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ABSTRACT

The localisation of passive seismic sources in form of microseismic tremors as well as large-scale
earthquakes is a key issue in seismology. While most previous studies are assuming fairly good
knowledge of the underlying velocity model, we propose an automatic spatial localisation and joint
velocity model building scheme that is independent of detailed a priori information. The first step is a
coherence analysis, estimating so-called wavefront attributes to locally describe the wavefield in terms
of slopes and curvatures. In a similar fashion, we also obtain an initial guess of the source excitation
times of the recorded events. The wavefront attributes constitute the input for wavefront tomography
which represents the next step of the workflow and allows for a refinement of the previously evaluated
source excitation times while simultaneously approximating the velocity distribution. In a last step,
we use the final estimate of the velocity distribution and compute the respective image function by
reverse time modelling to gain the source locations. This paper introduces the theoretical concept of
our proposed approach for the general 3D case. We analyse the feasibility of our strategy and the
influences of different acquisition settings by means of a synthetic 2D data example. The approach
can deal with high levels of noise and low signal amplitudes, respectively, as well as sparse geophone
sampling. The workflow generally delivers good approximations of the long-wavelength velocity
variations along with accurate source locations.

INTRODUCTION

A passive seismic source can be defined as an origin of energy located within the interior of the Earth.
Once, the energy is released at the source it propagates through the Earth and eventually reaches the sur-
face, where the ground motion is recorded by seismic receivers. Such events occur on all scales, for instance
in form of large-amplitude earthquakes or faint tremors which can hardly be felt by humans. Those weak
events are referred to as microseismicity and can be induced either naturally or anthropogenically. Natural
tremors occur for instance related to pressure fluctuations in volcanic (e.g. Aki et al., 1977) and geothermal
areas. In the context of hydraulic fracturing, however, tremors are generated intentionally. By injecting
a pressurised fluid into a wellbore, cracks arise in the rock formation, allowing for an improved flow of
petroleum or gas when extracted. Monitoring aims at recording and localising these cracks to improve
and control the fracturing processes (e.g. Maxwell and Urbancic, 2001). Independent of the triggering and
scale of the events, the localisation of the sources is a key problem in seismology and fundamental for
understanding both the physics behind the respective rupture processes and imaging the Earth’s interior.
Of course there are many different approaches to deal with this issue. Most of them rely on a given velocity
model and thus localise the sources in the assumed medium (e.g. Lomax et al., 2000). Some methods are
based on picking traveltimes (e.g. Kennett and Engdahl, 1991; Waldhauser and Ellsworth, 2000). Such
approaches, however, usually fail when the noise level is high and precise picking is hardly possible. Al-
ternatively, the localisation can be performed by reverse time modelling (Gajewski and Tessmer, 2005) or
diffraction stacking (e.g. Gajewski et al., 2007; Zhebel et al., 2011), back-projection (e.g. Ishii et al., 2005)
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and similar approaches (e.g. Grigoli et al., 2013). These methods can deal with high noise levels as they
circumvent picking. Still, the respective results highly depend on the quality of the underlying velocity
models. Recently, the increasing capacity of computational resources has paved the way for simultaneous
approaches that invert for source locations and the velocity model at the same time. Wang and Alkhalifah
(2018) have proposed a source function independent full waveform inversion (FWI) approach. In contrast
to previous FWI-based methods (e.g. Sun et al., 2016) the need of a good starting guess of the velocity
distribution has been relaxed by adopting a scheme which requires only a rough estimate of the vertical
velocity variation. The method delivers accurate source locations and good velocity distributions. Nonethe-
less, the approach requires good data quality and generates high computational costs.
We propose an alternative, robust and efficient workflow to simultaneously estimate the velocity model and
the source locations. The idea has initially been proposed by Schwarz et al. (2016) and exploits the funda-
mental robustness of coherence analysis. Stacking, forming a central ingredient of coherence analysis, has
proven to be a reliable tool in controlled-source seismology and allows to access even weak events (e.g.
Mayne, 1962; Taner and Koehler, 1969). Different traveltime operators have been proposed for coherence
analysis over the years depending on different attributes (e.g. Landa et al., 2010; Schwarz et al., 2014).
The common-reflection-surface method (Jäger et al., 2001) for instance delivers so-called wavefront at-
tributes that describe the slopes and curvatures of the recorded wavefield. Apart from trace interpolation
and data regularisation (Baykulov and Gajewski, 2009; Xie and Gajewski, 2017) these attributes can be
used for wavefront tomography (Duveneck, 2004). The first step of our proposed method is to evaluate
wavefront attributes for passive seismic data. Furthermore, we estimate the source excitation times of the
recorded events by using an adapted traveltime operator. These source excitation times are then refined
during wavefront tomography to eventually deliver a consistent velocity distribution. Finally, we use this
velocity model for reverse time modelling to obtain an image function that localises the recorded energy
sources.

WAVEFRONT ATTRIBUTES

The arrival time t of a passive seismic signal recorded at receiver location xxx can generally be expressed by

t(xxx) = t0(xxx) + ts , (1)

where t0 is the actual traveltime from the source to the receiver and ts marks the unknown source excitation
time. In order to extract the event’s kinematic information from the record, we want to use an analytic
equation to approximatively represent the traveltime depending on the desired wavefront attributes. This
can be achieved by means of a Taylor series expansion (e.g. Ursin, 1982; Castle, 1994). If we only consider
receivers in the local vicinity of a given x0x0x0 according to

xxx = x0x0x0 + ∆x∆x∆x , x0x0x0 =

(
x0
y0

)
, ∆x∆x∆x =

(
∆x
∆y

)
, (2)

where ∆x and ∆y are sufficiently small, the arrival time of the signal can be well approximated by the
first-order Taylor series expansion about x0x0x0:

t(xxx) ≈ t(x0x0x0) +∇∇∇t(x0x0x0) ·∆x∆x∆x (3)

∇∇∇t =
(
∂t
∂x

∂t
∂y

)
=
(
∂t0
∂x

∂t0
∂y

)
, (4)

where∇∇∇t describes the gradient of t, which is similar to the gradient of t0. Increasing the area of interest
by regarding larger values of ∆x and ∆y, the second order term has to be taken into account:

t(xxx) ≈ t(x0x0x0) +∇∇∇t(x0x0x0) ·∆x∆x∆x+
1

2
·∆x∆x∆xT ·H(x0x0x0) ·∆x∆x∆x (5)

H =

 ∂2t
∂x2

∂2t
∂x∂y

∂2t
∂x∂y

∂2t
∂y2

 =

 ∂2t0
∂x2

∂2t0
∂x∂y

∂2t0
∂x∂y

∂2t0
∂y2

 . (6)
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Figure 1: Sketch of source-receiver ray path along with wavefronts and the respective wavefront attributes
α and Rxx in two dimensions. The quantity α marks the dip angle at the surface while Rxx equals the
radius of the circle that locally fits the emerging wavefront in the best possible way.

The 2 × 2 matrix H corresponds to the Hessian. In fact, the parabolic Equation 5 delivers a fairly good
description of the moveout in the local vicinity of x0x0x0, however, in exploration seismology the hyperbolic
expression, obtained from Equation 5 by subtracting ts, squaring both sides and ignoring terms of third and
higher order in ∆x∆x∆x, is usually preferred (e.g. Schleicher et al., 1993; Jäger et al., 2001):

t(xxx) ≈
{[
t0(x0x0x0) +∇∇∇t(x0x0x0) ·∆x∆x∆x

]2
+ t0(x0x0x0) ·∆x∆x∆xT ·H(x0x0x0) ·∆x∆x∆x

} 1
2

+ ts . (7)

In case of a homogeneous velocity model this formula is actually exact. Both Equations 5 and 7 deliver
accurate fits and contain the physically interesting quantities∇∇∇t and H. The gradient can be related to the
horizontal slowness, composed of px and py , while the Hessian is linked to the curvature matrix K (Hubral,
1983):

∇∇∇t =
(
px py

)
=
(

sin(α)·cos(β)
v0

sin(α)·sin(β)
v0

)
(8)

H =

(
Hxx Hxy

Hxy Hyy

)
=

1

v0
· L ·K · LT (9)

L =

(
cos(α) · cos(β) − sin(β)

cos(α) · sin(β) cos(β)

)
(10)

K =

(
Kxx Kxy

Kxy Kyy

)
=

(
1/Rxx 1/Rxy

1/Rxy 1/Ryy

)
, (11)

with α and β denoting the dip and azimuth angle, respectively, v0 indicating the locally, meaning within
the regarded surrounding of x0x0x0, constant near-surface velocity and Kxx, Kxy and Kyy representing the
wavefront curvatures which are the reciprocals of the respective radii Rxx, Rxy and Ryy . Hence, there are
five wavefront attributes: two angles and three curvatures. When considering only two dimensions, such
that

∆y = 0 , β = 0 , Kxy = Kyy = 0 , (12)

Equation 5 simplifies to

t(x) ≈ t(x0) +
sin(α)

v0
·∆x+

1

2
· cos2(α)

v0 ·Rxx
·∆x2 , (13)
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while Equation 7 becomes

t(x) ≈

{[
t0(x0) +

sin(α)

v0
·∆x

]2
+ t0(x0) · cos2(α)

v0 ·Rxx
·∆x2

} 1
2

+ ts . (14)

The two remaining wavefront attributes α and Rxx are visualised in Figure 1.
The issue of estimating wavefront attributes for the recorded wavefield thus becomes an optimisation prob-
lem, where the coherent energy locally stacked along an analytical traveltime curve has to be maximised for
each sample. The measure used to quantify coherence in this work is the normalised semblance coefficient
(Taner and Koehler, 1969). We want to point out here that the parabolic Equation 5 is in fact a function of
only the five wavefront attributes, whereas the hyperbolic Equation 7 additionally depends on the unknown
source excitation time ts.
In a first step, we can therefore estimate the wavefront attributes of the data using Equation 5. Because these
attributes are local quantities of the wavefield the optimisation aperture used for this estimation should be
as small as possible. This so-called optimisation aperture corresponds to the maximum |∆x∆x∆x| considered
for the fitting process. An alternative to optimising the parabolic function for both first and second order
attributes simultaneously is to find ∇∇∇t via Equation 3 first (Mann et al., 1999). However, this requires a
dense receiver sampling and high signal-to-noise ratio (SNR). As by-product, the obtained wavefront at-
tributes can be used to enhance the recorded data by creating a stack, summing up all the samples along
the analytically defined traveltime trajectories within a certain range around x0x0x0.
Afterwards, we use the wavefront attributes determined in the previous step and maximise the semblance
using Equation 7 to approximate ts. Since the source excitation time is constant for each event, we use the
entire data (∆x→∞ and ∆y →∞) in this second optimisation and compute the median of all estimates
per event to obtain a final ts value for each source. In this context, event tagging (e.g. Bauer et al., 2017a)
is used to differentiate between signals from different sources.
Since the moveout might become fairly complex and ts is simply approximated from the best hyperbolic
fit, the results may vary in quality. It appears, however, that especially for moderate velocity variations the
approach generally delivers a good initial guess of the source excitation times (Schwarz et al., 2016). In
order to refine this guess and eventually be able to spatially localise the sources with a consistent velocity
model, we use wavefront tomography.

WAVEFRONT TOMOGRAPHY AND IMAGE FUNCTION

Following coherence analysis each sample can be associated with a maximum semblance value as well as a
set of wavefront attributes, kinematically describing the dominant local wavefield. Furthermore, all tagged
samples which are thus regarded as signal rather than noise can be related to an initial source excitation
time.
In order to get the input data ddd for wavefront tomography (Duveneck, 2004; Bauer et al., 2017b), the
lateral coordinates xxx, the traveltime τ , the horizontal slowness values ∇∇∇t as well as the curvature related
parameters H are extracted automatically for samples exceeding a user-defined coherence threshold:

dddi = (x, y, τ, px, py, Hxx, Hxy, Hyy)i , i = 1, . . . , ndata , (15)

with ndata denoting the total amount of picked data samples and ddd containing all dddi. The picked time τ
follows from correcting the measured time associated with the respective sample for the corresponding
estimate of the source excitation time. Thus, it should ideally equal the source-receiver traveltime.
The model componentsmmm on the other hand comprise the velocity model

vjkl , j = 1, . . . , nx , k = 1, . . . , ny , l = 1, . . . , nz , (16)

defined in terms of B-splines (De Boor, 1978), with nx, ny and nz marking the number of nodes used in
x-, y- and z-direction, respectively, and

(x0, y0, z0, ex, ey)i , i = 1, . . . , ndata , (17)
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where (x0, y0, z0)i gives the starting location of the upwards propagating ray corresponding to the ith
data subset dddi and the horizontal components (ex, ey)i of the unit vector ê̂êei determine the ray emittance
direction at this subsurface point. To obtain initial values for Expression 17, we assume an initial medium
of constant near-surface velocity and use kinematic ray tracing to back propagate the picks ddd into the
subsurface. Afterwards upward dynamic ray tracing can be performed to obtain the modelled data dddmod for
the regarded model componentsmmm.
Accounting for errors in the attribute estimation the inversion is implemented in a damped weighted least-
squares sense (Tarantola, 2005). The objective function reads

S(mmm) =
1

2

∥∥∥(ddd− dddmod(mmm)
)
·WWW
∥∥∥2
2

+ Λ(vjkl) , (18)

with WWW denoting the weighting vector that scales the different physical quantities and Λ(vjkl) represent-
ing the regularisation term, favouring smooth velocity models. Minimising the objective function using the
LSQR algorithm (Paige and Saunders, 1982) finally delivers a velocity model along with the corresponding
ray starting points that is consistent with the input data ddd. However, as the estimation of ts via Equation 7
is approximative, the picked traveltimes τ occasionally tend to be quite erroneous and it might not always
be possible to retrieve an appropriate estimate of the velocity distribution from the given input data. Get-
ting good approximations of ts intrinsically requires knowledge of the velocity model. Thus, we need to
invert for both the velocity and the source excitation times simultaneously. Following a fairly pragmatic
approach, we decouple the principal model space mmm and the source excitation times and simply minimise
S as a function of the source excitation times, where the number of unknowns equals the number of tagged
events. The starting guess of the respective ts values is taken from the previous coherence analysis. In each
iteration of the optimisation a certain constellation of source excitation times is fixed and the objective
function is minimised depending on mmm. The final value of S is then assigned to the tested set of source
excitation times. If enough sources from a similar area contribute to the process, it leads to an effective
refinement of the involved traveltimes.
Furthermore, the source excitation times with the overall minimal objective function value lead to a con-
sistent velocity model. This model can be used for reverse time modelling (Gajewski and Tessmer, 2005).
In the given examples we utilise the acoustic wave equation for constant density:

∇2ψ =
1

V 2
· ∂

2ψ

∂t2
, (19)

where ψ = ψ(x, y, z, t) is the pressure field and V = V (x, y, z) denotes the acoustic velocity. Consid-
ering the time-reversed seismic data as surface boundary values, we model the wave propagation by finite
differences until a predefined maximum time T is reached. The image function f = f(x, y, z) resembles
an energy and is given by

f =

∫ T

0

ψ2 dt . (20)

The image function finally allows for a spatial, quasi-probabilistic localisation of the source energy by
using the entire recorded wavefield depending only on the recovered velocity distribution but not on the
estimated source excitation times.

NUMERICAL EXAMPLES

To test our proposed approach we first consider the optimal case of a densely sampled acquisition record-
ing high-amplitude events. In order to show the benefits and underline the robustness of the method we
subsequently show results for noise-contaminated and sparse data. For all three synthetic data examples
we utilise the same velocity model and nine explosive sources, see Figure 2. The events are shifted by
arbitrary source excitation times ranging from −1.50 s to 6.55 s. The datasets are simulated via finite-
difference modelling, the recording time measures 10 s and the time sampling is 4 ms. The dominant
frequency of the signals is about 10 Hz. Such a low frequency, however, is only chosen for visualisation
purposes but not relevant for the success of the approach. Similarly, the workflow can be applied to all
scales of events. Hence, it can equally deal with source depths of tens or even hundreds of kilometres if the
acquisition surface is accordingly stretched.
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Figure 2: Velocity model and event locations (grey dots) for the synthetic data examples.
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Figure 3: (left) Seismic surface recording for the first experiment. The colourbar is clipped at a half of
the overall maximum amplitude. (right) Maximum semblance values obtained via the parabolic traveltime
operator. Samples with a semblance value smaller than 0.7 are masked grey.

Proof of concept

For the first example we consider a total of 501 receivers which are equally distributed along the surface
of the model in Figure 2, thus the receiver distance measures 20 m. We add Gaussian noise with a SNR of
20. The resulting seismic data are illustrated in Figure 3 (left).
Following our proposed workflow, we start by performing a local coherence analysis with the parabolic
traveltime operator, Equation 5, to obtain wavefront attributes for the recorded wavefield. In this example,
we use an optimisation aperture of 700 m. The coherence section, denoting the maximum semblance value
for each sample, is shown in Figure 3 (right). The semblance values are apparently high along the nine
events but low elsewhere. The resulting α andRxx values are displayed in Figure 4 (top) and reveal smooth
and physically reasonable variations.
As a next step, we fix these attributes and search for the optimal hyperbolic fit, Equation 7, for each sample
of the data. Thereby, we obtain ts as displayed in Figure 4 (bottom left). From a physical point of view,
the source excitation time should be constant for each event. Since it is calculated using an analytical
fitting operator, it seems obvious though that there might be variations along the events when laterally
heterogeneous media are considered. While one can still assign a dominant colour and consequently a
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tag ttrue
s [s] tini

s [s] tref
s [s]

1 -1.50 -0.60 -1.73
2 -0.40 -0.50 -0.58
3 0.50 1.15 0.36
4 1.25 1.25 1.09
5 2.30 2.25 2.14
6 3.30 3.75 3.15
7 4.15 4.20 4.08
8 5.35 5.30 5.26
9 6.55 6.45 6.46

Table 1: List of the true source excitation times ttrue
s , the via parabolic fitting estimated values tini

s and the
refined times tref

s for each tagged source.

source excitation time to each event, these ts values may not necessarily be good approximations. In
order to further investigate the quality of the estimated source excitation times, we tag the nine events.
This can be done by evaluating the local wavefront resemblance (Bauer et al., 2017a) or, as there are no
intersecting events in our example, simply by automatically labelling connected structures when ignoring
samples with low coherence in the semblance section, compare Figure 3 (right). The tagging result is
displayed in Figure 4 (bottom right). Thereby, we can assign the estimated source excitation times to the
different events, analyse the arising deviations per source and compute median values to obtain a single ts
value for each tag. In Figure 5 we compare these results with the actual source excitation times. When
considering the event-wise median values (dotted lines), the ts approximations are in fact quite good in six
of the overall nine cases. The three erroneous source excitation times, however, differ from the true values
by up to 0.9 s. This leads to significantly biased input data for wavefront tomography.
Therefore, we need to refine the source excitation times. The tag-wise median values of the previously
estimated source excitation times constitute our initial guess for wavefront tomography. As previously
explained, the space of unknowns is split into the source excitation times and the standard model space
mmm. We have tested different optimisation algorithms in the context of refining the ts values and decided to
minimise the objective function with a pattern search algorithm (Hooke and Jeeves, 1961). This eventually
leads to refined ts values for the nine events. In Table 1 we compare the true, initial and refined source
excitation times. We observe that the large errors of events 1, 3 and 6 are reduced significantly and all nine
source excitation times are sufficiently well approximated. However, all refined source excitation times are
underestimating their true values by about 0.1 s to 0.2 s. This might for instance be due to the node spacing,
the regularisation and weighting factors or the initial velocity distribution and will be further investigated
in the future.
Finally, we can also examine the respective velocity distribution and ray starting locations. Using the
refined source excitation times the initial guess of the parameters mmm is illustrated in Figure 6 (top). The
velocity distribution is homogeneous with value v0 and the corresponding ray starting locations follow
from downward kinematic ray tracing. The final model is displayed in Figure 6 (middle). One can easily
recognise some of the underlying velocity features, as for instance the low-velocity moat in the shallower
left part and the deeper rightwards rising high-velocity layer. Additionally, the final ray starting points
clearly cluster in nine distinct regions close to the true source locations. These clusters, however, are all
slightly too deep. This is a result of the generally underestimated source excitation times. When evaluating
the relative velocity error, Figure 6 (bottom), we denote a maximum absolute value of nearly 12 %. This
error is due to the underestimation of the velocities in particular at the top of the fast layers. The general
underestimation of velocities is probably also a result of the underestimated source excitation times. Still,
the long-wavelength velocity structure is resolved quite successfully. Obviously, only those regions of the
model that have been traversed by rays contain reliable velocity information. In this sense, the bottom left
and bottom right part of the model result from the regularisation.
Lastly, we can use the recovered velocities to perform reverse time modelling. In so doing we localise the
energy sources of the recorded wavefield in a more probabilistic and continuous manner. The resulting
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Figure 4: Visualisation of wavefront attributes α (top left) and Rxx (top right) as well as sample-wise
source excitation times ts (bottom left). Contributions from samples with low coherence are masked grey.
The Rxx values are clipped at −1 km and 13 km, respectively. (bottom right) Tagging result. The bound-
aries of the acquisition are muted prior to the labelling procedure to account for possible boundary effects
in the coherence estimation.



Annual WIT report 2018 41

-2 1 4 7

t
s
 [s]

0

1

n
o

rm
a

lis
e

d
 c

o
u

n
t

Figure 5: The nine colours match the tag numbers in Figure 4 (bottom right). The centres of the squares at
the bottom of the plot mark the actual source excitation times. The continuous lines sketch the normalised
counts of all estimated ts values per event and therefore resemble histograms. Contributions from samples
that are assigned low coherence during the hyperbolic fitting process are ignored. The dashed lines denote
the resulting median values.

image function can be seen in Figure 7. It reveals nine distinct regions of relatively high energy that nicely
coincide with the actual source locations, generally deviating by less than the dominant wavelength of the
signal.
These results confirm the general functionality of our proposed method. Assuming knowledge of only
the locally constant near-surface velocity, we are able to approximate the coarse velocity distribution and
localise the sources in the subsurface. The following examples further examine the method by considering
the influences of noise and sparse spatial sampling.

Noisy data

The dataset for this example equals the previous one except for the SNR which is set to 0.5. The cor-
responding data are displayed in Figure 8 (left). Due to the high noise level and low signal amplitudes,
respectively, the nine events are poorly visible.
Because of the intrinsic robustness of coherence analysis we can nonetheless estimate wavefront attributes
for the data. In order to reach significant coherence levels that allow to distinguish signal from noise, the
optimisation aperture has to be sufficiently wide. We choose an optimisation aperture of 1000 m for the
hyperbolic traveltime fitting. As already mentioned, the wavefront attributes do not only enable wavefront
tomography, but also allow for data enhancement by stacking. This can be comprehended in Figure 8
(right). The previously invisible events are now fairly distinct. The signal only remains noisy in areas of
particularly low amplitudes, straight slopes and in the vicinity of the acquisition boundaries, hence, wher-
ever the attribute estimation is particularly difficult.
Estimating ts values and tagging the events allows for evaluating a median source excitation time for each
tagged source. Refining these times during the inversion leads to the final model parameters in Figure 9
(top). Again, having started from a constant near-surface velocity medium, the final velocity distribution
maps the main features of the model, although it might seem less accurate in some areas compared to Fig-
ure 6 (middle). Furthermore, the focusing of the ray starting locations appears slightly worse and reveals
distinct offsets compared to the true source locations, especially for the two events localised at the bottom
left and bottom right of the model. The relative error of the velocities is shown in Figure 9 (middle). The
erroneous underestimated area in the centre seems to be slightly extended in space. The maximum absolute
value of the relative error measures more than 13 % and is thus marginally higher than in the previous ex-
periment. Altogether, the overburden structure is in fact similarly resolved - despite the poor data quality.
Figure 9 (bottom) shows the corresponding image function. Due to the still relatively high noise level in the
stack, the background noise of the image function is high. Nevertheless, most of the energy gets focused
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Figure 6: (top) Initial model. (middle) Final model. The grey dots mark the ray starting locations for the
respective velocity models, the black circles show the actual source positions. The colourbars are clipped
at the minimum and maximum velocity values of the true model. (bottom) Relative velocity error.
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Figure 7: Image function obtained from reverse time modelling for the estimated velocity distribution in
Figure 6 (middle). The colourbar is clipped at 40 % of the maximum energy. The circles are centred at
the true source locations. Black circles have a radius of half, grey circles of once the dominant signal
wavelength.
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Figure 8: (left) Seismic surface data with an SNR of 0.5. (right) Enhanced dataset, obtained from stacking
according to the estimated wavefront attributes α and Rxx. The stacking aperture measures 700 m, hence
71 receivers contribute to each stacked trace. Both colourbars are clipped at a half of the respective overall
maximum amplitude.
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Figure 9: (top) Final tomographic velocity model for the noisy dataset. The grey dots mark the final
ray starting locations, the black circles show the actual source positions. The colourbar is clipped at the
minimum and maximum velocity values of the true model. (middle) Relative velocity error. (bottom)
Image function obtained from reverse time modelling. We have used the enhanced data, Figure 8 (right),
since the image function of the original data has been heavily contaminated by noise. The colourbar is
clipped at 21 % of the maximum energy. The circles are centred at the true source locations. Black circles
have a radius of half, grey circles of once the dominant signal wavelength.
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Figure 10: (left) Seismogram using a random selection of only 32 stations. (right) Enhanced and reg-
ularised data, obtained from stacking according to the estimated wavefront attributes α and Rxx. The
stacking aperture measures 700 m. In order to reduce spatial aliasing artefacts the stack has been weighted
with the smoothed semblance section. The colourbar is clipped at a half of the overall maximum amplitude.

in nine distinct regions, generally close to the true source locations. As a matter of fact, these peaks seem
to be located slightly better than the final ray starting locations in Figure 9 (top). This is due to the fact that
for the ray tracing both the erroneous velocities and the erroneous traveltimes are implicated, while for the
reverse time modelling only the velocities matter. Only the leftmost event exhibits a slightly larger error in
the image function, however, it is still within once the dominant wavelength.
Considering that we have only used the data in Figure 8 (left) and exploited no other a priori information
than the near-surface velocity, these results are surprisingly good. However, such noisy acquisition envi-
ronments implicate a trade-off between increasing the optimisation aperture to detect signals during the
coherence analysis and keeping it small to enable a local wavefront attribute estimation and thus obtain
high quality input data for the inversion. The suggested approach is generally applicable independent of
high noise levels and low signal amplitudes, respectively, but might decrease in quality with decreasing
SNR.

Sparse data

Finally, we want to analyse the influence of sparse data sampling. Therefore, we use a random selection
of 32 from the previously used 501 receivers. The geophone distances vary from 160 m to 460 m. We add
Gaussian noise with a SNR of 10. The seismic data are visualised in Figure 10 (left).
As a matter of fact, the estimation of wavefront attributes not only allows for increasing the SNR, it also
enables data interpolation. This can easily be achieved by estimating the wavefront attributes for all lateral
positions that one wants to interpolate the data at. Having those attributes, one can simply create a stack
to locally interpolate the recorded wavefield. We use an optimisation aperture of 1000 m to estimate α
and Rxx and create an interpolated stack, see Figure 10 (right). While the stacked seismogram reveals
some minor artefacts due to spatial aliasing (compare the high-amplitude slanting stripes especially at the
left-hand side at about 5 s), the events are still nicely interpolated. After all, such aliasing can easily be
further suppressed, for instance by a more constrained attribute estimation. Considering the reverse time
modelling this denser data should allow for a smoother image function displaying less imaging artefacts
than the original data.
As before, the source excitation times are estimated and tag-wise refined to eventually also deliver a con-
sistent inversion result starting again from a constant near-surface velocity medium. The final velocity
distribution is shown in Figure 11 (top). The recovered velocities are quite similar to the two previous
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results, while the focusing of the ray starting locations is marginally better than for the noisy dataset. How-
ever, the positions of the nine clustering regions are again slightly to deep, in particular considering the
deepest, leftmost event. The relative velocity error, Figure 11 (middle), is similar in shape and magnitude
to the one for the first dataset. Thus, the maximum absolute value measures approximately 12 %, but the
absolute values on average range from 4 % to 5 %.
Finally, we use the interpolated seismic section, Figure 10 (right), along with the estimated velocity dis-
tribution and perform reverse time modelling. In fact, the image function, Figure 11 (bottom), looks very
similar to the one in Figure 7. In general, the nine energy peaks coincide nicely with the true source loca-
tions. Some of the maxima, however, appear to some extend blurred and slightly worse located, but overall
the method delivers good results.
Even from such a sparse acquisition with only 32 stations along a 10 km profile we can still get a suf-
ficiently accurate approximation of the velocity model and thereby localise the sources via reverse time
modelling. We do not need detailed a priori information and perform data interpolation on the fly. Sparser
sampling or larger data gaps would require a larger optimisation aperture and thereby decrease the quality
of the wavefront attributes. Nonetheless, the workflow can generally deal with sparse acquisitions.

DISCUSSION

Using wavefront attributes of passive seismic data we have presented a workflow for simultaneous local-
isation and velocity model building. The method needs basically no a priori information. However, we
have assumed to know the locally constant near-surface velocity for the presented examples, where local
corresponds to the extend of the optimisation aperture. In general, even a rough estimate of the average ve-
locity of the upper layers should constitute an adequate starting guess. The wavefront attribute estimation
and the inversion are carried out in an automatic manner, where the optimisation apertures in the coherence
analysis and the regularisation and weighting factors as well as the node spacing in the tomography have to
be adjusted empirically. No time-consuming user interaction, as for instance manual picking, is required.
In order to use the method successfully, the quality of the estimated wavefront attributes is crucial. Ideally,
the apex areas of the events of interest are covered by a sufficiently dense acquisition to enable a reliable
attribute estimation, particularly considering wavefront curvatures. As apex area we refer to a circular
surface with a radius of roughly the source depth centred at the epicentre. The curvature of the wavefront
is significantly different from zero there and can be sufficiently well estimated for wavefront tomography.
Generally speaking, it is necessary that the receiver array records curved wavefronts. In that sense, the
epicentres might also be located beyond the acquisition surface, however, they should not be arbitrarily
far away. As already discussed previously, it is hard to determine what exactly marks an acquisition to be
sufficiently dense. One could probably further reduce the number of receivers in example I to about 20
and the approach would still work. However, that would probably require larger optimisation apertures and
thus provide a less local estimation of the wavefront attributes, increasing the potential to average possible
lateral variations. As a result one might obtain a smoother, less accurate velocity distribution. The similar
trade-off is present for noisy data. Increasing the optimisation aperture might be necessary to distinguish
signals from noise and get wavefront attributes at all but this may also decrease the quality of the estimated
wavefront attributes.
If a refinement of the source excitation times is desired, multiple events from a similar region are necessary
to ensure that a simultaneous inversion for improving the source excitation times and approximating the
velocity distribution is successful. From our experience this approach leads to considerable improvements,
especially regarding large errors in the initial source excitation times, see Table 1.
If these conditions are fulfilled, our workflow is a promising tool to localise passive seismic sources and
simultaneously estimate the previously unknown subsurface velocities. Because of its built-in regularisa-
tion and data enhancement facility it is quite robust and can deal with high noise levels and low-amplitude
signals, respectively, as well as sparse data acquisitions. In our examples, the velocity distributions are
approximated with a mean relative error of about 4 % considering absolute values. The sources, on the
other hand, are localised with a maximum deviation in the order of the dominant wavelength of the signals.
We have also exploited the potential of reverse time modelling, which does not dependent on errors in the
source excitation time estimation. Thus, the sources are localised more accurately by reverse modelling
than by wavefront tomography.
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Figure 11: (top) Final tomographic model. The grey dots mark the ray starting locations, the black circles
show the actual source positions. The colourbar is clipped at the minimum and maximum velocity values
of the true model. (middle) Relative velocity error. (bottom) Image function obtained from reverse time
modelling. We have used the enhanced and regularised data, Figure 10 (right), instead of the original
data. The colourbar is clipped at 40 % of the maximum energy. The circles are centred at the true source
locations. Black circles have a radius of half, grey circles of once the dominant signal wavelength.
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In order to further improve the results of the suggested approach, one could create a recursive scheme build-
ing on our workflow. The next step would involve an update of the source excitation times based on the
improved source locations determined by reverse time modelling. Exploiting those new source excitation
times another tomographic inversion to improve the velocity distribution could be carried out, followed by
reverse time modelling to update the source locations again. Linking the two steps in such an iterative pro-
cess combines the robustness of kinematic tomography and the independence of wavefield modelling from
the tomography’s possibly erroneous input picks. In terms of computation, other optimisation techniques
might be investigated to improve and speed up the refinement of the source excitation times. Alternative
curvature-based inversion schemes such as geometrical spreading focusing (Znak et al., 2018) could be in-
vestigated to further promote the workflow. Adapting the wavefront inversion concept to the characteristics
of passive sources and including the tagging attribute (Bauer et al., 2017a) as additional information may
further improve the inversion process. Knowing that equally tagged picks should focus in the respective
hypocentre allows for reducing the model space and testing alternative objective functions. In fact, this
feature of passive seismic events is equally interesting for diffractions in active seismic experiments (Bauer
et al., 2017b).
The presented synthetic data examples are considered here for demonstration purposes. Localisation is an
inherently three-dimensional problem. The theoretical background of our approach has already been pre-
sented for 3D media and the extension of the computer codes to 3D is straight forward. A more involved
issue might be to handle complicated source mechanisms. The approach obviously works best for explosive
sources, however this is not a restriction. In general it is sufficient, if the waveforms are consistent within
the optimisation area. For instance, one could perform coherence analysis for the envelope of the seismic
wavefield to resolve source radiation issues. Future work might also consider extended sources. A potential
improvement of the inversion results might be obtained by including other phases, like S-waves. Since they
have the same source excitation times as the respective P-waves and larger moveouts, that is larger curva-
tures, they might benefit the source excitation time estimation. Apart from that, the slight, but systematic
underestimation of source excitation times is an issue which certainly needs further investigations.

CONCLUSION

We have presented a workflow to simultaneously determine source locations and seismic velocities from
passive seismic data. It is largely automatic and independent of a priori information. The method requires a
sufficiently dense receiver network nearby the epicentre of the considered event. Using coherence analysis,
we can estimate wavefront attributes for the recorded signals, tag and thereby distinguish different events
and obtain an initial guess of their respective source excitation times. Since this guess may display signifi-
cant errors, a refinement is usually required. Such a refinement is achieved by adding the source excitation
times to the unknowns in wavefront tomography. Provided that a reasonable starting guess is available, this
approach corrects large deviations in the source excitation times and jointly delivers a velocity model that
is consistent with the data. This model is then used in an imaging step applying reverse time modelling to
obtain an improved and probabilistic idea of the source locations based on the recorded waveform data. The
presented data examples have underlined the robustness and efficiency of the workflow, delivering velocity
estimations with a mean deviation of about 4 % and locations with maximum errors of about the dominant
wavelength. We have obtained reliable results even from extremely noisy as well as sparsely sampled data
because of the built-in data enhancement and regularisation facility.
Constructing a recursive scheme that iteratively updates the source excitation times for the tomography
based on the event locations obtained from the imaging step might have strong potential. The demonstrated
examples are simple in a sense that we have used explosive sources in an acoustic, isotropic medium, how-
ever, this is not a limitation inherent to the method. Other source mechanisms and additional phases may
be included in further investigations. Since the theory has already been presented for 3D media and the
extension of the computer codes to 3D is straight forward, a field data application is a logical next step.
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