = Ĝ−(zn−1; zn)
(
R+P+

j+1 + T−P−j+1

)
(zn) , (24)

where the subscript j indicates the scattering order and zn denotes the depth of the nth boundary. Moreover,
zn±1 = zn ±∆z. The zero-order terms, equivalent to our definition of incident wavefields, are given by

P+
0 (zn+1) = Ĝ+(zn+1; zn)

(
T+P+

0 + S+∆z
)

(zn) , (25)

P−0 (zn−1) = Ĝ−(zn−1; zn)
(
R+P+

0 + T−P−0
)

(zn) . (26)

The source term in equation (23) is calculated as

S+(zn) =

{
− i

2∆z Ĥ−1
1 C(ω) , zn = zs ,

0 , zn 6= zs ,
(27)

where C(ω) is the spectrum of the source wavelet, e.g., a Ricker wavelet.
Therefore, P+

0 denotes the downgoing transmitted wavefield, P−0 represents the upgoing waves re-
flected once, P+

1 are all twice reflected downgoing waves, P−1 stands for upgoing waves that have bounced
three times, and so on. This recursive modeling procedure is closely related to the work of Bremmer
(1951) and explored in detail by Berkhout (2014a). Note that the only necessary information to account
for higher-order scattering at iteration j + 1 is the source wavefield S+ and the downgoing wavefield from
the last iteration P−j . To simplify the presentation, we assume a two-dimensional acoustic model, but the
extension to 3D is straightforward.

Still for simplicity, we assume the model parameters to be locally homogeneous, and the scattering
operators/coefficients to be angle independent. This last assumption leads to scattering operators that are
independent of frequency and allows us to substitute the convolution in equation (9) by a direct multiplica-
tion (de Bruin et al., 1990).

Concerning propagation, the locality assumption allows us to approximately implement the Green’s
function for laterally varying models using the approach of Thorbecke et al. (2004). However, any other
one-way extrapolation technique could be used.

INVERSE PROBLEM

In this section, we introduce the inverse problem of estimating the model parameters. The developments
made here are the main contributions of this work.

First, we discuss the Gauss–Newton method ands apply it to the simultaneous estimation of model
parameters, i.e., image and slowness. Next, we return to the differential formulation in order to obtain
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the most general expressions for the imaging and inversion gradients. To reduce computational cost, we
implement only the receiver side of the derived expressions for the gradients. In other words, the variations
in the downgoing wavefield are neglected. In practice, this means that upon progress of the iterative model-
parameter estimation, the upgoing wavefield is kept the same between iterations. From now on, we will
omit the subscript of the wavefields related to the scattering order so as to simplify notation.

Gauss–Newton method

The Gauss–Newton method is an approximate approach to account for the effect of the inverse Hessian of
the objective function on the gradient. Some benefits of the method are its capability to focus the gradient
by reducing band-limiting effects from acquisition and, consequently, it may speed up the convergence of
the inversion process (Pratt et al., 1998). Additionally, the Gauss–Newton approach can reduce cross-talk
between parameter classes in multiparameter inversion (Pan et al., 2018).

Under the hypotheses outlined above, we want to solve the least-square problem

E(R+, σL) =
1

2

Ns∑
s=1

∫ ωf

ωi

∫
Ω

∣∣D−s − SsP−s (R+, σL)
∣∣2 dxdω , (28)

where Ns is the number of shots, the subscript s denotes one shot, D−s is the measured data, and’ P−s is
the upgoing wavefield at all spatial positions in the model, parameterized in dependence on the reflection
coefficientR+ and the logarithmic slowness σL = ln(σ/σ0). Moreover, Ω is the two-dimensioonal domain
in the horizontal coordinates under investigation, and Ss samples the wavefield at the receivers position.

Using the LSMR algorithm (Fong and Saunders, 2011), we implemented the multiparameter Gauss–
Newton method by solving the least-squares subproblem

min
∆σLk ,∆R

+
k

Ns∑
s=1

∫ ωf

ωi

∫
Ω

∣∣∣∣∣Ss
[
∂P−s
∂σL

∣∣∣∣
σLk

∂P−s
∂R+

∣∣∣∣
R+
k

] [
∆σLk
∆R+

k

]
− (D−s − SsP̄−s )

∣∣∣∣∣
2

dxdω , (29)

where ∆σLk and ∆R+
k are the update directions at iteration k. After estimating the update directions, the

parameters are updated according to

σLk+1
= σLk + αk∆σLk and R+

k+1 = R+
k + βk∆R+

k , (30)

where the step-lengths αk and βk are calculated with the subspace method (Kennett et al., 1988). At
each inner iteration of the LSMR algorithm to solve equation (29), our procedure performs one linearized
modeling and one adjoint modeling.

In connection with the first-order Taylor expansion (see, e.g., Camargo, 2019), the action of the wave-
field partial derivative on a vector ∆mk is equivalent to the calculation of a perturbed wavefield given
by

∆P−(mk) = P−(mk + ∆mk)− P−(mk) ≈ ∂P−

∂m

∣∣∣∣
mk

∆mk , (31)

where the model parameter m is R+ or σL. Using the upgoing modeling equation (24) and, as an example,
considering the model parameter R+

k , we obtain(
∂P−

∂R+

∣∣∣∣
R+
k

∆R+
k

)
(zn−1) = Ĝ−(zn−1; zn)

(
∆R+

k P
+ + T−k ∆P−

)
(zn) , (32)

where we have neglected variations in the downgoing wavefield and in the transmission coefficient.
We now take into account that the down- and upgoing Green’s functions approximately relate to each

other as [
Ĝ−(zn−1; zn)

]∗
≈ Ĝ+(zn; zn−1) , (33)
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where ∗ denotes complex conjugate. With this relationship, the adjoint of equation (32) can be expressed
as [(

∂P−

∂R+

)∗∣∣∣∣
R+
k

∆P−

]
(zn) ≈

(
P+
)∗

(zn) Ĝ+(zn; zn−1)∆P−(zn−1) , (34)

where we have also negected second-order terms in ∆P−.
In the next section, we discuss the method of Lagrangian multipliers in more detail in order to define

more precisely what we mean by adjoint modeling.

Lagrange multipliers

Our aim is to simultaneously estimate the angle-independent reflection coefficient R+ and the logarithmic
slowness σL. After inversion of these parameters, the other scattering coefficients are estimated using equa-
tions (14), (15), and (16). For this purpose, we adapt the the method of Lagrangian multipliers presented
by Askan et al. (2007) and Métivier et al. (2017) to our problem. This methodology provides the means of
calculating the partial derivatives required by the Gauss–Newton method.

For our derivations, we make use of the following relationships between the reflectivity and transmis-
sivity operators:

R̂−c = −R̂+
c , (35)

T̂ ±c = ±R̂+
c . (36)

In preparation to build the Lagrangian function we define the forward modeling functionals

F+(P+, P−, R̂+
c , σL) =

∂P+

∂z
+ iĤ1P

+ − R̂+
c

(
P+ − P−

)
, (37)

F−(P+, P−, R̂+
c , σL) =

∂P−

∂z
− iĤ1P

− + R̂+
c

(
P+ − P−

)
, (38)

where we have separated the dependency on P± from that on the model parameters R̂+
c and σL. In the

case that the wavefields P± satisfy the one-way wave equations (3) and (4), we have F± = 0 and the
dependency restored.

Considering the above least-squares objective function E and wave-equation functionals F±, we de-
fine, for a single shot gather, the augmented Lagrangian function

L(P+, P−, R̂+
c , σL,Λ

+,Λ−) = E(P−) +Re
{〈
F+(P+, P−, R̂+

c , σL),Λ+
〉}

+Re
{〈

F−(P+, P−, R̂+
c , σL) ,Λ−

〉}
, (39)

where Λ±(x, ω) are Lagrange multipliers or adjoint-state variables, Re{.} denotes the real-part operator,
and 〈., .〉 denotes inner product. Morever, the inner product 〈A,B〉 of two complex quantities A(x, ω) and
B(x, ω) is defined as

〈A,B〉 =

∫
Ω

∫ ωf

ωi

A∗B dωdx , (40)

where ωi and ωf are initial and final angular frequencies, respectively, and Ω represents the two-
dimensional model parameters spatial domain.

Our forward modeling equations evolves in the depth coordinate, this way, we define the following
boundary conditions

P+(x, z = zf , ω) = 0 , (41)

P−(x, z = 0, ω) = 0 , (42)

where zf is the depth position at the bottom of the model.
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Considering now wavefields P̄± that satisfy F± = 0, we conclude that for these wavefields, the La-
grangian reduces to

L(P̄+, P̄−, R̂+
c , σL,Λ

+,Λ−) = E(P̄−(R̂+
c , σL)) . (43)

This equivalence betweenL (equation (43)) andE (equation (28)) will be used in the following sections.
Furthermore, the Lagrangian must be stationary at the optimum solution. Therefore, the first variation δL
must vanish, i.e.,

δL =
∂L

∂P+
δP+ +

∂L

∂P−
δP− +

∂L

∂R̂+
c

δR̂+
c +

∂L

∂σL
δσL +

∂L

∂Λ+
δΛ+ +

∂L

∂Λ−
δΛ− = 0 . (44)

Adjoint wavefields

The variation of the Lagrangian with respect to P+ is given by

δP+L =Re

{〈
−∂Λ+

∂z
+ iĤ1Λ+ −

(
R̂+
c

)†
Λ+, δP+

〉}
+Re

{〈(
R̂+
c

)†
Λ−, δP+

〉}
, (45)

where superscript † denotes transpose and complex conjugate. Here, the transposition of a scattering
operator means a correlation between the operator and the wavefield along the lateral coordinate. Moreover,
we have also taken into account that under neglection of evanescent waves (Wapenaar and Grimbergen,
1996),

Ĥt1 = Ĥ1 and Ĥ∗1 ≈ Ĥ1 , (46)

where t denotes transpose and ∗ denotes complex conjugate. Additionally, we carried out an integration
by parts to move the partial derivative with respect to depth to the adjoint wavefield. For this purpose, we
used the boundary condition

Λ+(x, z = 0, ω) = 0 . (47)

Imposing δP+L = 0, we obtain

∂Λ+

∂z
= iĤ1Λ+ −

(
R̂+
c

)† (
Λ+ − Λ−

)
. (48)

Similarly to the variation with respect to P+ in equation (45), the variation of the Lagrangian with
respect to P− is given by

δP−L =
〈
−S†

(
D− − SP−

)
, δP−

〉
+Re

{〈
−∂Λ−

∂z
− iĤ1Λ− −

(
R̂+
c

)†
Λ−, δP−

〉}
+Re

{〈(
R̂+
c

)†
Λ+, δP−

〉}
, (49)

with the associated boundary condition

Λ−(x, z = zf , ω) = 0 . (50)

Imposing δP−L = 0, we obtain

∂Λ−

∂z
= −iĤ1Λ− +

(
R̂+
c

)† (
Λ+ − Λ−

)
− S†

(
D− − SP−

)
. (51)

Hence, equations (48) and (51) govern the adjoint modeling procedure. Using relationships (35) and
(36) between scattering operators, the adjoint modeling equations can be recast into the form

∂Λ−

∂z
= −iĤ1Λ− +

(
T̂ −c
)†

Λ− +
(
R̂+
c

)†
Λ+ − S†

(
D− − SP−

)
, (52)

∂Λ+

∂z
= iĤ1Λ+ −

(
T̂ +
c

)†
Λ+ −

(
R̂−c
)†

Λ− . (53)
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In the integral representation of these equations, the transmissivity operator will turn into the transmis-
sion operator/coefficient. Therefore, we substitute the adjoint of the transmission by its inverse. We believe
that this modification will lead to improved amplitudes of deep reflectors.

Finally, using the integral formulation and discretizing the depth coordinate, we can write the zero-order
terms as

Λ−(zn+1) = Ĝ+(zn+1; zn)

[
1

T−
Λ− −∆zS†

(
D− − SP−

)]
(zn) , (54)

Λ+(zn−1) = Ĝ−(zn−1; zn)

(
1

T+
Λ+ +R−Λ−

)
(zn) , (55)

where we have already considered the inverse of the angle-independent transmission coefficient. Note that
these equations are similar to the modeling equations (25) and (26), but in the adjoint modeling case, we
start from the data residuals at the receivers position and extrapolate the data residual down to the bottom
of the parameter space (model). Then, we calculate the adjoint wavefield Λ+ from the model bottom back
to the top.

Migration

The variation of the Lagrangian, equation (39), with respect to R̂+
c is given by

δR̂+
c
L = Re

{〈
−
(
P̂+ − P̂−

)†
Λ+, δR+

c

〉}
+Re

{〈(
P̂+ − P̂−

)†
Λ−, δR+

c

〉}
, (56)

where the adjoint of the wavefield operator is defined as(
P̂+
)†

Λ+ =

∫
R

[
P+(x, z, ω;x′)

]∗
Λ+(x, z, ω)dx , (57)

with ∗ denoting the complex conjugate.
Using identity (43), the partial derivative of the objective function with respect to the reflectivity is

given by

∂E

∂R̂+
c

= −
(

ˆ̄P+ − ˆ̄P−
)† (

Λ̄+ − Λ̄−
)
, (58)

where Λ̄± are the adjoint wavefields calculated using the forward wavefields P̄± that satisfy F± = 0.
In the angle-independent and discrete model case, using equation (12) and the chain rule, we obtain

∂E

∂R̂+
c

∂R̂+
c

∂R+
=

1

∆z

Ns∑
s=1

Re

{∫ ωf

ωi

[
P̄+
s − P̄−s

]∗ [
Λ̄+
s − Λ̄−s

]
dω

}
, (59)

where we have made explicit the sum over shot-gathers. Moreover, we have multiplied the expression by
−1 to obtain a descent direction. Note that the integration over angular frequency is kept because the angle-
independent reflection coefficient is also independent of angular frequency. This new imaging condition
for seismic imaging needs to be further investigated in the future.

In this work, we discard variations in the downgoing wavefield, which means neglecting the adjoint
wavefield Λ+ in the Lagrangian (equation (39)). Upon also neglecting the upgoing wavefield in expression
(59), it simplifies to

∂E

∂R+
≈ − 1

∆z

Ns∑
s=1

Re

{∫ ωf

ωi

[
P̄+
s

]∗ [
Λ̄−s
]
dω

}
. (60)

Note that this result is basically the conventional imaging condition, i.e., the zero-lag cross-correlation
between the complex conjugate of the downgoing wavefield with the backpropagated residuals.
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On the other hand, direct derivation of the objective function in equation (28) with respect to R+

provides

− ∂E

∂R+
=

Ns∑
s=1

Re

{∫ ωf

ωi

(
Ss
∂P−s
∂R+

)† (
D−s − SsP−s

)
dω

}
. (61)

A comparison of equations (60) and (61) leads to an interpretation of the gradient by means of the
adjoint wavefield partial derivative. We conclude that the action of the adjoint of the upgoing-wavefield
partial derivative on a residual wavefield ∆P is calculated as a product of the complex conjugate of the
downgoing wavefield and the backpropagated data residual ∆P . This conclusion agrees with the adjoint
equation (34) derived by other means.

Inversion

The variation of the Lagrangian in equation (39) with respect to σL is given by

δσLL =

〈
Λ+, i

∂Ĥ1

∂σL
P+δσL

〉
+

〈
Λ−,−i∂Ĥ1

∂σL
P−δσL

〉
. (62)

Using identity (43), the partial derivative of the objective function with respect to σL can be written as

∂E

∂σL
= −

Ns∑
s=1

∫ ωf

ωi

Re

{
i
∂Ĥ1

∂σL

[
P̄+
s

(
Λ̄+
s

)∗ − P̄−s (Λ̄−s )∗] dω
}
, (63)

which we multiplied again by −1 to obtain a descent direction.
Discarding variations in the downgoing wavefield, i.e., neglecting Λ+, we obtain

∂E

∂σL
≈

Ns∑
s=1

∫ ωf

ωi

Re

{
i
∂Ĥ1

∂σL

[
P̄−s

(
Λ̄−s
)∗]

dω

}
. (64)

In analogy to the interpretation of equation (61), the action of the partial derivative of the upgoing-
wavefield adjoint on a wavefield ∆P is given by equation (64) with the data residual in the adjoint wavefield
substituted by the ∆P .

We highlight that even after discarding variation in the downgoing wavefield, the partial derivatives
of the objective function with respect to R+ and σL, still depend on wavefields propagating in different
directions. The imaging gradient, equation (60), depends on the downgoing wavefield P+, whereas the
inversion gradient, equation (64), depends on the upgoing wavefield P−. These expressions for the partial
derivatives of the objective function represent the so-called receiver side and, in order to reduce computa-
tional cost, that is how we implement the derivatives involved in the Gauss–Newton method.

NUMERICAL TESTS

We have applied our formulation of JMI to two synthetic data sets. One model is similar to the lens
model used in Masaya and Verschuur (2018), and the second model is the modified Marmousi2 model
(Pan et al., 2018). The source wavelet in both synthetic data sets was a 20 Hz Ricker wavelet. We used
the same algorithm for modeling and inversion with a multiscale approach. In the discussion below, when
we indicate the Gauss–Newton computational cost, we consider that one linearized modeling step has
approximately the same computational cost of one adjoint modeling step. For comparison, we include the
results of the conventionally used steepest-descent method.

Lens model

The acquisition geometry for the first test consisted of 40 shots spaced by 50 m and receivers at all surface
grid points. The vertical and lateral spatial sampling of the model was 12.5 m. Figure 1 shows the initial
velocity model for the first test, a linear vertical gradient model. The initial image was a null array. Figures
2(a) and 2(b) show the exact velocity and image, respectively.
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Figure 1: Lens model: Initial velocity model for JMI.
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Figure 2: Lens model: (a) Exact velocity model; (b) Exact image.
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Figure 3: Results from the Lens model. Tomography with steepest descent: (a) Velocity; (b) Image from
tomography with steepest descent; (c) Velocity; (d) Image from tomography with Gauss–Newton.
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Figure 4: Results from the Lens model, residual over iterations. (a) Data residual; (b) Model residual.
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For the inversion, the frequency stages were divided into four equal intervals with fixed minimum
frequency. The minimum frequency was set to the first sample after 0 Hz and the first maximum frequency
was 15 Hz. The number of iterations per stage was set to a maximum of 20 and a jump to a new stage was
imposed if the relative decrease of the objective function was less than 1%.

The results of the inversion with the steepest-descent and Gauss–Newton methods are depicted in Fig-
ure 3. Overall, the results were acceptably close to the exact model (compare with Figure 2). The Gauss–
Newton solution, Figure 3(c), exhibits a slightly higher resolution and more precision in reproducing the
length and positioning of the lens than the steepest-descent result, Figure 3(a). Moreover, the fine layers
right below the lens are better positioned in the Gauss–Newton image, Figure 3(d) than in the steepest-
descent image, Figure 3(b). The apparent pull-up of these layers in Figure 3(d), which is slightly stronger
than in Figure 3(b), is a result of more inaccurate positioning of the horizontal reflectors to the sides of the
image, where the illumination was poorer. The area of full illumination can be inferred by the light blue
boundary effect connecting the corners of the lens to the upper corners of the image.

Other indicators for the quality of the optimization strategies are the data and model residuals. Figure 4
shows these residuals in plots over iterations. The data and model residuals show that the Gauss–Newton
method provided model updates which converged considerably faster and lead to a better final velocity
model. The average number of inner iterations in the Gauss–Newton approach was 4.3. Therefore, the
computational cost of each iteration was approximately 8.6 times that of the steepest-descent method.

Marmousi2 model

Figures 5 to 9 show the same sequence of figures for a modified version of the Marmousi2 model. For
better visualization and comparison, we have separated the model from the image figures. Figure 5 depicts
the initial velocity model, a strongly smoothed version of the exact velocity model, shown in Figure 6(a).
The initial image was again a null array.

In this case, the vertical and lateral spatial sampling was 5 m. The acquisition geometry consisted of 22
shots spaced at 150 m and receivers at all surface grid points. The frequency stages were divided into four
intervals with an increment of 10 Hz, and the first stage was defined as 0-10 Hz. The maximum number of
iterations per stage was set to 20, skipping to a new stage if the relative decrease of the objective function
was less than 5%. Both the steepest-descent and Gauss–Newton methods, Figures 7(a) and 7(b), were
capable of introducing several details into the initial velocity model, Figure 5. The steepest-descent result
makes an overall somewhat smoother impression than the Gauss–Newton velocity model. A number of
details, e.g. the low-velocity layers in the lower part of the model, are better resolved in the Gauss–Newton
velocity model.

Figure 8 compares the resulting images to the true reflectivity. The resulting images of the steepest-
descent, Figure 8(b) and Gauss–Newton inversion, Figure 8(c), exhibit approximately the same quality.
Differences in reflector positioning or continuity are hard to spot. Note, however, that the gas lens is
visibly better resolved in the Gauss–Newton image.

Figure 9 compares the convergence behavior of the data and model residuals. We recognize that Gauss–
Newton converged slower in the first stage than steepest descent but subsequently provided a more signifi-
cant decrease of the data and model residuals, Figures 9(a) and 9(b). The average number of inner iterations
to solve the Gauss–Newton approximation was 6.2. Therefore the computational cost of each iteration was
approximately 12.4 times that of steepest descent.

CONCLUSION

In this paper, we have studied Joint Migration Inversion (JMI). Differently from what is usually done in
the literature on JMI, we have reviewed the continuous forms of the differential and integral equations
upon which the JMI methodology is built. Considering the inverse problem, in general, the JMI gradients
are derived from the integral equations after discretization. We obtained the gradients using the original
underlying differential equations together with the continuous form of the Lagrange multipliers.

The complete formulation of the Lagrangian with respect to variations in the downgoing and upgo-
ing wavefields leads to a new imaging condition. Even upon neglection of variations in the downgoing
wavefield, this result suggests that the imaging condition should be composed of the difference between
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Figure 5: Marmousi2 model: Initial velocity model for JMI.
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Figure 6: Marmousi2 model: Exact velocity model; (a) Exact image.
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Figure 7: Marmousi2 model. (a) Exact velocity model; (a) Velocity from tomography with steepest de-
scent; (b) Velocity from tomography with Gauss–Newton.

downgoing and upgoing wavefields correlated with the backpropagated seismic data from the receivers.
The effectiveness of this modified imaging condition is the subject of ongoing research.

We have also discussed the implementation of the multiparameter Gauss–Newton method to simulta-
neously estimate updates for the scattering operator and the medium slowness. Our numerical tests on
two synthetic models of different degrees of geologic complexity indicate that the computationally more
expensive Gauss–Newton method can provide higher resolution in the resulting velocity models than the
steepest-descent method. However, although the inverted velocity models showed some significant dif-
ferences, the quality of the estimated reflectivity images turned out to be somewhat independent of the
tested optimization algorithm. Note that in order to fairly compare these optimization methods, we chose
identical stopping criteria for both inversion algorithms.

In conclusion, JMI is a promising methodology for imaging and velocity model building. However,
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Figure 8: Marmousi2 model: (a) Exact image. (b) Image from tomography with steepest descent; (c)
Image from tomography with Gauss–Newton.

the assumptions considered here, mainly the angle independence of the scattering operators, should be
removed in order to reduce probable restrictions when applied to real data. Overall, the obtained velocity
models seem to be of sufficient quality to serve as initial models for a subsequent FWI.
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