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ABSTRACT

To obtain an image of the earth’s subsurface, time-imaging methods can be applied, as they are rea-
sonably fast, less sensitive to velocity model errors than depth-imaging methods and, usually, easy
to parallelize. A powerful tool for time-imaging consists of a series of prestack time-migrations and
demigrations. We apply multi-parameter stacking techniques to obtain an initial time-migration veloc-
ity model. The velocity model building proposed here is based on the kinematic wavefield attributes
of the common-reflection surface method. A subsequent refinement of the velocities uses a coherence
filter which is based on a predetermined threshold, and followed by an interpolation and smoothing.
Then, we perform a migration deconvolution to obtain the final time-migrated image. The migration
deconvolution consists of one iteration of least-squares migration with an estimated Hessian. We esti-
mate the Hessian by non-stationary matching filters, i.e., in a data-driven fashion. The model building
uses the framework of the common-reflection-surface , and the migration deconvolution is fully auto-
mated. Therefore, minimal user interaction is required to carry out both the velocity model refinement
and the image update. We apply the suggested approaches of velocity refinement and migration de-
convolution to complex synthetic and field data.

INTRODUCTION

Time migration is an attractive tool to produce subsurface images because it is reasonably fast, less sensitive
to the model errors than depth migration and, usually, a massively parallelized technique. A highly focused
time image is, however, achievable only with sufficiently well-determined migration velocities. Thus, a
refinement of the initial time-migration velocities is often applied to obtain an improved final image. Also,
time migration is derived by considering many assumptions, among others a straight ray propagation,
regularly sampled seismic data and an infinite migration aperture. However, these assumptions are violated
when sufficiently complex subsurface structures and field data are considered. Thus, time-migrated images
usually suffer from imperfections of the operator, exhibiting artifacts (Hertweck et al., 2003), such as the
commonly observed migration swings. Conventionally, a residual moveout (RMO) analysis is used to
reduce the impact of the model errors on the image, (e.g., Yilmaz (2001). The RMO analysis is an iterative
approach to update velocities based on the analysis of the flattening of events in the common-image gathers
(CIG) after time migration. Another approach to perform the velocity update after prestack time-migration
is common-offset migration followed by application of inverse normal moveout (NMO) and subsequent
velocity analysis on the newly generated gathers. The obtained gathers contain time-migrated reflections
with approximately hyperbolic moveout and are therefore suitable for classical one-dimensional or multi-
dimensional velocity analysis (Dell et al., 2012). To reduce migration artifacts, several image-enhancement
techniques, e.g., dip- or structure-oriented filters, are usually applied after time migration. These methods,
however, can introduce a certain smoothing into the migrated images, which may increase uncertainties in
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fault interpretation.
A comprehensive imaging theory based on migration and demigration in the depth domain is presented

by Hubral et al. (1996) and Tygel et al. (1996). In their work, Huygens surfaces and isochrons form the
central ingredients, and are combined with proper amplitude weighting to preserve amplitudes. Similar to
the works mentioned above, Iversen et al. (2012) presented a time-based approach. They used reflection
times, slopes, and curvatures as parameters to perform migration and demigration. Here, we propose a
technique to solve both time-migration problems mentioned earlier, i.e., migration artifacts and velocity
analysis. Our method is based on the duality of modeling/imaging operators (see Claerbout et al., 1996).
For one thing, time migration can be achieved by summation over traces (amplitude stacking) which aims
to focus events, correct dips, unfold triplications, and collapse diffractions. Following Yilmaz (2001), a
corresponding migration operator can be described by a double-square-root equation. While for the other
thing, time demigration can be carried out by performing a semicircle superposition (amplitude spreading)
which aims to restore (model) seismic data based on provided reflectivity models. The smearing (demigra-
tion) of the amplitudes can be described by a single-square-root equation. In this case, we use the same
traveltimes for both steps. The advantage of the cascaded forward and backward transformation is data
enhancement and regularization due to the incorporated summation of the migration, which reduces noise.
Furthermore, a general conflicting dip handling is naturally incorporated in the migration process. On the
one hand, a correctly migrated image should not contain conflicting dips with the exception of multiples.
On the other hand, the demigration reconstructs the dips in the original unmigrated domain. A condition
to perform these steps is a suitable velocity model, which can be automatically generated via, e.g., the
common-reflection-surface (CRS) method (Jäger et al., 2001).

In the first part of the paper, we suggest an efficient strategy to calculate an original starting velocity
model and introduce a refinement of the migration velocities. The method utilizes kinematic wavefield
attributes of the CRS method, i.e., angles and curvatures of wavefronts (Hubral, 1983) and also uses a
coherence filtering of the velocities, which further conditions the final velocity model for migration. In the
second part, we describe the migration and demigration in terms of traveltimes. Furthermore, we briefly re-
view the theory of least-squares migration and show that our time-migration/demigration approach can also
be used for migration deconvolution. To do this, we estimate matching filters, which are convolved with
the migrated image to enhance image quality. Finally, we demonstrate the applicability of the suggested
fully automated workflow for complex synthetic and field-data examples.

CONCEPTUAL FRAMEWORK

Automatic velocity model building using CRS

We perform a multidimensional coherence analysis using the implicit CRS method (Vanelle et al., 2010) to
extract kinematic wavefield attributes (Hubral, 1983). In principle, any double-square-root (DSR) expres-
sion (e.g., Walda et al., 2017) can be used instead of implicit CRS. An automated local coherence analysis
employing the normalized semblance coefficient (Neidell and Taner, 1971) picks at every data point a
subset of CRS attributes, and determines by optimization the best set consistent with the data (Nelder and
Mead, 1965). The obtained kinematic wavefield attributes are described as different order terms of a Taylor
series expansion of the squared hyperbolic traveltime (Müller, 1999):

t2(∆x,∆h) = (t0 + p∆x)2 + 2t0(N∆x2 +M∆h2) . (1a)
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The displacement between the point under consideration (xm, h) ,denoting midpoint and half-offset, and
a central point (x0, h0) is ∆x = xm − x0,∆h = h − h0. The traveltime at the expansion point x0, h0
is denoted by t0 and the derivatives are p,M, and N . The near-surface velocity v0 has to be provided.
An exploding-reflector experiment can be used to illustrate the physical meaning of the CRS attributes
(see Figure 1). The angle α denotes the incidence angle of the emerging ray from a fictitous source at
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the normal-incident-point (NIP). RNIP is the radius of curvature of the emerging wavefront at the surface
from a point source at NIP. RN is the radius of curvature of the emerging wavefront at the surface of an
exploding-reflector segment around NIP. Then, α,RNIP and RN , extracted by local coherence analysis

CRS

Figure 1: Kinematic wavefield attributes (modified after Schwarz et al. (2014)). A wave originates at the
normal-incident point (NIP) and strikes the recording surface at the central zero-offset point x0 with the
emergence angle α. The radius of wavefront curvature of the NIP wave at the surface is RNIP . The same
applies for a wave starting at the CRS, and can be measured at the surface as radius of wavefront curvature
of normal (N) wave RN .

are used to calculate the initial (original) time-migration velocities (Schwarz et al., 2014):

V =
vNMO√

1 +
v2NMO

v20
sin2 α

with vNMO =

√
2v0RNIP
t0 cos2 α

. (2)

In total, the migration velocity V depends on four parameters: α, RNIP , the considered time t0, and the
velocity near the surface v0, and V is calculated for every time sample and common-midpoint. As we also
consider the incidence angle α, we directly obtain dip-corrected migration velocities. Furthermore, equa-
tion 2 determines the normal moveout (NMO) velocity, vNMO. The near-surface velocity is an important
component of the migration velocity and the choice of its locally constant value is usually based on a priori
information. However, the formulation of migration velocity as in equation 2 allows a near-surface velocity
scan. This is an attractive complementary benefit of equation 2, particularly for data acquired in regions
with very complex near-surface geology, e.g., in deserts. As a new step, we apply a coherence filter to the
obtained velocity field. We perform a coherence analysis similar to the one mentioned above to obtain the
semblance for the migrated image. Therefore, the semblance coefficient (equation 3) is calculated for every
sample. It is normally described as normalized ratio of output energy to input energy (Neidell and Taner,
1971).
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a2ij

, (3)

where M is the number of samples per trace, N is the number of traces, and a is the amplitude of the i’th
sample and j’th trace. The coefficient has values between zero (low accordance) and one (high accordance)
due to the normalization. The amplitude for the sample under consideration depends on the migration
velocity. High coherence values implicate appropriate migration velocities for this sample. In contrast to
the local coherence analysis for the stacking described above, no optimization is performed, because we
suppose that with the previously determined kinematic wavefield attributes an appropriate velocity is calcu-
lated. This leads to general smaller values of the migrated coherence in contrast to coherence obtained after
stacking. The migrated coherence is calculated during the normal migration and is available afterwards for
the velocity refinement. With the new generated attribute, we can define a threshold for the coherence that
depends on the data set under consideration to eliminate noise and weak events. Only velocity values with
sufficiently high semblance norm are considered for the construction of the refined velocity model. Sub-
sequently, gaps arising from this thresholding are filled by interpolation. We use an interpolation method
based on a least-squares approach, where a discrete Laplacian is used to fill the gaps. Known values are not
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modified with this interpolation. Afterwards, we smooth the interpolated model to obtain a smooth velocity
distribution, which is necessary for time migration. As a result, areas with large coherence imply a reliable
migration velocity and the subsequent interpolation connects these areas to obtain an improved migration
velocity model. Furthermore, diffractions are enhanced in the suggested strategy, because they are naturally
described by the used migration equation (introduced in the next subsection), whereas reflection events are
merely repositioned. The migration method is designed to emphasize diffractions by summing their energy
along the whole hyperbola, whereas reflections only sum over a relatively small contribution on the apex of
the hyperbola. Although amplitudes of reflections are higher, coherence values of diffractions are increased
a lot with this method. The procedure can be applied iteratively in such a way that the interpolated model
is used again for coherence filtering, but our tests revealed that this just leads to further smoothing without
improving the velocity information.

Migration and demigration with CRS

Generally, geophysical modeling uses linear operators that predict data from models (Claerbout et al.,
1996). The inverse of modeling, inversion, aims to find models from the data and also uses linear operators.
The modeling operator with respect to reflectivity is conventionally referred to as demigration. The inverse,
in turn, is referred to as true-amplitude migration operator. In this paper, we formulate the time-migration
and demigration based on a high-order paraxial traveltime approximation. We use implicit CRS (Schwarz
et al., 2014), as it belongs to the DSR equations. As the implicit CRS method is developed to perform local
coherence analysis and stacking, it is parametrized by the two-way traveltime along the central zero-offset
ray . To apply it for time-migration, we rewrite the implicit CRS traveltime in terms of apex coordinates
(xapex, tapex). These are defined by local coordinates of implicit CRS (see Appendix). We re-parametrize
the diffraction subset of the implicit CRS in terms of apex coordinates:

t =

√
t2apex

4
+

(∆xa − h)2

V 2
+

√
t2apex

4
+

(∆xa + h)2

V 2
, (4)

where ∆xa = xm−xapex is the midpoint displacement, h is the half-offset, V is the time-migration veloc-
ity from equation 2 (Gloeckner et al., 2016). This DSR expression 4 resembles a conventional Kirchhoff
migration traveltime expression (Yilmaz and Claerbout, 1980) and represents the summation in our cas-
caded approach of migration and demigration. In equation 4, the traveltime t is expressed as a function of
apex time tapex and lateral deviation from the apex location ∆xa. To obtain the corresponding demigration
expression, we find it convenient to solve equation 4 for tapex:

tapex =

√
t2 − 4(∆x2a + h2)

V 2
+

16∆x2ah
2

t2V 4
, (5)

which is a single-square-root expression and represents the smearing in our cascaded approach. Both
processes, migration and demigration, are likewise valid for the poststack case, where the half offset h
vanishes and the equations simplify.

Migration deconvolution

Seismic time migration aims to map recorded data into a structural image of the earth’s discontinuities.
However, complex geological settings along the raypaths, uneven illumination, and imperfect acquisition
with irregular surface sampling, finite recording aperture, and aliased seismic data frequently lead to seis-
mic images which are improperly recovered by migration techniques. The migrated events appear to lose
high frequencies, reveal decreased amplitudes, are erroneous in terms of shape and location, and exhibit
migration swings. As a result, least-squares migration (LSM) techniques have been proposed to achieve
a better matching of amplitudes in the migrated images (Schuster, 1993; Nemeth et al., 1999). The basic
idea of the LSM techniques is to exploit the migration/demigration operator duality. In operator notation it
reads:
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d = Lm , (6a)

m = L−1d , (6b)

where d are the seismic data, m is the reflectivity model (migration image), L is the linear modeling
operator, and L−1 is the inverse (true-amplitude migration) operator. Usually, adjoint (transposed) instead
of inverse operators are used for migration as they tolerate data imperfections and do not demand that the
data provide full information (Claerbout et al., 1996).

The operator duality expressed in equation 6 allows us to formulate migration as a least-squares prob-
lem. If we consider the functional

J(m) =
1

2
(Lm− d)

2
, (7)

we immediately see that the gradient∇mJ yields the least-squares estimate of the reflectivity model

∂J

∂m
= 0 =⇒ m̂ = (L′L)−1L′d , (8)

where we use the adjoint operator L′ instead of the inverse operator L−1. The quantity (L′L)−1 in equa-
tion 8 represents the Hessian and m̂ denotes the improved migrated image. In the literature, this inverse is
frequently referred to as the resolution matrix or deconvolution operator (Hu et al., 2001), i.e., we can also
use this inverse to perform a deconvolution of the migrated image L′d in order to correct the amplitudes.
Due to the higher-order complexity of the modeling and migration operators, the Hessian generally cannot
be inverted for directly, and iterative procedures such as the conjugate gradient (CG) or the Newton method
are often used (Lambaré et al., 1992). As an alternative, we use a method suggested by Guitton (2004) to
approximate the effects of the Hessian with nonstationary matching filters. Apart from a convenient imple-
mentation, the method simulates the effects of least-squares inversion at a much reduced cost compared to
an iterative approach. According to Guitton (2004), this strategy is set up as follows:

• Compute a first migrated image m1 = L′d.

• Compute a second image m2 = L′Lm1.

• Estimate a bank of nonstationary matching filters B0 such that m1 = B0m2.

• Convolve B0 with m1 to arrive at an improved image m̂ = B0m1.

Convolution of the nonstationary matching filters with the first migrated image is equal to so-called one-
iteration least-squares migration or migration deconvolution. The forward modeling (time demigration) is
given by equation 5 and represents semi-circle superposition. The DSR migration is defined in equation 4
and implies hyperbolic summation. We note that the formulation of the demigration also requires a semi-
circle-type superposition for migration as only this type satisfies the correctness of the adjoint migration
(Ji, 1994). However, we decided to use the hyperbolic approach instead of the semicircle method because
it is computationally efficient and even accounts for some potential artifacts in the image resulting from
the hyperbolic summation. These artifacts usually show up for highly dipping events and are known to be
caused by operator aliasing.

In the following, we investigate the applicability of the suggested strategy of automated velocity model
building and migration deconvolution in the time domain using complex synthetic and field data examples.

SYNTHETIC DATA EXAMPLE

First, we apply the presented method to the complex Sigsbee2A synthetic data. It is a constant-density
acoustic dataset released in 2001 by the Subsalt Multiple Attenuation Team Joint Venture (SMAART JV
(Paffenholz et al., 2002)). The SMAART JV has created several 2D synthetic data sets. One of the ob-
jectives was to better understand the imaging issues contributing to the poor signal-to-noise ratio observed
subsalt in deep water environments such as the Sigsbee Escarpment in the Gulf of Mexico. Prestack data
were modeled with a 2D acoustic finite-difference approach with a dominant frequency of 20 Hz. The
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Figure 2: Synthetic data. Different steps of velocity refinement, where the colorbar applies to all images.
Starting with the original velocity model (a), we masked the section with the weighted coherence (b).
Afterwards, interpolation of gaps (c) and smoothing (d) is applied to obtain the refined model.
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Figure 3: Synthetic data. Close-up of CIG for CMP 210. Image (a) shows the CIG with the original used
velocity model. After velocity refinement is applied (b) the CIG is cleaner and more homogeneous.

CMP spacing is 11.43 m and the offset spacing is 34.29 m. The following figures show the left part of the
model containing faults and diffractor lines.

Figure 2 illustrates the individual steps of the velocity refinement. Figure 2 (a) shows the original model
calculated with the CRS kinematic wavefield attributes. Its structure is dominated by laterally continuous
reflections, and higher as well as lower velocities are present. Higher velocities can occur because inter-
secting events lead to incorrect attributes and, therefore, erroneous velocities. Figure 2 (b) shows the result
of the coherence filtering, performed on the initial velocity estimate. We have defined a threshold for the
wavefield’s semblance of the time-migrated image, which depends on the data quality. The aim is to sup-
press noise and keep the coherence values of the events by choosing an appropriate value of the semblance
coefficient. We use this as a mask for the velocity model. Here, gray corresponds to values below the
threshold. Mostly reflections due to higher amplitudes in comparison to diffractions are chosen with the
coherence threshold of 0.01. Figure 2 (c) presents the result of the interpolation of the gaps from the image
in Figure 2 (b). Perturbations are present where gaps in the data are comparably large, especially in the
right and lower part of the image due to the interpolation. Figure 2 (d) shows the final smoothed velocity
model. Additional smoothing is necessary to fulfill the requirements for time migration. This is the reason
for the decreased resolution of the refined velocity model in comparison with the orignal model in Figure
2 (a).

For a further comparison of the results for the velocity refinement, Figure 3 shows common-image
gathers (CIG) for CMP 210. The CIG is almost flat for the original velocity model (see Figure 3(a)).
Improvements with the refinement Figure 3(b) lead to a reduction of noise at larger offsets, and a more
continuous gather. The noise content for larger offsets in Figure 3(a) is due to the calculation of the original
velocity model (see equation 2), which calculates the velocity for ZO with t0 and is therefore biased for
larger offsets.

In Figure 4 the migration results for the original migrated image (a), the one obtained with the refined
velocity model (b), and with the migration deconvolution (c) are shown. Improvements are in particular
visible in the fault area. Generally, it can be observed that our suggested strategy for time-migration
velocity model building and migration deconvolution results in an improved localization and imaging of
faults and a more continuous appearance of reflecting structures. Furthermore, the images of two diffractors
are now better focused and clearly recognizable against the image background. For this synthetic data set
the advantage of the migration deconvolution is minor, e.g. improved diffraction focusing. Here, we are
pushing the limits of time-migration resolution, which is not the case for field data application. Finally,
note that the improved velocity model building and the migration deconvolution were performed in a fully
automated fashion.
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Figure 4: Synthetic data. Different migrated sections. The first image (a) shows the migration result with
the original used velocity model. Velocity refinement (b) and migration deconvolution (c) improve the
image quality.

FIELD DATA EXAMPLES

We applied the proposed velocity enhancement and migration/demigration loop to a marine and a land
data example. The first data set was acquired by TGS in the Levantine basin in the eastern Mediterranean
Sea. The Levantine Basin shows a complex seismic stratigraphy of the basinal succession. The deforma-
tion patterns of the intraevaporitic sequences include folds and thrust faulting, which provides evidence
for extensive salt tectonics and shortening during the depositional phase. Previous works have shown that
postdepositional gravity gliding caused salt rollers in the extensional marginal domain, as well as com-
pressional folds, and faults within the Levantine Basin (Netzeband et al., 2006). A subset of the data
consisting of around 2000 common midpoint (CMP) gathers with a total line length of approximately 25
km, a shot/receiver spacing of 25 m, a CMP spacing of 12.5 m, and maximum offsets of 7325 m was
chosen. The maximum CMP fold corresponds to about 120 traces. The record length was 8 s with a 2-ms
sample rate.
Figure 5 shows the different steps of the velocity refinement for a subset of the data. Figure 5 (a) shows
the original velocity distribution calculated from the CRS wavefront attributes. The sedimentary layering
is visible, and interrupted by the first ocean-bottom multiple. The image in Figure 5 (b) shows the velocity
model after application of the coherence filter with a threshold of 0.005. Here, gray corresponds to values
below the threshold. In the following step, the interpolation is executed and the result is shown in Figure
5 (c). Perturbations caused by the interpolation are less in comparison with the synthetic data due to the
more homogeneous distribution of events after filtering. A final smoothing (Figure 5 (d)) of the interpolated
velocities has to be carried out to perform time migration.
Figure 6 shows an overlay plot of the automatically generated velocity model and the prestack time-
migrated image. The velocity model obtained by coherence filtering and interpolation is smooth and the
velocities increase with time except for the first ocean-bottom multiple, which produces lower velocities at
larger times, between 2 and 3 s in the lower left corner. The white and red colors indicate higher salt veloc-
ities for the triangular structures. There is noticeable consistency of the velocity model with the migrated
section not only for the sedimentary layering but also for faults, which start from the triangular structures
and continue to the sea floor. The sedimentary layering is horizontally ruptured by a chaotic pattern, which
coincides with a slid slump complex (Hübscher and Netzeband, 2007). We also observe low velocities on
the bottom of the model. These are likely caused by ocean-bottom multiples which were picked by our
unconstrained automatic velocity update.
To evaluate the results of the demigration, we compare common-offset sections of the original and the
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Figure 5: Marine data. Different steps of velocity refinement, where the colorbar applies to all images.
Starting with the original velocity model (a), we masked the section with the weighted coherence (b).
Afterwards, interpolation of gaps (c) and smoothing (d) is applied to obtain the refined model.
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Figure 6: Marine data. An overlay plot of the refined velocity model and the corresponding prestack
time-migrated section.
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Figure 7: Marine data. Close-up of common-offset sections: original data (a) and demigrated data (b).
Main events are recovered in demigrated image (b).

demigrated data. Following Hubral et al. (1996), we choose the same apertures and velocity models for
forward and backward transformation. The midpoint aperture ranges from 1500 m to 2500 m and the off-
set aperture from 1000 m to 7000 m. Figure 7 shows common-offset sections for h = 1000 m, where the
original data is presented on the left and the demigrated data on the right. The demigration enhances the
data quality and the events are imaged with improved continuity. The second dipping reflection, starting at
1.8 s and the connected diffraction events are both enhanced. Furthermore, structures below this reflection
are more visible in the demigrated section. The first ocean-bottom multiple (approximately 2.2 s at CMP
90) is more pronounced too, but reflections below, which are masked in the original data section, become
clearly visible in the demigrated section. The automated scheme was able to reconstruct the original data,
and improved the resolution of deeper events.

As the demigration results appear to be reasonable, we can apply the described migration deconvolution.
Figure 8 shows a close up of two migrated sections. The conventional migration result m1, i.e., the first
image in our deconvolution workflow and the updated migration result m̂, i.e., the first image convolved
with the inverse of the Hessian, are shown on the left and right, respectively. Note a clearly observable
wavelet shortening, i.e., deconvolution, in the updated migration result. We also see an improvement in
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Figure 8: Marine data. Close-up of the migrated sections. Migrated image is shown in (a). The image in
(b) calculated with migration deconvolution shows an improved resolution for the middle part.

focusing of diffractions and a better unfolding of bow-ties. Figure 9 displays the remigrated image m2,
i.e., the second image in the deconvolution workflow (a) and the estimated nonstationary matching filters
(b). The filter seems to follow the structure – an observation that was also made by Guitton (2004) for the
depth case. In time migration, however, a heavily smoothed velocity model is used. Therefore, this is an
unexpected feature and confirms an appropriate velocity model. Figure 10 displays frequency spectra for
the migrated (blue) and the updated (red) image. We observe an expected slight broadening of the spectrum.
We also see an unexpected spectrum behavior in the updated image, namely that frequencies higher than
90 Hz, which were artificially boosted by the application of a deconvolution during the processing, became
noticeable weaker.
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Figure 9: Marine data. Close-up of the remigrated section (a) and the estimated filters (b), where the filter
follow the structures.
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Figure 10: Marine data. Frequency spectrum corresponding to the migrated (blue) and the updated (red)
image. We observe an expected slight broadening of the spectrum. We also see an unexpected spectrum
behavior in the updated image, namely frequencies higher than 90 Hz, which were artificially boosted by
the application of a deconvolution during processing, are weakened.
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Our second data example is a land data example acquired north of the river Elbe in Northern Germany. It
almost coincides with the so called Elbe-Line, and crosses the Central Triassic Graben and its deepest part,
i.e., the Glückstadt Graben, perpendicular to the graben axis. Salt structures and complex fault systems
characterize the region. The sedimentation process started in the Upper Rotliegend and continued to the
evaporites of the Zechstein Group, which reached up to 800 m in thickness. Different phases of salt
movements that started in Triassic time formed the salt structures of the region. Each phase is characterized
by changing tectonic regimes and different kinds of salt diapirism (Baykulov et al., 2009). The dataset
consists of 771 shot gathers with a recording length of 13 s and a sample interval of 2 ms. Explosive
sources were used with an average shot spacing of 120 m. For every shot gather, 120 channels with a
receiver group spacing of 40 m were deployed. Irregular shooting geometry led to a varying CMP fold,
with an average value of 20. A CRS-based data enhancement was applied to the CMP data during the
reprocessing in 2007. The CRS-conditioned gathers were used as migration input. In our tests we focused
on sedimentary structures and salt plugs, i.e., we mainly considered the time interval from 0 to 6 s two-way
traveltime (TWT). We note that the chosen part of the data includes a very complex near-surface region,
i.e., in addition to the salt structures, the suggested scheme is confronted with severe weathering effects
As before, the different steps of the velocity refinement are shown in Figure 11. We display the shallow

part of the flank of a salt diapir. Figure 11 (a) shows the calculated velocities determined by wavefront
attributes. Higher velocities are present in the salt diapir, whereas lower velocities are visible at the flanks.
The threshold value for the coherence filtering is 0.01 for this data set shown in Figure 11 (b). We fixed the
near-surface velocity, which was estimated by the processing company, to obtain information for the upper
part as well. Small perturbations caused by the interpolation are visible in Figure 11 (c). The continuation
of layers towards the diapir is still visible. The refined velocity model after a final smoothing is shown in
Figure 11 (d).

Figure 12 shows the first migrated image m1 (a) and the second image m2 (b). It displays a close-up
including a complex salt intrusion which almost reaches the acquisition surface, thereby causing complex
fault structures in the shallow part of the sections.
In Figure 13 the results of migrationm1 (a) and migration deconvolution m̂ (b), respectively, are displayed.

We notice an increase in resolution. In the near-surface area, we also observe recovery of the weathered
layers after migration deconvolution. On the contrary, and as expected, the near-surface reflections after
migration are widely destroyed. Somewhat unexpectedly, we observe a recovery of events in the salt region.
Figure 14 shows frequency spectra corresponding to the migrated (blue) and the updated (red) image. We
observe that the frequency content remains almost the same, with a slight boost of high frequencies between
60 and 120 Hz on the updated image m̂. This is an expected behavior due to migration deconvolution.
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Figure 11: Land data. Different steps of velocity refinement, where the colorbar applies to all images.
Starting with the original velocity model (a), we masked the section with the weighted coherence (b).
Afterwards, interpolation of gaps (c) and smoothing (d) is applied to obtain the refined model.
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Figure 12: Land data. Close-up of the migrated image m1 (a) and the second (remigrated) image m2 (b)
including the salt diapir.
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Figure 13: Land data. Result of migration (a) and migration deconvolution (b). We clearly observed an
improvement in the event continuity, particularly for near-surface region and somewhat unexpected diapir
region. We also recognize a noticeable deconvolution of migrated reflections.
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Figure 14: Land data. Frequency spectrum corresponding to the migrated image (blue) and the updated
image (red). We observe a slight boost of low and high, between 80 and 120 Hz, frequencies due to
migration deconvolution.

DISCUSSION

In this section, we broadly discuss the advantages of the presented time-imaging sequence and address
some issues we faced in the process. We recognize that the presented workflow belongs to the family of
time-imaging methods, which may reduce its applicability to complex geological systems. However, time
imaging is still present in the industry and several attempts have been made to improve it, e.g., by incorpo-
rating ray-tracing, extending Kirchhoff migration to higher (up to sixth-order) terms to better account for
complex ray paths caused by heterogeneity or anisotropy, application of depth-to-time conversion where
depth migration with a well-defined model is performed first and depth images are subsequently converted
back to time. In this paper, we firstly addressed the model building of time-migration velocities. The
conventional model-building workflow still utilizes seismic reflections only, as time migrations are usually
obtained from already existing NMO velocities or through conversion from depth models. Neither of the
conventional methods considers diffractions in the modeling, whereas we naturally acknowledge them in
this work by utilizing kinematic wavefield attributes extracted for both reflected and diffracted events. We
extract the attributes by means of a high-resolution multidimensional, multiparameter data analysis, i.e.,
we estimate attributes for every data point. A challenge is to determine an appropriate attribute ’de-noising’
which is required to obtain smooth velocity models. The use of the coherence filter suggested in this paper
may lead to an undesired neglect of weak diffracted contributions in the velocity model building process.
Therefore, a careful choice of filter set-ups is required.

One of the drawbacks of time imaging is a transmission imprint on the recorded amplitudes due to the
complex wave propagation through the overburden. It can be argued that seismic images (whether in depth
or time) are usually not properly recovered by ray-based migration techniques. Only a full-wave migration
based on at least a visco-acoustic engine will be capable of performing frequency-dependent phase and
amplitude correction of the deteriorated seismic data. Moreover, because of imperfect acquisition, i.e., ir-
regular acquisition sampling, finite recording apertures, and aliased seismic data, a least-squares migration
is needed to achieve a better matching of amplitudes in the images. Visco-acoustic least-squares RTM,
however, is still not a standard migration algorithm in the industry. The applied migration-deconvolution
strategy will certainly not remove all undesired effects of wave propagation. However, we argue that it can
help mitigate those effects which are related to imperfect acquisition and incorrect velocity models.

Furthermore, we apply LSM techniques and improve the resolution of images obtained using the ap-
proach described above. Least-squares migration involves a linear modeling/demigration operator L and
its conjugate transpose migration operator L′; L operates on model m and L′ operates on data d (Nemeth
et al., 1999). If L is considered to be Born modeling, L is a volume integral: each contribution to the
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integral expresses propagation delay from a source to a scatterer (velocity perturbation) to a receiver, fol-
lowed by bandpass and derivative filtering (e.g., equation 3.2.12 of Bleistein et al. (2001), specialized to
zero offset). If L is Kirchhoff modeling, L is a sum of integrals over reflecting surfaces; each contribution
expresses propagation delay from a source to a reflecting surface to a receiver, also followed by bandpass
and derivative filtering (e.g., equation 5.1.50 of Bleistein et al., 2001).

For both Born and Kirchhoff modeling, L and L′ can be discretized as matrices. The cascade of
summation and filtering means that (demigration) L is the product of matrices: Lm = L1L2m, where
L1 denotes filtering and L2 denotes summation of the scattering contributions. For migration, conjugate
transposition requires that L′d = L′2L

′
1d. That is, bandpass and derivative filtering are applied last in

modeling and first in migration. This is important for least-squares time migration.

CONCLUSIONS

We presented a time-imaging method based on a migration/demigration loop. The method comprises an
automatic model building (time-migration velocities) and an update of the migrated image (reflectivity).
The basis for the forward (modeling) and backward (migration) transformation between different domains
is a re-parametrized implicit common-reflection-surface (CRS) approach, which we rewrite in apex coor-
dinates. Exploiting the implicit CRS also allows us to use kinematic wavefield attributes extracted during
the high-resolution CRS-parameter analysis.

The benefits of the migration/demigration loop are that seismic data become regularized and enhanced.
Moreover, conflicting event dips arising from wavefield interference are naturally handled correctly as
migration repositions/removes the dips and the subsequently applied demigration restores them. To further
improve the velocity model, we propose to incorporate the coherence section provided by the migration
into the model-building process. A coherence threshold is selected and serves as a mask to filter the
velocity model which is subsequently interpolated and smoothed. The presented method enhances the
velocity models not only in areas assigned to the prominent reflections but also in the vicinity of weaker
diffractions.

The duality of migration/demigration operators allows to the formulate time-migration as a least-
squares problem. We directly approximate the inverse of the Hessian by nonstationary matching filters.
The inverse of the Hessian is then convolved with the migrated image which yields a deconvolved mi-
grated image, i.e., the desired least-squares estimate of the reflectivity model. We do not make any major
model assumptions and perform velocity model building and the migrated-image update in a data-driven
fashion. Therefore, minimal user interaction is required to carry out both the model and image update.
Applications to complex synthetic and field data, acquired off-shore and on land, suggest that the proposed
method is capable of noticeably reducing migration swings and recovering amplitudes, thereby leading to
improved subsurface imaging in time.
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APPENDIX

Vanelle et al. (2010) introduced the implicit common-reflection surface (CRS) stacking approach. The
approach is model-based and assumes a circle in the subsurface on which the reflection point (R sin θ,H−
R cos θ) is determined (see Figure15).The traveltime is the sum of ts, from the source to the reflection
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0

Figure 15: Implicit CRS geometry (Schwarz et al., 2014) in source-receiver coordinates. The reflection
point is (xr, zr). The circle is described by its center point (xc,H) and the radius R. The dottet lines
inidicate the ZO case and denote the starting value θ0 for the iterative search of the angle θ.

point, and tg , from the reflecection point to the receiver respectively.

t = ts + tg, where (9)

ts =
1

V

√
(xs − xr)2 + z2r , (10)

tg =
1

V

√
(xg − xr)2 + z2r . (11)

We can solve these equations with the circle equation (xr − xc)2 + (H − zr)2 = R2, a fix middle point
xc, H , and a constant radius R, so that:

xr = xc +R sin θ and zr = H −R cos θ. (12)

Now equation 9 reads:

t = ts + tg, where (13)

ts =
1

V

√
(xs − xc −R sin θ)

2
+ (H −R cos θ)

2
, (14)

tg =
1

V

√
(xg − xc −R sin θ)

2
+ (H −R cos θ)

2
, (15)

The velocity V is constant. The reflector radius of curvature is R, H denotes the depth to the centre of
the circle, and xc describes the horizontal coordinate of the centre of the circle. It is convenient to change
coordinates from source-receiver to midpoint and half-offset with xm =

xg+xs

2 and h =
xg−xs

2 . The
reflection traveltime in common midpoint and half-offset coordiantes is:

t = ts + tg, where (16)

ts =
1

V

√
(xm − h− xc −R sin θ)

2
+ (H −R cos θ)

2
, (17)

tg =
1

V

√
(xm + h− xc −R sin θ)

2
+ (H −R cos θ)

2
. (18)

The angle θ is determined by an iterative solution scheme. Therefore, we have to set ∂t
∂θ

!
= 0 with the

solution:
tan θ =

xm − xc
H

+
h

H

ts − tg
ts + tg

. (19)

We observe that we need the angle θ for the calculation of θ. We start with the angle for the ZO case
tan θ0 = xm−xc

H as first guess for the recursive application and are able to solve equation 16.
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In order to derive a summation time-migration operator, we consider diffractions, where the implicit CRS
parameter R vanishes. Accordingly, the diffraction traveltime reads as follows,

tD =
1

V

√
(xm − h− xc)2 +H2 +

1

V

√
(xm + h− xc)2 +H2. (20)

We now parametrize equation 20 in apex coordinates. This can be achieved by minimizing the diffraction
traveltime

∂tD
∂xm

= 0, (21)

with the condition of h = 0. The extremum,i.e., the apex is located at xm = xc and tD = 2H/V with the
resulting apex coordinates,

xapex = xc, and tapex =
2H

V
, (22)

which lead to the time-migration equation in apex coordinates,

t =

√
t2apex

4
+

(∆xa − h)2

V 2
+

√
t2apex

4
+

(∆xa + h)2

V 2
, (23)

where ∆xa = xm − xapex is the midpoint displacement.
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