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ABSTRACT

The true-amplitude (TA) imaging condition for reverse-time migration (RTM) is based on a combi-
nation of temporal and spatial derivatives of the up- and downgoing wavefields. By means of partial
integrations (or redistribution of the frequency factors in the frequency domain, we derive several
alternative expressions for this imaging condition. Interestingly, the temporal derivatives can be com-
pletely replaced by spatial derivatives and temporal integrations. In this way, one version of the TA
imaging condition makes use of the Laplacian operator, in this way relating to a common way of
removing backscattering artifacts in RTM. We demonstrate by means of numerical examples using
the Marmousi and Sigsbee2A data that the quality of the migrated image strongly depends on the
version chosen for implementation. The best quality is achieved with a version that combines second
derivatives of the source wavefield with the Laplacian operator.

INTRODUCTION

Reverse-time migration (RTM) is a seismic imaging method based on the full (two-way) wave equation
(Schultz and Sherwood, 1980; McMechan, 1983; Baysal et al., 1983; Sun and McMechan, 2001; Yan and
Sava, 2008). In the same way as other wave-equation based migration techniques, it makes use of an image
condition, the most basic form of which is simple cross-correlation of the up- and downgoing wavefields
(Claerbout, 1971).

In the early days of seismic imaging, RTM was not of much practical use because of its high compu-
tational cost and the presence of strong low-frequency artifacts from backscattering if the velocity model
contains sharp velocity contrasts. Its use has gained much popularity in the first decade of this century, after
the advent of more powerful computers and new technologies to remove the backscattering artifacts (Yoon
et al., 2004; Fletcher et al., 2006; Guitton et al., 2006). Most of these techniques rely on modified imaging
conditions (see, e.g., Yoon and Marfurt, 2006; Costa et al., 2009; Luo et al., 2009, 2010; Zhu et al., 2009).
In the same context, Kiyashchenko et al. (2007) and Op’t Root et al. (2012) derive the true-amplitude
(TA) imaging condition for reverse-time migration (RTM). The purpose of the TA imaging condition is
to remove the backscattering artifacts and to provide image amplitudes that are proportional to reflection
coefficients.

Unfortunately, in the form presented by these authors, the TA imaging condition does not allow for an
efficient implementation in the time domain. For a time-domain implementation, it must be recast into a
different form. In this paper, we derive a number of theoretically equivalent forms of the approximate TA
imaging condition that can be efficiently implemented in the time domain. In a similar way to Douma et al.
(2010), we show that the true-amplitude imaging condition for RTM can be reformulated into a version
containing the Laplacian operator. This operator is frequently used in seismic imaging without a profound
theoretical basis to remove the low-frequency backscattering artifacts from RTM images. We numerically
evaluate the derived time-domain versions of the TA imaging condition by comparing the resulting migrated
images of the Marmousi and Sigsbee2A data.
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TRUE-AMPLITUDE IMAGING CONDITION

According to Op’t Root et al. (2012), the TA imaging condition is given in the frequency domain by

Ir(x) =
1

2π

∑
s

∫
ω

dω
1

(−iω)PsPs

[
PsPr −

c2(x)

ω2
∇Ps · ∇Pr

]
, (1)

where Ps = Ps(ω,x;xs) and Pr = Pr(ω,x;xs) are the (downgoing) source and (upgoing) receiver
wavefields for a source at xs, downward continued to the imaging point x. Moreover, the bar over a
symbol denotes the complex conjugate operation.

Equation (1) is slightly different from the one of Op’t Root et al. (2012). For simplicity, we have
assumed that the source wavelet is a (possibly band-limited) delta-function, the effects of which are ac-
ceptable in the final migrated image. Therefore, we have combined in equation (1) the Green’s function
and source wavelet in the formula of Op’t Root et al. (2012) into the source wavefield Ps. Moreover,
we have made the sum over all sources explicit. Finally, the different sign of the factor (−iω) in the de-
nominator of the above equation results from our use of the following definition of the Fourier transform
pair,

f(ω) =

∫ ∞
−∞

dt f(t)eiωt e f(t) =
1

2π

∫ ∞
−∞

dω f(ω)e−iωt . (2)

When trying to implement the TA imaging condition in the time domain, one recognizes that its basic
form, equation (1) is not very favorable. For an efficient time-domain implementation, it must be recast
into a more adequate form. Below, we derive a number of theoretically equivalent forms. We then compare
them numerically by looking at the corresponding images.

Implementational forms

The advantage of the frequency domain representation of the TA imaging condition in equation (1) is that
the time derivatives are represented by factors (−iω). Thus, it immediately allows us to recognize that
these factors can be rather freely redistributed among the wavefield terms. Making use of this freedom, our
first rewrite moves the ω2 in the denominator of the spatial-derivatives term, where it would represent a
two-fold time integration, to a position in front of the parentheses. This results in

Ir(x) =
∑
s

∫
ω

dω
1

(−iω)(−ω2)PsPs

[
−ω2PsPr + c2(x)∇Ps · ∇Pr

]
,

=
∑
s

∫
ω

dω
1

(−iω)3PsPs

[
(−iω)Ps(−iω)Pr + c2(x)∇Ps · ∇Pr

]
, (3)

where the second equation results from distributing the (−iω) factors symmetrically between the wavefield
terms. This is the most conventional form of applying the time derivatives.

If we move one of the (−iω) factors in the denominator to the receiver wavefield, we can rewrite
equation (3) as

Ir(x) =
∑
s

∫
ω

dω
1

(−iω)2PsPs

[
(−iω)Ps(−iω)Qr + c2(x)∇Ps · ∇Qr

]
, (4)

where we have introduced the integrated receiver wavefield

qr(t,x;xs),=

∫ t

0

pr(t
′,x;xs) dt

′ i.e., Qr = Qr(ω,x;xs) =
Pr(ω,x;xs)

(−iω)
. (5)

Under the assumption that the absolute value of the source wavefield is locally frequency indepen-
dent, which is consistent with the approximation Ps(ω,x;xs) = As(x;xs)e

−iωτs(x;xs), the illumination-
compensation factor in the denominator can be taken out of the frequency integral (see also Kiyashchenko
et al., 2007; Schleicher et al., 2008). In this way, equation (4) can be approximated by

Ir(x) =
∑
s

1

P ′(x;xs)

∫
ω

dω
[
(−iω)Ps(−iω)Qr + c2(x)∇Ps · ∇Qr

]
, (6)
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or in the time domain,

Ir(x) =
∑
s

1

P ′(x,xs)

∫
t

dt
[
ṗs(t,x;xs)q̇r(t,x;xs) + c2(x)∇ps(t,x;xs) · ∇qr(t,x;xs)

]
, (7)

where the dot above a symbol denotes the time derivative. The illumination compensation factor P ′(x,xs)
is given by the autocorrelation of the time derivative of the source wavefield, i.e.,

P ′(x;xs) =

∫
ω

dω (−iωPs)(−iω)Ps =

∫
t

dt (ṗs(t,x;xs))
2
. (8)

When the TA imaging condition is to be implemented in the form of equation (7), we need to propagate
the source wavefield and the time integral of the receiver wavefield. Of both these wavefields, we need to
take the temporal and spatial derivatives at the image point before correlation, summation and illumination
compensation.

If we want to avoid calculation of the time derivative of the source wavefield, we can use the third time
integral of the receiver wavefield instead. Introducing

q(3)
r =

∫ t

0

q(2)
r (t′) dt′ with q(2)

r =

∫ t

0

qr(t
′) dt′, i.e., Q(3)

r =
Pr

(−iω)3
= −Qr

ω2
, (9)

we can rewrite equation (4) as

Ir(x) =
∑
s

1

P (x;xs)

∫
ω

dω
[
(−iω)Ps(−iω)Q(3)

r + c2(x)∇Ps · ∇Q(3)
r

]
, (10)

or in the time domain,

Ir(x) =
∑
s

1

P (x,xs)

∫
t

dt
[
ṗs(t,x;xs)q̇

(3)
r (t,x;xs) + c2(x)∇ps(t,x;xs) · ∇q(3)

r (t,x;xs)
]
. (11)

In this version of the TA imaging condition, the ilummination factor P (x;xs) is given by the autorcorrela-
tion of the source wavefield, i.e.,

P (x,xs) =

∫
ω

dωPs(ω,x;xs)Ps(ω,x;xs) =

∫
t

dt (ps(t,x;xs))
2
. (12)

In equation (10), we again have made use of the local frequency independence of the absolute value of
the source wavefield, which allows us to take the illumination compensation factor out of the frequency
integral. We will consistently keep doing this for all remaining versions of the TA imaging condition.

For the application of the TA imaging condition in the form of equação (11), we need to propagate
the source wavefield and the triple time-integrated receiver wavefield. We need to calculate the temporal
and spatial derivatives of these wavefields before correlation and summation, but not for the illumination
compensation.

Another alternative form of the TA imaging condition is obtained when using the second time derivative
of the source wavefield given by

rs = p̈s i.e., Rs = −ω2Ps . (13)

Adequate distribution of the (iω) factors in equation (4) leads to the expression

Ir(x) =
∑
s

∫
ω

dω
1

RsRs

[
(−iω)Rs(−iω)Qr + c2(x)∇Rs · ∇Qr

]
. (14)

Again taking the illumination compensation out of the frequency integral, we arrive at

Ir(x) =
∑
s

1

R(x;xs)

∫
ω

dω
[
(−iω)Rs(−iω)Qr + c2(x)∇Rs · ∇Qr

]
, (15)
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or in the time domain,

Ir(x) =
∑
s

1

R(x,xs)

∫
t

dt
[
ṙs(t,x;xs)q̇r(t,x;xs) + c2(x)∇rs(t,x;xs) · ∇qr(t,x;xs)

]
. (16)

In this version of the TA imaging condition, the illumination compensation factor R(x,xs) is given by the
autocorrelation of the second time derivative of the source field, i.e.,

R(x,xs) =

∫
ω

dω Rs(ω,x;xs)Rs(ω,x;xs) =

∫
t

dt (rs(t,x;xs))
2
. (17)

For the application of the TA imaging condition in the form of equation (16), we need to propagate
the second time derivative of the source wavefield and the time integral of the receiver wavefields. We
then need to calculate the temporal and spatial derivatives for the correlation and sum, but not for the
illumination compensation.

RELATIONSHIP WITH THE LAPLACIAN

It is not hard to conceive that the redistribution of the (−iω) factors in equation (4) needs not be done sym-
metrically with respect to the involved wavefields. Instead of applying one factor to the source wavefield
and the second one to the receiver wavefields, we can apply both factors to only one of these wavefields,
say, the source wavefield. For convenience, we also move the velocity square to obtain

Ir(x) =
∑
s

∫
ω

dω
c2(x)

PsPs

[
− ω2

c2(x)
PsQ

(3)
r +∇Ps · ∇Q(3)

r

]
. (18)

On the one hand, the factor ω2/c2 can be interpreted as multiplying the source wavefield. Upon the use
of the corresponding Helmholtz equation,

∇2Ps +
ω2

c2(x)
Ps = 0 , (19)

equation (18) becomes

Ir(x) =
∑
s

∫
ω

dω
c2(x)

PsPs

[
∇2PsQ

(3)
r +∇Ps · ∇Q(3)

r

]
=

∑
s

∫
ω

dω
c2(x)

PsPs
∇ ·
[
∇PsQ(3)

r

]
, (20)

where the second equality is a result of recognizing the product rule for the spatial derivatives. Taking the
illumination compensation out of the frequency integral, we can rewrite equation (20) as

Ir(x) =
∑
s

c2(x)

P (x;xs)

∫
ω

dω∇ ·
[
∇PsQ(3)

r

]
, (21)

where P (x;xs) is given by equation (12).
On the other hand, we can also interpret the factor ω2/c2 as multiplying the receiver wavefield. Using

the (third time integral of the) associated Helmholtz equation,

∇2Q(3)
r +

ω2

c2(x)
Q(3)
r = 0 , (22)

we can rewrite equation (18) as

Ir(x) =
∑
s

∫
ω

dω
c2(x)

PsPs

[
Ps∇2Q(3)

r +∇Ps · ∇Q(3)
r

]
=

∑
s

∫
ω

dω
c2(x)

PsPs
∇
[
Ps∇Q(3)

r

]
, (23)
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or

Ir(x) =
∑
s

c2(x)

P (x;xs)

∫
ω

dω∇
[
Ps∇Q(3)

r

]
, (24)

Moreover, since equations (20) and (23) represent manipulations of the same theoretical expression (4),
we can also calculate the image Ir as the average of both expressions, i.e.,

Ir(x) =
∑
s

∫
ω

dω
c2(x)

PsPs

1

2

(
∇ ·
[
∇PsQ(3)

r

]
+∇ ·

[
Ps∇Q(3)

r

])
=

∑
s

∫
ω

dω
c2(x)

2PsPs

(
∇ ·
[
∇PsQ(3)

r + Ps∇Q(3)
r

])
=

∑
s

∫
ω

dω
c2(x)

2PsPs
∇2
[
PsQ

(3)
r

]
, (25)

where we again have made use of the product rule for the gradient.
Taking the illumination compensation together with the Laplacian out of the frequency integral, we

arrive at

Ir(x) =
∑
s

c2(x)

2P (x;xs)
∇2

∫
ω

dω
[
PsQ

(3)
r

]
, (26)

or in the time domain,

Ir(x) =
∑
s

c2(x)

2P (x;xs)
∇2

∫
t

dt
[
ps(t,x;xs)q

(3)
r (t,x;xs)

]
, (27)

where P (x;xs) is again given by equation (12).
We note that, except for a small modification, the TA imaging condition in this form is equivalent of the

application of the Laplacian to the correlation of the source and receiver wavefields, which is a common
procedure in practice. The small modification is the use of the third time integral of the receiver wavefield
and a multiplication with a factor of c2/2.

Of course, the same manipulations can be applied to the form (14) of the TA imaging condition, result-
ing in

Ir(x) =
∑
s

c2(x)

2R(x;xs)
∇2

∫
ω

dω
[
RsQr

]
, (28)

or in the time domain,

Ir(x) =
∑
s

c2(x)

2R(x;xs)
∇2

∫
t

dt [rs(t,x;xs)qr(t,x;xs)] , (29)

where R(x;xs) is given by equação (17).

NUMERICAL EXAMPLES

We have implemented the above discussed versions of the TA imaging condition and applied them in a
reverse-time migration of the Marmousi data. All migrations used the same algorithm for propagation of
the involved wavefields in a smoothed version of the Marmousi model (see Figure 1. A set of reference
images, Figures 2 to 5 show the result of RTM using the conventional crosscorrelation imaging condition of
Claerbout (1971) without further post-processing, with illumination compensation through division by the
autocorrelation of the source wavefield, with Laplacian filtering, and with both illumination compensation
and Laplacian filtering.
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Figure 1: Smoothed Marmousi model used for reverse-time migration for the application of the different
imaging conditions.
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Figure 2: RTM of the Marmousi data using the conventional crosscorrelation imaging condition.

Figure 2 shows that the simple crosscorrelation imaging condition alone leads to strong backscattering
artifacts and decreasing amplitudes with depth. In this way, only the strongest reflectors are visible in the
image. The amplitude loss with depth is corrected for by the illumination compensation (see Figure 3), and
the backscattering is removed by the Laplacian filter (see Figure 4). Both post-processing filters together
produce the rather clean image of Figure 5.

Figure 6 depicts the result of RTM using the TA imaging condition in the version of equation (7). We
observe that in addition to cleaning the image in a similar way to the post-processing filters in Figure 5,
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Figure 3: RTM of the Marmousi data using the conventional crosscorrelation imaging condition with
illumination compensation.
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Figure 4: RTM of the Marmousi data using the conventional crosscorrelation imaging condition with
Laplacian filtering.

the TA imaging condition leads to a better preservation of relative amplitudes. Particularly in the deeper
portion of the image, the reflectors are better visible. However, as we will see below, this is still not the
best image that can be obtained with the TA imaging condition.



22 Annual WIT report 2019

0

1

2

D
e
p
th

 (
k
m

)

3 4 5 6 7 8
Lateral location (km)

Figure 5: RTM of the Marmousi data using the conventional crosscorrelation imaging condition with
illumination compensation and Laplacian filtering.
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Figure 6: RTM of the Marmousi data using the TA imaging condition in the version of equation (7).

Figure 7 shows the result of RTM using the version of equation (11). This figure demonstrates that this
version of the TA imaging condition is rather instable, particularly at shallow depth. Also, resolution is
somewhat lower. Probably, the reason for these effects is the involved third time integral of the receiver
wavefield, which enhances low frequencies and can create artifacts at the beginning and end of a seismic
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Figure 7: RTM of the Marmousi data using the TA imaging condition in the version of equation (11).
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Figure 8: RTM of the Marmousi data using the TA imaging condition in the version of equation (16).

trace. Further research is required to stabilize the numerical realization of the triple integration.
Figure 8 shows the result of RTM using the version of equation (16). This figure demonstrates that

use of this version, which uses second derivatives of the source wavefield both in the correlation part and
the illumination compensation, helps to produce a very clean image that even presents slightly improved
resolution over the basic version of equation (11) in Figure 6.
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Figure 9: RTM of the Marmousi data using the TA imaging condition in the version of equation (27).
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Figure 10: RTM of the Marmousi data using the TA imaging condition in the version of equation (29).

In contrast, the image obtained with version (27) of the TA imaging condition involving the thrice
time-integrated receiver wavefield and the Laplacian filter (see Figure 9), slightly decreases the resolution
as compared to the image of Figure 6. While the quality does not degrade to the same degree as in Fig-
ure 7, apparently also in this version the triple integration of the receiver wavefield is enhancing the low
frequencies too much.
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Figure 11: RTM of the Sigsbee2A data using the TA imaging condition in the version of equation (7).
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Figure 12: RTM of the Sigsbee2A data using the TA imaging condition in the version of equation (29).

Finally, Figure 10 shows the image obtained with version (29) of the TA imaging condition, involving
the second derivatives of the source wavefield and the Laplacian filter. As we can see, this image is the
best one obtained with all our versions of the TA imaging condition. The resolution is further enhanced as
compared with Figure 8. Relative reflector amplitudes nicely correspond to relative reflectivity changes. In
this way, many weak reflectors of the Marmousi model can be clearly delineated.
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To corroborate our findings, we have applied the basic version of the TA imaging condition, equation
(7), and the one that yielded the best results on the Marmousi data, equation (29), to the Sigsbee2A data
set. Figures 11 and 12 show the results. We see that for this data set the former version of the TA imaging
condition retains some backscattering noise in the image, whereas the latter version is much cleaner and
also improves the resolution. Again, relative reflector amplitudes nicely resemble reflectivities.

CONCLUSIONS

In this paper, we have implemented a number of theoretically equivalent versions of the true-amplitude
imaging condition for RTM of Kiyashchenko et al. (2007) and Op’t Root et al. (2012). In a similar way
to Douma et al. (2010), our theoretical derivations have show a relationship between the true-amplitude
imaging condition for RTM and the Laplacian operator. This operator is frequently used in seismic imaging
without a profound theoretical basis to remove low-frequency backscattering artifacts from RTM images.
By means of our numerical tests on the Marmousi and Sigsbee2A data sets, we have seen that the actual
implementational form matters and may lead to significantly different image quality. We have shown that
all our implementational forms of the TA imaging condition provide superior results that simple cross-
correlation of the source and receiver wavefields, even if illumination compensation and Laplacian filtering
are applied. The Laplacian-based formulation of the TA imaging condition using the second derivatives
of the source wavefield is the one that provided the best image quality, leading to the best suppression of
backscattering artifacts and the highest image resolution.
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