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ABSTRACT

A reliable and fast workflow for smooth velocity model building is of great interest for subsequent
depth migration. Also full-waveform inversion benefits from geologically reasonable initial veloc-
ity models. At the same time, seismic data enhancement by wavefront attributes is accepted. These
attributes are extracted from seimic data by common-reflection-surface (CRS) stack and locally char-
acterize the wavefronts. We propose a novel tomography based on them. It is valid for reflection,
diffraction and passive seismic data inversion. The idea of the new approach is minimizing back-
propagated geometrical spreading of diffracted and/or fictitious NIP-waves. During the inversion the
wavefront attributes remain fixed at the common midpoints and serve as initial conditions for kine-
matic and dynamic ray tracing. The inverse problem turns out to be naturally parametrized by the ve-
locity model as the only unknown. It significantly decreases the tomographic matrix dimensions and
improves the data/unknowns ratio if compared to the conventional wavefront attributes tomography.
The reduction of Fréchet derivatives is also an attractive feature if a generalization to 3D anisotropic
media is considered. We provide both Fréchet derivatives and adjoint-state method formulation for the
gradient of the new objective function. The algorithm combined with the L-BFGS-B quasi-Newton
solver was tested on a salt body synthetic dataset. It converges to a consistent smooth velocity image.

INTRODUCTION

Multiparameter stacking is a powerful tool of seismic processing. It enhances signal-to-noise ratio of zero-
offset stack sections (Mayne, 1962; Mann et al., 1999; Jäger et al., 2001) and pre-stack data (Baykulov
and Gajewski, 2009) producing physically meaningful wavefront attributes (Hubral, 1983). The stack-
ing quality and parameters search strongly depends on a choice of the traveltime-based operator. Nor-
mal moveout (Mayne, 1962) was generalized to common-reflection-surface (CRS) operator (Mann et al.,
1999; Jäger et al., 2001) designed to utilize redundancy of reflection data. Later on, to account for the
diffraction phenomenon, the double-square-root-based operators were applied. While CRS is robust to
overburden heterogeneities, multifocusing (Gelchinsky et al., 1999) is an efficient tool in smooth environ-
ments with curved interfaces. Recently, a method of implicit CRS (i-CRS) accounting for the reflector
curvature and combining the advantages of CRS and multifocusing was proposed (Schwarz et al., 2014).
For strongly non-hyperbolic events a non-hyperbolic CRS (n-CRS) operator was derived by (Fomel and
Kazinnik, 2013).

Wavefront attributes have a distinct physical meaning. For the CRS operator they locally describe
fictitious waves: a wave emerging from a zero-offset ray normal incidence point and an exploding reflector
wave (Hubral, 1983). Namely, they are represented by horizontal component of slowness and curvatures of
these fictitious wavefronts. For a point diffractor the wavefront attributes describe the real wavefront and
the curvatures coincide. This property, in particular, yields a criterion for diffraction separation (Dell and
Gajewski, 2011).
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The idea of utilizing wavefront attributes as an input data for a fast and robust smooth velocity model
building was first proposed by Duveneck (2004). The slope and curvature inversion was later applied to
image rays arising in time-migration by Dell et al. (2014). Recently, the wavefront attributes tomography
was extended to passive seismics (Schwarz et al., 2016) and applied to diffractions (Bauer et al., 2017).

Previously, the inverse problem of wavefront attributes tomography was formulated similarly to the
pre-stack stereotomography (Lambaré, 2008). The velocity model, diffractors and scattering angles were
considered as independent unknowns. The objective function was chosen to minimize misfits of the at-
tributes, one-way traveltimes and arrival coordinates. The number of unknowns in this formulation unnatu-
rally depends on the number of data picks. However, seismic tomography is ill-conditioned and requires a
sufficient regularization smoothing the velocity model and reducing resolution (Hansen, 1998; Costa et al.,
2008). Usually, a smaller size of the tomographic matrix corresponds to a greater stability of the algorithm.
Moreover, a stable and unique inversion usually requires the amount of data significantly exceeding the
amount of unknowns, which is not the case in the wavefront attributes tomography. In contrast to the pre-
stack stereotomography, the data of post-stack wavefront attributes tomography contain traveltimes for all
involved rays. We fully exploit this fact by developing an inversion workflow based on an original physical
principle of geometrical spreading focusing. In addition to the attractive inversion properties, the method
takes advantage of a simplified gradient computing through Fréchet derivatives and the adjoint-state method
(Plessix, 2006). Complemented by a modern iterative optimization (L-BFGS-B) our approach allowed to
build a smooth velocity of a synthetic salt body.

THEORY AND METHOD

Wavefront attributes tomography

Processing of streamer data by the hyperbolic zero-offset CRS stacking operator (Mann et al., 1999; Jäger
et al., 2001)

t2(4x, h) = (t0 + 2p04x)2 + 2 t0cos2α0(MN4x2 +MNIPh2) (1)

at a traveltime sample t0 results in a set of wavefront attributes: horizontal slowness p0 = sinα0/v0,
wavefront curvature of normal incidence point (NIP) wave MNIP = κNIP /v0 and wavefront curvature of
normal (N) exploding reflector wave MN = κN/v0. For a specific system of rays M is a ratio of slowness
spreading P and geometrical spreading Q (Cervený, 2001). CRS attributes locally describe wavefronts
of fictitious NIP waves radiated from reflector elements. Utilizing them for the velocity model building
is wavefront attributes tomography (Duveneck, 2004). If a point diffractor wavefield is processed the
wavefront attributes describe the actual wavefront and MN = MNIP (Dell and Gajewski, 2011). This
gives a way to joint reflection and diffraction tomography (Bauer et al., 2017). Moreover, analogous
processing workflow exists for passive seismic data and results in excitation time, horizontal slowness and
curvature of actual wavefronts (Schwarz et al., 2016). The wavefront attributes tomography is especially
suitable for these new applications since both point diffraction and passive seismic event rays coverage
doesn’t benefit from large offsets of stereotomography.

Inverse problem formulation

An objective function introduced by Duveneck (2004) to utilize the wavefront attributes in the poststack
inversion

J(m) =

Ndata∑
i=1

(xi−xi(mi))
2 +

Ndata∑
i=1

(ti− ti(mi))
2 +

Ndata∑
i=1

(pi−pi(mi))
2 +

Ndata∑
i=1

(Mi−Mi(mi))
2 (2)

is a sum of squared attributes misfits over all the automatically picked Ndata data points. A vector of
unknowns m comprises diffractor (NIP) coordinates xdi , zdi and zero-offset ray emergence angles αdi for
each pick i = 1, 2, . . . , Ndata together with coefficients vij defining a smooth velocity model in terms of
B-splines,

v =

Nz∑
j=1

Nx∑
k=1

vjkβj(z)βk(x), (3)
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with Nz ×Nx nodes, mi = (xdi , z
d
i , α

d
i ,v).

The inverse problem has 4Ndata data points and 3Ndata+NzNx unknowns. The number of unknowns
depends on the number of picks. At best the Ndata picks number significantly exceeds the number of basis
functions nodes. This would lead to a ratio of the number of data points and the number of unknowns equal
to 4

3 . Other cases with higher velocity sampling leads to even smaller ratios close to one. Our research
was initially motivated by having a velocity model as the only unknown with the free choice of grid nodes
spacing for a given data amount. The first idea that came to mind was to replace the objective function (2)
with one minimizing only wavefronts curvatures:

J(v) =

Ndata∑
i=1

(Mi −Mi(mi(v)))2, (4)

provided that x, t and p are fixed. The coordinates of diffractors (NIPs) and the zero-offset ray emergence
angles are determined by the velocity model coefficients v with time reversal ray tracing as soon as the
surface values x, t and p are given, mi(v) = (xdi (v), zdi (v), αdi (v),v). M turns out to be a composition
of reverse time kinematic ray tracing to the diffractor and forward dynamic ray tracing from the diffractor
to the surface. Hence, to get a gradient of this objective function we could apply a chain rule for Fréchet
derivatives. However, we find this approach too cumbersome. Especially frightening seems a perspective of
generalizing it to the 3D anisotropic case. Therefore, we present another natural solution which preserves
all the advantages and doesn’t require a hard derivation. The idea is to apply a concept of focusing: to
minimize a third-party quantity at the diffractor position while keeping the data being fixed boundary
conditions.

Geometrical spreading focusing

We simultaneously minimize geometrical spreading of all the diffracted and/or NIP waves presented in the
dataset. Wherein the wavefront attributes t, p,M are considered fixed for corresponding CMP coordinates.
Since the diffracted wavefield and the fictitious NIP waves are kinematically equivalent to point sources, in
the true velocity model geometrical spreading vanishes when back propagated up to one-way traveltime.
This imaging principle is valid for the passive seismic events as well. After a velocity model is retrieved
reflectors and/or diffractors are localized by ray tracing.

All the attributes picks are considered independent. In order to simplify the notations let us think all
diffracted (NIP) waves emerges at the same time t = 0 and arrives to the surface at CMP coordinate xi and
time ti. To be solved in depth the dynamic ray tracing system (Cervený, 2001)

d

dt

(
Q
P

)
= S

(
Q
P

)
, S =

(
0 v2

− 1
v
∂2v
∂q2 0

)
(5)

requires initial conditions for Q and P . Unfortunately, they are not presented in the set of CRS attributes.
The only available after processing dynamic quantity is the wavefront curvature related quantity M . Al-
though dynamic tracing of M is theoretically possible by solving the Riccati equation (Cervený, 2001), it
faces difficulties due to the unlimited growth in the vicinity of point sources and caustics. The geometrical
spreading Q is defined on a ray only up to a certain constant quotient determined by ray fan parametriza-
tion. With the help of M we are able to retrieve the geometrical spreading along the whole ray up to
a constant multiplier. This is done by choosing the initial conditions of dynamic ray tracing satisfying
P̂ (tinit)/Q̂(tinit) = M(tinit). There exist an infinite number of such choices. We fix one with a condition
for geometrical spreading to be normalized at the surface. A downward propagator of dynamic ray tracing
system (5) for the i-th pick:

Πi(t, ti) =

(
Q

(1)
i (t, ti) Q

(2)
i (t, ti)

P
(1)
i (t, ti) P

(2)
i (t, ti)

)
, Πi(ti, ti) = E, (6)

has to be traced back in time (t < ti) to the subsurface. We define normalized dynamic ray tracing
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quantities to be a special linear combination of the propagator columns(
Q̂i
P̂i

)
(t) = Πi(t, ti)

(
1
Mi

)
, (7)

where Mi is the experimental value of the wavefront curvature attribute. Q(1)
i and P (1)

i are multiplied by
one with the units of Mi. Therefore, units of Q̂i coincide with the units of P . As a linear combination
of solutions the normalized vector satisfies the dynamic ray tracing system (5). Indeed, for normalized
dynamic quantities we obtain Q̂i(ti) = 1 and P̂i(ti) = Mi. Therefore,

P̂i(ti)

Q̂i(ti)
=
Pi(ti)

Qi(ti)
= Mi, (8)

where Qi and Pi are the actual dynamic quantities along the ray. Due to the linearity of the system the
actual Qi, Pi pair and the pair of normalized Q̂i, P̂i are proportional at any traveltime with the quotient
equal to the actual geometrical spreading value at the surface:

Qi(t) = Qi(ti)Q̂i(t), Pi(t) = Qi(ti)P̂i(t). (9)

Geometrical spreading for a given traveltime and M value can be retrieved only up to a constant. However,
if at some traveltime the actual geometrical spreading Q vanishes the normalized geometrical spreading
Q̂ necessarily does the same. In particular at a diffractor (source) position Q̂i(0) = Qi(0) = 0. In
accordance to this we introduce an objective function as a sum of the squared normalized geometrical
spreading propagated back up to the one-way traveltime over all the data picks:

J =
1

2

Ndata∑
i=1

Q̂2
i (0). (10)

Finally, the wavefront attributes tomography is formulated as an inversion in velocities as the only unknown
with Ndata data dimension and the Nz ×Nx - dimensional space of unknowns.

Fréchet derivatives and adjoint-state method

The gradient of the objective function can be expressed through the Fréchet derivatives of the state vari-
ables:

4J =

Ndata∑
i=1

Q̂i(0)4Q̂i(0). (11)

To calculate the perturbations of dynamic quantities we apply, following Duveneck (2004), the equations
of Farra and Madariaga (1987) for a paraxial to a perturbed ray in ray-centered coordinates:

d

dt

(
4Q̂
4P̂

)
= S

(
4Q̂
4P̂

)
+4S

(
Q̂

P̂

)
, 4S = S4q,4p + S4v, (12)

S4q,4p =

(
2v ∂v∂q4p 2v ∂v∂q4q(

3
v2
∂v
∂q

∂2v
∂q2 −

1
v
∂3v
∂q3

)
4q −2v ∂v∂q4p

)
, S4v =

(
0 v4v

− ∂2

∂q2

(
4v
v

)
+ 4v

v2
∂2v
∂q2 0

)
, (13)

where4q(t) and4p(t) are ray-centered coordinate and slowness of the perturbed ray, which in turn have
to be evaluated by

d

dt

(
4q
4p

)
= S

(
4q
4p

)
+

(
0

4v
v2

∂v
∂q −

1
v
∂4v
∂q

)
. (14)

The initial conditions 4Q̂i(ti) and 4P̂i(ti) are zeros because the downward propagator is the identity
matrix at t = ti regardless of the velocity model. We fix the arrival point of the ray, which means4qi(ti)
is also zero. However,4pi(ti) differs:

4pi(ti) =
4v
v0

pi√
1− v20p2i

. (15)
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Figure 1: (a) Stack section. (b) Coherence section with overlaid picks.

The inhomogeneous system (12) is solved with the propagator of homogeneous one (see, e.g, Gilbert and
Backus, 1966; Bellman, 1997):

4Q̂i(0) =

(
Q

(1)
i (0, ti)

Q
(2)
i (0, ti)

)T 0∫
ti

Π−1i (t′, ti)4Si(t′)
(
Q̂i(t

′)

P̂i(t
′)

)
dt′. (16)

We also derived a formula for the gradient in form of the adjoint-state method (Plessix, 2006; Chavent,
2010):

4J =

Ndata∑
i=1

ti∫
0

(
−λPi (t′) λQi (t′)

)
4Si(t′)

(
Q̂i(t

′)

P̂i(t
′)

)
dt′. (17)

Adjoint-state variables λQi and λPi are uniquely defined as a solution of dynamic ray tracing system (5) with
initial conditions at emergence time λQi (0) = −Q̂i(0), λPi (0) = 0. Combining the unperturbed downward
propagator values we are able to compute an upward one

Πi(t, 0) = Πi(t, ti)Π
−1
i (0, ti) (18)

and, therefore, the adjoint-state variables.
The adjoint-state method formula (17) assumes an integration of the scalar function, whereas the gra-

dient expressed through the Fréchet derivatives (11, 16) needs an integration of the two element vector.
However, the computing time of this vector is not equivalent to a doubled computing time by the formula
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Figure 2: (a) Slowness section. (b) Wavefront curvature section.

(17). For the synthetic setup given in the following section we found that the adjoint-state method is ap-
proximately 1.5 times faster than the Fréchet derivatives approach. Increasing the number of nodes in the
ray propagation direction and the basis function support (e.g., by taking the B-splines of higher order)
makes this advantage even more significant. We expect it to grow also with a transition to 3D (Plessix,
2006).

SYNTHETIC DATA EXAMPLE

An acoustic land streamer dataset of primary reflections for a salt body velocity model shown in Figure
3(a) was modeled by the Seismic Unix Gaussian beam method routine. The source function was a 40 Hz
Ricker wavelet. Gaussian noise with SNR = 40 was added to the traces. The receivers were located at
50 m spacing leading to a total CMP number of 641. We performed the CRS stack (Figure 1(a)) with a
maximum offset aperture of 2 km, which implies a maximum CMP fold of 21. The coherence section
is given in Figure 1(b). The corresponding slowness and wavefront curvature attributes (Figure 2) were
picked with a coherence threshold criterion following a condition of one pick per boundary. As an input
for the inversion we used picks from odd CMP numbers. They are depicted in Figure 1(b) by black dots.

These 2952 picks were utilized for the inversion by means of geometrical spreading focusing in the
frame of 11 × 17 4th order B-spline nodes grid with 1000 m lateral and 350 m vertical nodes spacing.
We apply the limited-memory constrained Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) optimization
algorithm (Byrd et al., 1995). The initial model was a constant gradient growing from 2.2 km/s surface
velocity to 4.4 km/s velocity of the salt body bottom (Figure 3(a)). We forced the nodes values to stay
within this velocity interval and added an additional term to the objective function and the gradient keeping
the surface velocity value fixed. The only regularization was due to the B-splines smoothness. No addi-
tional regularizing terms were added to the objective function. The inversion process presented in Figure
4 stopped after 81 iterations satisfying the convergence criterion. Figure 3(b) illustrates the retrieved to-
mographic image. The normal incidence points were localized and superimposed on the retrieved velocity
image. The image being smoothed, nonetheless, highly correlates with the synthetic model, as well as the
retrieved reflector elements.

CONCLUSIONS

We have developed a new approach for the macro-velocity model building. Our method utilizes the local
wavefront attributes for focusing geometrical spreading. The traveltime, slowness and wavefront curva-
ture are picked during CRS analysis. We provide the Fréchet derivatives and the adjoint-state method
formulation for the gradient of the objective function. The geometrical spreading focusing was tested on
the reflection only synthetic dataset driven by the L-BFGS-B optimization algorithm. The retrieved to-
mographic image highly correlates with the synthetic salt body model and, therefore, could serve as a
relevant initial model for the detailed imaging by full-waveform inversion or as a subsurface model for the
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Figure 3: a) Synthetic salt body velocity model. b) Retrieved tomographic image with overlaid reflector
elements.
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Figure 4: (a) Objective function values. (b) Maximum norm values of the objective function gradient.
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subsequent depth migration.
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