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ABSTRACT

Surface waves are widely used in near-surface geophysics and provide a non-invasive way to deter-
mine near-surface structures. By extracting and inverting dispersion curves to obtain local 1D S-wave
velocity profiles, multichannel analysis of surface waves (MASW) has been proven as an efficient
way to analyze shallow-seismic surface waves. By directly inverting the observed waveforms, full-
waveform inversion (FWI) provides another feasible way to use surface waves in reconstructing near-
surface structures. This paper provides a state of the art on MASW and shallow-seismic FWI and a
comparison of both methods. A two-parameter numerical test is performed to analyze the nonlinearity
of MASW and FWI, including the classical, the multiscale, the envelope-based, and the amplitude-
spectrum-based FWI approaches. It shows that classical FWI and MASW have the highest and the
lowest nonlinearity as well as resolution among these methods, respectively, while the modified FWI
approaches have an intermediate nonlinearity and resolution between classical FWI and MASW.

INTRODUCTION

The reconstruction of near-surface elastic-parameter models is of fundamental importance for near-surface
geophysical and geotechnical studies. Surface waves dominate the shallow-seismic wavefield and are at-
tractive for determining near-surface structures due to their relatively high signal-to-noise ratio in field
recordings. With a rapid development in the theories of surface-wave methods, it has become increasingly
popular over the last two decades to use surface waves as a non-invasive way to estimate near-surface
structures.

The spectral analysis of surface waves (SASW; Nazarian et al., 1983) marks the beginning of the
shallow-seismic surface-wave methods. With the proposing of multichannel analysis of surface waves
(MASW; Park et al., 1999; Xia et al., 1999) the methods began to flourish because MASW greatly im-
proved the efficiency of surface-wave surveys by using a multistation approach. Both SASW and MASW
use the dispersion characteristics of surface waves to determine near-surface structures, and a comparison
between their performances is presented in Lin et al. (2017). Two main steps in MASW are the measuring
and the inversion of the surface-wave dispersion curves (upper part in Fig. 1), which will be introduced in
detail hereafter. Thus, many efforts have been made to improve the accuracy of surface-wave dispersion
images (e.g., Park et al., 1998) and to reduce the nonuniqueness of the inverse problem (e.g., Xia et al.,
1999; Socco and Boiero, 2008). A comprehensive review of MASW can be found in Socco et al. (2010).

Based on phase-velocity inversion, MASW assumes a 1D approximation of subsurface structures and
allows the reconstruction of S-wave velocity as a function of depth. Different approaches have been pro-
posed to account for lateral heterogeneity, such as cross-correlation analysis of multichannel data (Hayashi
and Suzuki, 2004), spatial filter (Bohlen et al., 2004), and laterally constrained inversion (Socco et al.,
2009). These approaches reduce the 2D effect in MASW, and make MASW applicable to not only layered
but also laterally smoothly varying models. Due to the 1D layered model and the plane wave assumptions
involved in the forward calculation of surface-wave dispersion curves, however, dispersion-curve-based
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Figure 1: Comparison of MASW and FWI work flows.

methods fail to work when strong lateral heterogeneity exists, which is regarded as one of the limitations in
MASW. Another problem that MASW faces is the difficulty in correctly estimating and identifying multi-
modal dispersion curves (Zhang and Chan, 2003), especially when encountering low-velocity layers (Tsuji
et al., 2012), strong vertical contrasts (De Nil, 2005), and a non-planar free surface (Zeng et al., 2012).

With a rapid increase in computational power it has become feasible to use full-waveform inversion
(FWI; Tarantola, 1986) to resolve subsurface models by directly fitting the observed waveforms (lower
part in Fig. 1). Based on full-wavefield modeling, FWI is able to fully exploit the waveform information
and is getting increasingly popular on continental (Fichtner et al., 2008), explorational (Virieux and Op-
erto, 2009), near-surface (Groos et al., 2017), and laboratory scales (Köhn et al., 2016). Due to the unique
wavefield characteristics (e.g., frequency range and wave type) and the recording system in each scale, the
application of FWI on different scales is not simply a matter of scale. For example, due to the existence of
surface waves, the acoustic approximation, which is widely adopted in explorational seismic, is no longer
valid in shallow seismic. The inclusion of surface waves in the wavefields also increases the nonlinearity
of FWI (Gélis et al., 2007; Brossier et al., 2009). Bretaudeau et al. (2013) performed both numerical and
laboratory experiments and demonstrated the potential of FWI in quantitatively imaging near-surface struc-
tures. Tran et al. (2013) applied a frequency-domain FWI to raw shallow-seismic Rayleigh-wave data to
detect underground sinkholes. Masoni et al. (2013) compared the FWI objective functions in different data
domains and showed that the use of multi-component surface-wave data can improve the well-posedness
of FWI. Pérez Solano et al. (2014) proposed a windowed-amplitude waveform inversion method to invert
shallow-seismic surface waves. Groos et al. (2014) studied the influence of attenuation in shallow-seismic
FWI, and proposed to mitigate this influence by performing a source-wavelet correction. Nuber et al.
(2015) presented a new scaling approach to enhance the sensitivities in the regions of interest (deep part of
the model). Pan et al. (2016b) proposed a variable-grid time-domain Love-wave FWI algorithm and applied
it to field data. Yuan et al. (2015), Wittkamp and Bohlen (2016) and Athanasopoulos and Bohlen (2016)
proved the advantages of performing sequential and joint inversion of different shallow-seismic wave types.
Dokter et al. (2017) and Tran and Sperry (2018) showed the high resolution of FWI for characterizing near-
surface heterogeneity by using real-world examples. Nuber et al. (2017) studied the optimal geometry of
field measurements for shallow-seismic FWI to improve the efficiency of shallow-seismic FWI. Borisov
et al. (2017) presented a synthetic example of 3D FWI applied to surface and body waves in the presence
of irregular surface topography using an envelope-based misfit function. Nuber et al. (2016) and Pan et al.
(2018) studied the influence of free-surface topography on surface-wave FWI.

MASW uses the averaged phase velocity of multichannel data, which exploits the general part in the
phase information of surface waves (i.e., averaged phase difference among multiple traces). Because the S-
wave velocity derived from MASW is a kind of averaged layered result of the subsurface below the spread
(Boiero and Socco, 2010), MASW suffers from relatively low resolution, especially when encountering
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strong laterally heterogeneous models or heterogeneity of small scale. By using both phase and amplitude
information, FWI has relatively higher resolution and better applicability to heterogeneous models. FWI is
an ill-posed problem and could converge toward a local minimum (Virieux and Operto, 2009). An effective
way to reduce the ambiguity of FWI is to use an appropriate initial model provided by MASW (Pan et al.,
2017). Other approaches like multiscale FWI (MFWI; Bunks et al., 1995; Groos et al., 2017), envelope-
based FWI (EFWI; Bozdağ et al., 2011; Wu et al., 2014), and amplitude-spectrum-based FWI (AFWI;
Pérez Solano et al., 2014; Dou and Ajo-Franklin, 2014) could also mitigate the ill-posedness of FWI.
However, there are no detailed comparisons between the performances of MASW and FWI; consequently,
how to appropriately choose them to process shallow-seismic surface waves is unclear.

In this paper, we compare MASW and FWI in reconstructing near-surface structures. We first illustrate
the main steps in MASW and FWI, including classical FWI and three modified FWI approaches (MFWI,
EFWI, and AFWI). We draw some links among these methods by discussing the subdata they use and
compare the ill-posedness of them by using a numerical example.

MULTICHANNEL ANALYSIS OF SURFACE WAVES (MASW)

In a layered model, surface-wave phase velocity Vph is determined by an equation D in a nonlinear, implicit
form as

D(Vph(f),m) = 0 , (1)

where f represents frequency, and m represents elastic model parameters (vp, vs, and ρ) as a function
of depth (1D). We can calculate the surface-wave phase velocity by solving the forward equation D nu-
merically via means like Thomson-Haskell method (Thomson, 1950), Knopoff method (Knopoff, 1964),
reflection and transmission coefficients method (Chen, 1993), or delta-matrix method (Watson, 1970).

In MASW, we aim at minimizing the misfit between synthetic and observed dispersion curves (phase
velocities over different frequencies), which can be written as

ΦMASW (m) =
1

2

∑
sr

∑
f

‖V synph (f)− V obsph (f)‖2 (2)

where V synph (f) and V obsph (f) are the synthetic and observed dispersion curves, respectively; sr denotes the
sources. The misfit function may also be weighted using a data covariance matrix (Xia et al., 2010), or it
can be stabilized by adding model constraints (Piatti et al., 2013). However, we do not incorporate them
here for the sake of brevity.

Two main steps involved in MASW are the measuring and the inversion of dispersion curves (Fig. 1).
For the measuring of surface-wave dispersion curves, we need to transform the wavefield data from the
space-time (x-t) domain to the frequency-wavenumber (f -k) or the frequency-velocity (f -v) domain. Then
we pick the continuous dispersive-energy peaks over different frequencies as surface-wave dispersion
curves. The measuring of surface-wave dispersion curves can be expressed as

U(f, k) =
∑
l

Sl(f) ·
∑
rn

ei[k(f)−kl(f)]·rn (3)

where U(f, k) represents the surface-wave spectrum in the f -k domain, which is also called dispersion
image. Sl represents a source function of the lth mode, rn is the distance between the source and the nth
receiver; kl is the wavenumber (frequency divided by phase velocity) of the l th mode, k(f) is the picked
dispersion curve in the f -k domain, which is equivalent to Vph(f) in the f -v domain (V obsph (f) in equation
2). The spatial change in kl, which could indicate the lateral variation of the model (Strobbia and Foti,
2006), however, is neglected in the multichannel data set. It should be noted that above expression is not
valid in the near field due to the plane-wave (high-frequency) approximation (Aki and Richards, 2002). In
layered or laterally smoothly varying models, the picked dispersion curve represents a harmonic mean of
the velocity structure below the spread (Boiero and Socco, 2010).

We assume that a clear and continuous dispersive energy peak in the dispersion image represents an
individual mode of surface waves. This assumption is valid in most cases. However, a visually continuous
energy peak may shift from one mode to another at a certain frequency point. This phenomenon is called
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mode osculation (Boaga et al., 2013) or mode kissing (Xia et al., 2012). Because it is almost impossible
to identify the conversion between different modes in a continuous energy peak by using one dispersion
image alone, it is recommended to use multi-component data (Ikeda et al., 2014) or to jointly use Rayleigh-
and Love-wave data (Gao et al., 2016) to reduce the possibility in the misidentification of surface-wave
dispersion curves.

Many algorithms have been proposed to invert surface-wave dispersion curves, including both local
search methods based on a gradient or Jacobian matrix (Fréchet derivative) (e.g., Xia et al., 1999) and global
search methods that solve the optimization problem stochastically (e.g., Yamanaka and Ishida, 1996; Socco
and Boiero, 2008; Boaga et al., 2011; Song et al., 2012). By interpolating multiple 1D profiles estimated
from different spreads using MASW, the lateral variation can then be partly retrieved in a pseudo 2D
(Bohlen et al., 2004; Luo et al., 2009; Mi et al., 2017) or 3D model (Boiero et al., 2011; Strobbia et al.,
2011; Ikeda and Tsuji, 2015; Pan et al., 2016a). Because we only use planar surface waves in MASW,
the phase information related to some of the non-layered structures (e.g., scattered surface waves caused
by lateral heterogeneity; Chai et al., 2012; Bergamo and Socco, 2014; Sloan et al., 2015) is excluded after
picking the dispersion curve since these waves do not behave as a dispersive continuous energy trend in
the f -v domain. This is another reason for the difficulty to nicely reconstruct those non-layered structures
using MASW.

FULL-WAVEFORM INVERSION (FWI)

Classical FWI

The relationship between the seismic wavefield u and an elastic model m (1D, 2D, or 3D) can be written
as

u(t) = G(m) ∗ S(t) (4)

whereG(m) denotes the Green’s function of a model m, S(t) denotes a seismic source time function (STF),
and the symbol ∗ represents convolution in the time domain. Equation 4 can be simulated by solving the
wave equation numerically. In this paper, we adopt a staggered-grid finite-difference method (FDM) as a
forward solver to simulate 2D elastic (P-SV) waves (Virieux, 1986).

FWI aims at minimizing the misfit between synthetic and observed waveforms. In classical FWI
(CFWI), the L2-norm misfit function ΦCFWI is defined as

ΦCFWI(m) =
1

2

∑
sr,xr

∫ T

0

‖usyn(t, xr)− uobs(t, xr)‖2dt (5)

where usyn and uobs denotes the synthetic and observed waveforms, respectively. sr and xr represents
the sources and receivers, respectively, and T represents the total recording time. Though we could use
different norms to define the objective function (Brossier et al., 2010), here we use the L2-norm so that
both MASW and FWI objective functions are based on the same least-squares definition.

Although attempts have been made in using global optimization algorithms to solve the inverse prob-
lem in FWI, most of the FWI studies use gradient-based local optimization algorithms due to a tremendous
number of parameters in m. The huge number of parameters also makes the direct numerical calcula-
tion of the Jacobian matrix (Fréchet derivative) computational expensive. The gradient of the FWI misfit
function with respect to model parameters, however, can be efficiently calculated using an adjoint state
algorithm (Plessix, 2006), in which only two wavefield simulations are needed: One simulation of the
forward-propagating wavefield (state variable), and one simulation of the back-propagating residual wave-
field (adjoint-state variable). The gradient can be calculated by correlating the state and the adjoint-state
variables. By iteratively updating the model m with a local optimization algorithm either incorporating the
Hessian matrix (e.g., Quasi-Newton algorithm, Gauss-Newton algorithm, truncated Newton algorithm) or
not (e.g., steepest-descent algorithm, conjugate gradient algorithm), we can finally obtain a physical model
which can explain the observed waveforms appropriately.
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Modified FWI approaches

The classical FWI misfit function is affected by the existence of numerous local minima, which greatly
increases the ill-posedness of the inverse problem. One efficient way to reduce the possibility of getting
trapped in a local minimum is to adopt an appropriate initial model that is close to the true model. However,
the building of an appropriate initial model cannot always be guaranteed in real-world cases. Another way
to mitigate the nonlinearity of FWI is to modify its objective function. Three approaches that have been
proposed and applied to shallow-seismic data are the multiscale FWI (Bunks et al., 1995; Groos et al.,
2017), the amplitude-spectra-based FWI (Pérez Solano et al., 2014), and the envelope-based FWI (Bozdağ
et al., 2011; Wu et al., 2014; Yuan et al., 2015).

In MFWI we start at inverting the low-frequency part (long-wavelength) of the data, and then progres-
sively introduce high-frequency (short-wavelength) content in the data space. It can be expressed as

ΦMFWI(m) =
1

2

∑
sr,xr

∫ T

0

‖F [usyn(t, xr)]− F [uobs(t, xr)]‖2 dt (6)

where F represents a frequency filter. MFWI provides a natural framework to perform the scale separa-
tion of the data by using different frequency filters. It uses a subset of the data which only contains the
long-wavelength (low-frequency) components to reconstruct a general background model in the beginning
stage, and then progressively includes the data of shorter wavelengths (higher frequencies) to reconstruct
structures of smaller scales. MFWI becomes equivalent to CFWI when the frequency filter covers the
whole range of interest.

In AFWI a new misfit function ΦAFWI is designed as

ΦAFWI(m) =
1

2

∑
sr,w

∫ fmax

0

∫ kmax

0

‖|Usynw (f, k)| − |Uobsw (f, k)|‖2 df dk (7)

where Usynw (f, k) and Uobsw (f, k) represent the f -k spectra of the spatially windowed synthetic and ob-
served data, respectively. The parameter w represents the spatial windows, and |.| represents the absolute
value of a complex number. The data space of AFWI has been transformed from the x-t domain to the
f -k domain, and AFWI tries to minimize the difference between the amplitude spectra of the observed and
synthetic waveforms.

By defining the misfit associated with surface-wave dispersion spectra (U in equations 3 and 7), AFWI
can be viewed as an intermediate way between MASW and the classical FWI. AFWI avoids the ambiguity
caused by the picking of modal dispersion curves in MASW and also includes amplitude information of
surface waves in the inversion. AFWI is similar to a modified MASW method presented in Forbriger (2003)
and Ryden and Park (2006), in which the inversion tries to minimize the difference between an observed
phase-velocity spectrum and that simulated from a theoretical layered model. AFWI adopts a 2D forward
solver while the modified MASW method is based on a 1D structure; thus, AFWI is more applicable to
laterally heterogeneous models than the modified MASW method.

In AFWI cycle skipping happens when the inversion tries to fit a single-mode surface-wave spectrum
by another mode, and is equivalent to a mode misidentification of surface waves in MASW (Zhang and
Chan, 2003). This means, the wider the surface-wave energy trend (equivalently, the lower the resolution
in the wavenumber domain), the less possible it is that AFWI will be trapped in a local minimum. Since
the resolution of a surface-wave energy trend in the wavenumber domain is inversely proportional to the
length of the spread (Forbriger, 2003), AFWI is able to balance the resolution of the f -k spectra to avoid
cycle skipping by incorporating spatial windows of different lengths (Pérez Solano et al., 2014).

In EFWI, the misfit function ΦEFWI is defined as

ΦEFWI(m) =
1

2

∑
sr,xr

∫ T

0

‖[esyn(t, xr)]
p − [eobs(t, xr)]

p‖2 dt (8)

where esyn and eobs are the envelopes of synthetic and observed waveforms, respectively. The parameter
p is the power for the envelope data and is usually chosen as 1 in shallow seismic (Yuan et al., 2015). The
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envelope function e can be obtained via Hilbert transform as

e(t, xr) =
√
u2(t, xr) +H2[u(t, xr)] (9)

with H denoting the Hilbert transform.
Similar to MFWI, EFWI also uses the long-wavelength part of the data in its first stage. However, it

performs a nonlinear scale separation by an envelope operator and, thus, has the ability to extract ultra-low-
frequency signals (Wu et al., 2014).

Overall, MFWI, AFWI, and EFWI are different hierarchical strategies in FWI. All of them firstly invert
a part of the data (subdata) that is less sensitive to cycle skipping. By choosing appropriate frequency filters
(F in equation 6), spatial windows (w in equation 7), and numbers of power (p in equation 8), MFWI,
AFWI, and EFWI are able to separate the data into different scales, so that each modified FWI approach
provides a multi-stage hierarchical FWI strategy. These three approaches share the same adjoint-state
equation with CFWI. In other words, the only difference in their gradient calculations exists in their adjoint
sources, which is related to their corresponding objective function. By incorporating spatial windows,
however, AFWI has a higher computational cost compared to the others because the misfit gradient needs
to be calculated for each window.

NUMERICAL EXAMPLE

A layered model (Table 1) is used to compare the performances of MASW and FWI (including both the
classical and the three modified FWI approaches) in reconstructing near-surface structures. The observed
and synthetic waveforms for FWI are simulated by FDM. A 25 Hz Ricker wavelet with 50 ms delay is used
as STF, and is generated as a vertical force. Forty-eight two-component receivers are placed along the free
surface with a nearest offset of 4 m and a trace interval of 1 m; they record both vertical and horizontal
components. The observed and synthetic input data for MASW is the fundamental-mode dispersion curve
from 10 to 80 Hz with an interval of 2 Hz, which is calculated via the Thomson-Haskell method (Haskell,
1953).

Table 1: A simple layered model for numerical testing.
S-wave velocity P-wave velocity density thickness

(m/s) (m/s) (g/cm3) (m)
Layer 1 200 500 2.0 5

Half space 400 1000 2.0 ∞

Since surface waves are much more sensitive to the S-wave velocity compared to the P-wave velocity
and density in both MASW and FWI (Xia et al., 1999; Groos et al., 2017), we only test the influence of the
S-wave velocity (Vs) on the objective functions of MASW and FWI. The Vs model consists of two values:
a top-layer velocity Vs_top, which ranges from 100 to 300 m/s, and a homogeneous half-space (bedrock)
velocity Vs_bedrock that ranges from 300 to 500 m/s. We use the true P-wave velocity and density models
(Table 1) in all synthetic tests.

We perform a series of two-parameter inversion test on each method, respectively, to compare their de-
pendence on the initial model. The model space is that Vs_top ranges from 100 to 300 m/s, and Vs_bedrock
ranges from 300 to 500 m/s. We adopt a conjugate-gradient (CG) algorithm (Hestenes and Stiefel, 1952)
as the optimization algorithm. The gradient of the objective function is calculated by a finite-difference
approximation (Nocedal and Wright, 2006).

The initial model is chosen in the whole model space with a grid spacing of 4 m/s. Fig. 2 shows the
solution paths in MASW and EFWI when an initial model with Vs_top = 104 m/s and Vs_bedrock = 304
m/s is chosen (starting point in Fig. 2). Both MASW and EFWI successively find the global minimum,
while MASW needs fewer iterations compared to EFWI. When using the same initial model in the other
cases (CFWI, AFWI, MFWI), however, the solution path goes out of the model space, which is regarded
as a divergence in the inverse problem.

After performing inversion tests on all initial models in the model space, 98% of the models can suc-
cessfully converge to the global minimum in MASW (red asterisks in the top-left image in Fig. 3). Those
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Figure 2: Examples of solution paths for MASW and EFWI in the two-parameter inversion examples.
Dashed lines and dots are the solution paths and iterative solutions, respectively. The starting point (initial
model) in these two examples is Vs_top = 104 m/s and Vs_bedrock = 304 m/s.

’divergent’ points (starting models which fail to converge to the global minimum; blue asterisks in the top-
left image in Fig. 3) are mainly located at the boundaries of the model space. Some of them are treated as
’divergent’ because our model space is not big enough to search for their solution paths which may finally
lead towards the global minimum. In other words, some of the ’divergent’ points located at the boundaries
of the model space may become ’convergent’ if we expand our model space. Overall, this inversion test
shows a relatively low dependence of MASW on the initial model.

Similarly, we can find the global minimum by using 17%, 72%, 65%, and 94% of the initial models in
CFWI, MFWI, AFWI, and EFWI, respectively. In CFWI, most of the ’convergent’ points are located in a
region where Vs_top is less than 10% off its true value, and only 17% of the starting points in the model
space are able to converge to the global minimum. It shows a high dependence of CFWI on the initial
model. This dependence on the initial model is greatly reduced when a modified approach is adopted. In
the cases of MFWI and AFWI, more ’convergent’ points are located in a region where Vs_top is higher
than its true value compared to the other side. This is because these methods primarily use the kinematic
information (traveltime) of the data, which is reciprocal to the velocity value. Thus, a higher velocity
has less influence on the kinematic information of the data. This behavior provides a useful suggestion
when preparing an initial model for these methods. Overall, these inversion tests prove that the success of
CFWI is highly dependent on the initial model, while this dependence decreases when incorporating the
hierarchical approach (adopting a modified FWI approach). MASW has a lower dependence on the initial
model, which can be used to provide an appropriate initial model for FWI.

CONCLUSIONS

Both multichannel analysis of surface wave (MASW) and full-waveform inversion (FWI) provide ways
to use shallow-seismic surface waves in reconstructing near-surface structures. A numerical example was
performed to compare the shapes of the objective functions of MASW, classical FWI, and three modified
FWI approaches including multiscale FWI, envelope-based FWI, and spectrum-based FWI. The compar-
ison showed that MASW possesses high stability but a relatively low resolution in imaging near-surface
structures, while classical FWI behaves just the other way round, and the modified FWI approaches pro-
vide an intermediate stability and resolution between MASW and classical FWI. These characteristics were
also proven by the synthetic inversion test. It led to the idea that a sequential strategy in which MASW,
a (or some) modified FWI approach(es), and classical FWI are progressively used could provide a stable
hierarchical way for the high-resolution imaging of near-surface structures.
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Figure 3: Distribution of convergent and divergent initial models of MASW, CFWI, MFWI, AFWI, and
EFWI in the two-parameter inversion examples. Red and blue asterisks are the starting points (initial
models) which converge toward or diverge from the global minimum, respectively.
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