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ABSTRACT

Multi-parameter stacking schemes like the common-reflection-surface (CRS) stack have shown to
yield reliable results even for strongly noise-contaminated data. This is particularly useful for low-
amplitude events such as diffractions, but also in passive seismic settings. As a by-product to a zero-
offset section with a significantly improved signal-to-noise ratio, the CRS stack also extracts a set
of physically meaningful wavefront attributes from the seismic data, which are a powerful tool for
further data analysis. These wavefront attributes describe the properties of two conceptual wavefronts
emerging at the surface. Whereas these wavefronts are hypothetical in the reflection case, for diffrac-
tions and passive seismic events the wavefront attributes describe the actually measured wavefront.
Although the attributes are extracted locally from the raw data and vary laterally along the events, an
analysis of their local similarity allows the global identification of measurements, which stem from
the same diffractor or passive source, i.e., from the same location in the subsurface. In this work, we
present a fully unsupervised scheme to globally identify and tag diffractions in simple and complex
data by means of local attribute similarity. Due to the fact that wave propagation is a smooth process
and due to the assumption of only local attribute similarity, this approach is not restricted to settings
with moderate subsurface heterogeneity. We demonstrate by means of a simple example that event
tagging is an essential ingredient for, e.g., focusing analysis in wavefront tomography and for uncer-
tainty analysis of velocity and localization for diffraction-only data. Although not explicitly shown in
this work, the proposed method is equally applicable to passive seismic data.

INTRODUCTION

In recent years, the process of seismic diffraction has gained increasing research interest in hydrocarbon ex-
ploration, because it is known to be caused by small subsurface heterogeneities often related to complicated
geology (e.g. Landa and Keydar, 1998). In that context, the successful focusing of recorded diffractions
bears the potential for very localized, highly resolved imaging of discontinuous changes in elastic prop-
erties of the subsurface that naturally complements more conventional laterally smooth reflection images
(Khaidukov et al., 2004). As one of the first objectives, seismic diffractions have been successfully used
to identify and image faults, which are often poorly resolved (Krey, 1952). In addition to increased reso-
lution, the successful incorporation of diffracted arrivals in velocity model building schemes has recently
suggested that another major benefit of these weak signatures is improved lateral illumination of subsurface
structures, which makes them particularly useful in reduced cost-effective acquisitions (Fomel et al., 2007;
Santos et al., 2012; Bauer et al., 2017b).

Despite all the aforementioned principal advantages of diffracted wavefields, they still remain largely
unexplored in common processing workflows. Aside from the overall weakness of these signals’ am-
plitudes, the main reason for this systematic neglection arguably arises from the fact that they strongly
interfere with other more prominent wavefield contributions, in particular reflections (e.g. Kozlov et al.,
2004). Because of that, in recent years, a variety of methods has been suggested to robustly separate the
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weak diffraction background. However, as many of these approaches depend on the a-priori knowledge
of a depth-velocity model, they can only indirectly contribute to velocity model building (e.g. Moser and
Howard, 2008; Klokov and Fomel, 2012; Dafni and Symes, 2017) and diffraction separation remains a
direction of active research. Together with different variations of plane-wave destruction filters (Fomel,
2002), noticeable advances have been made in utilizing collective event properties, linked to characteris-
tics of the emerging wavefronts, for diffraction identification, extraction, and imaging. Building on the
assumption of local coherence, multi-parameter stacking schemes such as the common-reflection-surface
(CRS) stack (Jäger et al., 2001) not only provide an improved data volume with a significantly increased
signal-to-noise ratio, but also extract a set of physically meaningful wavefront attributes from the data.
These wavefront attributes (Hubral, 1983) can be used for numerous subsequent processing steps, such
as time migration (e.g. Mann, 2002; Bóna, 2011), prestack data enhancement (Baykulov and Gajewski,
2009), prestack diffraction enhancement (Bauer et al., 2016), diffraction separation (Dell and Gajewski,
2011; Schwarz and Gajewski, 2017a; Bakhtiari Rad et al., 2018) and velocity model building for reflection
(Duveneck, 2004b) and diffraction (Bauer et al., 2017b), as well as passive seismic data (Schwarz et al.,
2016; Diekmann et al., 2018).

Also, it has been suggested that from a wavefront perspective, diffractions behave kinematically exactly
like passive sources excited at the diffracting structure in depth, which makes most of the aforementioned
processing schemes likewise naturally applicable to diffracted and passive events (Schwarz et al., 2016,
2017; Diekmann et al., 2018). Consequently, all of these applications would benefit from the a-priori
knowledge, which wavefront measurements share the same origin in depth. While this discrimination
can be easily made with the human eye by optically tracking the diffracted or passive event, an algorithm
requires objective criteria for the identification and discrimination of contributions stemming from different
subsurface regions. Following the mentality of image segmentation, which is routinely employed in image
processing workflows, in this work, we propose a fully unsupervised scheme, which utilizes the local
similarity of wavefront attributes for the global identification and tagging of diffractions directly in the
data domain. Since wave propagation is a smooth process, the assumption of local similarity of wavefront
attributes is reasonable and not restricted to settings with moderate subsurface heterogeneity.

In the following section, we introduce the theory of wavefront attributes, whose understanding is funda-
mental for the proposed method. We outline various applications of them, which partly are a requirement
for event tagging. After that, we introduce the event tagging scheme in theory and by means of a simple
synthetic example. We then confirm the stability of the proposed method by means of simple synthetic
2D and 3D diffraction examples and an application to complex 2D marine field data. Further, we sug-
gest a range of applications – including the formulation of focusing constraints in wavefront tomography
or the assessment of event-consistent location and velocity inversion uncertainties – directly following or
benefiting from the suggested automated classification strategy.

WAVEFRONT ATTRIBUTES

Wavefront attributes (Hubral, 1983) are physically meaningful parameters, which are encoded in the move-
out of seismic events. They describe the direction and the radii of two conceptual waves emerging at the
recording surface at the angle α. While the normal-incidence-point (NIP) wave is excited by a hypothetical
point source placed on the reflector’s point of normal incidence, the normal (N) wave is excited by a hy-
pothetical exploding reflector segment around the NIP. In the case of a point diffraction or a passive event,
the two waves coincide. In addition, the NIP wave is no longer hypothetical as it describes the wavefront
that actually emerges at the recording surface. In Fig. 1, the meaning of the three 2D wavefront attributes
is illustrated. In 3D, the concept of the two waves is the same, but the number of parameters increases to
eight.

Common-reflection surface

The wavefront attributes can be extracted from the raw data by the application of multi-parameter stacking
methods such as the common-reflection surface (CRS) stack (Jäger et al., 2001) using local (Mann, 2002)
or global (Walda and Gajewski, 2017) optimization methods. In 2D, the hyperbolic CRS stacking operator
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Figure 1: The 2D wavefront attributes α,RNIP andRN. In the reflection case, the NIP wave (left) is excited
by a point source placed on the reflector’s point of normal incidence (NIP) and the normal wave (right) is
excited by an exploding reflector segment (CRS) around the NIP. In the case of a diffraction or a passive
seismic event, they coincide and describe the actually measured wavefront.

reads
t2(t0, x0) = (t0 + 2p∆x)2 + 2t0(MNIPh

2 +MN∆x2) , (1)

where the midpoint displacement ∆x = x − x0 is the distance from the central midpoint x0 and h the
half-offset. The first derivative of the traveltime moveout is the horizontal slowness, which can be related
to the emergence angle α of the locally measured wavefront,

p =
sinα

v0
, (2)

where v0 is the near-surface velocity. The second derivatives of the traveltime moveout with respect to
half-offset and midpoint displacement, respectively, contain the wavefront curvatures RNIP and RN of the
two previously mentioned hypothetical waves (Hubral, 1983):

MNIP =
cos2 α

v0RNIP
, MN =

cos2 α

v0RN
. (3)

In addition to CRS, numerous other multi-parameter traveltime formulations exist, which are either hyper-
bolic (Jäger et al., 2001) or non-hyperbolic (Gelchinsky et al., 1999; Fomel and Kazinnik, 2013; Schwarz
et al., 2014). However, all of them may be parametrized in terms of the previously introduced wavefront at-
tributes. Further, recent studies for heterogeneous subsurface settings have shown that wavefront attributes
of good quality can be obtained with either of them (Schwarz and Gajewski, 2017c,b; Walda et al., 2017).

In practice, the wavefront attributes are extracted from the data in an automatic fashion by searching the
set of attributes (α,RNIP, RN) at a point in the data, which yields the largest local semblance coefficient for
a subset of traces located in a pre-defined aperture extending in midpoint and half-offset direction around
a central point (t0, x0). This optimization problem can be solved either by three one-dimensional line
searches and a subsequent local optimization (Mann, 2002) or by a global optimization with a simultaneous
search for all three attributes (Walda and Gajewski, 2017).

In the 3D case, the hyperbolic CRS traveltime moveout is given by (e.g., Müller, 2009)

t2(t0,m0) = (t0 + 2p∆m)
2

+ 2t0(hTMh + ∆mTN∆m) , (4)

where the vectors ∆m = m −m0 and h denote the midpoint displacement and half-offset, respectively.
The slowness vector p contains the two angles, which define the emergence direction of the previously in-
troduced conceptual wavefronts, the NIP wave and the normal wave, which are described by the symmetric
2× 2 matrices M and N. Accordingly, in the 3D case eight wavefront attributes have to be extracted from
the data. In the diffraction case, this number reduces to five, because M and N coincide.
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Applications of wavefront attributes

Since the wavefront attributes estimated during the CRS stack have a physical meaning, they can be ex-
ploited for numerous subsequent applications, some of which we will briefly introduce in the following.
All of these applications are directly connected to the event tagging scheme suggested in this work. While
the application of diffraction filters for active seismic data is a prerequisite for the event tagging, methods
like prestack data enhancement, time migration and wavefront tomography can benefit from the previous
identification and tagging of measurements with common origin in depth.

Diffraction separation
Diffractions are often hidden or masked by reflections, which usually have larger amplitudes. However, as
they are caused by small subsurface heterogeneities, they often contain structurally relevant information,
which is necessary to obtain detailed images of the subsurface. Therefore, the separation of diffractions is
an important application. For that, we can make use of the fact that in the case of a diffraction, the two
wavefront curvatures RNIP and RN coincide. Dell and Gajewski (2011) introduced the threshold function

wR(t0, x0) = exp

(
−|RN −RNIP|
|RN +RNIP|

)
, (5)

which takes the value one if RNIP = RN and is smaller if they differ. Thus, by defining a threshold close to
one and only stacking those events, for which the threshold is exceeded, it is possible to obtain a stacked
section that predominantly contains diffracted energy.

A different approach for the separation of diffractions was recently introduced by Schwarz and Gajew-
ski (2017a). It is designed for low-fold or single-channel data, as often acquired in academic environments,
where the wavefront curvatures cannot be estimated accurately because of the missing offsets. Therefore,
the separation of reflections and diffractions requires a different filter function in this case. Schwarz and
Gajewski (2017a) suggest to generate reflection-only data, which can then be subtracted adaptively from
the original data in order to generate diffraction-only data. They use a filter function

Fp(|p|) = 1−Θ(|p| − |p0|) , (6)

where Θ is the Heaviside step function. Here, p0 represents a user-defined threshold, which can be chosen
relatively small for moderate reflector dips. In contrast to the second-order diffraction filter (5), the function
Fp becomes one for reflections and can thus be used to generate reflection-only data R. The reflection-only
data R can then be subtracted adaptively from the input data I, resulting in diffraction-only data D (Schwarz
and Gajewski, 2017a),

D(t0, x0) = I(t0, x0)− γR(t0 + τ, x0) , (7)

where γ is a local scaling coefficient and τ a time correction. These quantities are the result of an opti-
mization problem, which has to be solved for every data point (t0, x0).

Prestack data enhancement
The zero-offset wavefront attributes may also be used for prestack data enhancement without explicitly
performing computationally expensive finite-offset stacks (Baykulov and Gajewski, 2009; Schwarz et al.,
2015; Bauer et al., 2016). In the partial CRS stack (Baykulov and Gajewski, 2009), the reference traveltime
t0 is extrapolated to finite offset and the zero-offset wavefront attributes are used to perform local finite-
offset stacks in the prestack data without any further optimization. For moderate heterogeneity and small
stacking apertures this method can provide regularized prestack data with a significantly increased signal-
to-noise ratio, which is particularly helpful in the case of low-fold land data with irregular acquisition and
strong noise. Schwarz et al. (2015) extended this method by extrapolating not only t0, but also the slopes
to finite-offset. They use the first-order finite-offset traveltime operator (Zhang et al., 2001) for a local
refinement of the extrapolated slopes and perform local finite-offset stacks with the obtained attributes.



Annual WIT report 2018 19

Time migration
Time migration is a widely-used method for obtaining a first structural image of the subsurface. While
depth migration, which is the final step of seismic imaging, is very sensitive to errors in the velocity model,
time migration is far less sensitive to velocity errors. Mann (2002) introduced a way to estimate the apex
location of a diffractor in time based on the zero-offset wavefront attributes. The apex coordinates can be
obtained in the zero-offset plane (h = 0) by setting the derivative of the traveltime moveout of a diffraction
(Equation (1) with MN = MNIP) with respect to the midpoint direction to zero,

t2apex(t0, x0) =
t30v0 cos2 α

2RNIP sin2 α+ t0v0 cos2 α
, (8)

xapex(t0, x0) = x0 −
RNIPt0v0 sinα

2RNIP sin2 α+ t0v0 cos2 α
, (9)

v2RMS(t0, x0) =
2v20RNIP

2RNIP sin2 α+ t0v0 cos2 α
, (10)

where (tapex, xapex) are the estimated apex coordinates for the considered event at (t0, x0) and vRMS the
corresponding dip-corrected effective velocity. The apex coordinates are constant along an event in the
case of no lateral heterogeneity. Still, also in a heterogeneous subsurface they should not vary much along
a diffraction and thus are a helpful tool for the global identification of events.

EVENT TAGGING

Although the zero-offset wavefront attributes obtained during the application of the CRS stack are local
quantities, they provide us with valuable information about the measured events that can be exploited for
the automatic global identification and tagging of events with a common origin in depth. Since wave
propagation is a smooth process, it is reasonable to assume the local similarity of wavefront attributes,
i.e. that wavefront attributes do not change abruptly along an event. Due to this assumption of only local
similarity, the global identification of events is not limited to data acquired in subsurface settings with
a small degree of heterogeneity. Accordingly, the goal of our method is an automatic analysis of the
diffractions in a given set of zero-offset wavefront attributes resulting in the assignment of a numeric tag to
each unique event. The method consists of two main steps which we will outline in the following with the
help of a simple synthetic diffraction data example.

Detection of events

Fig. 2 shows zero-offset sections for a simple synthetic 2D diffraction dataset, which contains three diffrac-
tions and is based on a velocity model containing both vertical and lateral heterogeneity. In the upper two
rows of Fig. 2, the results from the CRS stack are displayed: the zero-offset stack (Fig. 2(a)), the corre-
sponding coherence (Fig. 2(b)) and the wavefront attributes α (Fig. 2(c)) and RNIP (Fig. 2(d)). The bottom
line of Fig. 2 shows the apex coordinates tapex (Fig. 2(e)) and xapex (Fig. 2(f)) calculated from the wave-
front attributes via equations (8) and (9), respectively. As expected, although α and RNIP vary strongly
along the diffractions, they are locally smooth and do not experience abrupt changes. Therefore, the as-
sumption of local similarity is valid and we can utilize it for the global identification of events. The apex
coordinates remain almost constant along the events and thus are a suitable additional criterion for the
identification of events. We suggest to use the semblance and all four attributes for the matching of events
in order to better constrain the problem.

The first step of the event tagging consists in the automatic detection of “valid” events, which is carried
out trace-wise. For this purpose, we define a window τmax around a given central sample t0, such that
the time range t0 ± τmax is considered. The value for τmax should be chosen such that the total length
of the window is smaller than the width of the events in the coherence section. The given sample t0 is
only considered if its coherence exceeds a pre-defined threshold. If this is the case, we evaluate the local
similarity of the wavefront attributes by calculating their semblance coefficients (Neidell and Taner, 1971)
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Figure 2: Zero-offset sections for simple synthetic diffraction data with three events. The first line shows
(a) the zero-offset CRS stack and (b) the corresponding semblance. The second line shows the wavefront
attributes (c) α and (d) RNIP estimated during the CRS stack. The apex coordinates (e) tapex and (f) xapex
are calculated from the wavefront attributes.

given by

Sφ(t0, x0) =
1

n

(∑t0+τmax

τ=t0−τmax
φ(τ, x0)

)2
∑t0+τmax

τ=t0−τmax
φ(τ, x0)2

, (11)

where φ is the corresponding wavefront attribute (α, RNIP, xapex or tapex), x0 the midpoint under consid-
eration and n the number of samples in the window. In the case of a valid event, which usually ranges over
various samples, the local similarities Sφ of the attributes should be close to 1 at the event’s central sample.
If the local similarities of all attributes exceed the corresponding pre-defined thresholds, which should be
chosen close to 1, an event tag is assigned to the sample t0 under consideration. If an event tag exists within
the window t0 − τmax, the corresponding attribute values are compared directly by calculating

Smatchφ =
1

2

(φ(t0, x0) + φ(t0 − τ, x0))
2

φ(t0, x0)2 + φ(t0 − τ, x0)2
, (12)

where φ(t0, x0) is the wavefront attribute at the current sample t0 and φ(t0 − τ, x0) the one at the sample
t0 − τ within the window t0 − τmax, which also contains an event tag. If Smatchφ is close to 1 for all
attributes, the samples t0 and t0 − τ are assumed to belong to the same event and the tag from the sample
t0 − τ is copied to the sample t0. Otherwise, a new tag is assigned to the event detected on the sample t0.
This procedure is repeated for all samples on the trace and for all traces in the zero-offset volumes. After
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detecting the events on all traces, we calculate the similarity of the assigned tags Stags via Equation (11),
which will be needed for the lateral matching of events. The result of this first step for the simple synthetic
diffraction data is displayed in Fig. 3(a). It shows that the three diffractions could be detected trace-wise
throughout the whole section. As a next step, these detected events have to be matched laterally. During
this step, detected events with only few occurrences, i.e. outliers, will be sorted out.

Lateral matching of events

The next step after the trace-wise identification of events is the lateral matching of those measurements,
which belong to the same diffraction. For that, we define two windows: a window ∆xmax in midpoint
direction, which defines the maximum number of neighboring traces to be searched, and a window τmax
in sample direction, which defines the range of time samples to be examined. The search is started at a
given sample t0 on a midpoint trace x0, which contains a previously identified event, i.e. Stags is close
to 1, and coincides with a local coherence maximum, i.e. the coherence at (t0, x0) is larger than at the
surrounding samples. If this seed event at (t0, x0) has been matched in a previous search, we will only
search for matching events to the right using the already assigned tag. Otherwise, we will first search for
matching events to the left. During both searches, we vertically shift the search window depending on the
local moveout ∆t in the zero-offset section (h = 0), which we calculate via

∆t(t0, x0) =

√
(t0 + p∆x)

2
+MNIP∆x2 − t0 , (13)

where the midpoint displacement ∆x is the distance |∆x| ≤ ∆xmax from the central trace x0. If (t0, x0)
has not been assigned an event tag yet, we first step trace by trace to the left (∆x < 0) while vertically
shifting the search window τmax depending on the event’s moveout for the given lateral distance. For each
previously matched event contained in the search space, we compare its wavefront attributes to the ones of
the seed event at (t0, x0) by calculating

Smatchφ =
1

2

(φ(t0, x0) + φ(t0 + ∆t+ τ, x0 + ∆x))
2

φ(t0, x0)2 + φ(t0 + ∆t+ τ, x0 + ∆x)2
, (14)

where φ(t0, x0) is a wavefront attribute of the current event and φ(t0 + ∆t + τ, x0 + ∆x) a wavefront
attribute on the trace x0 + ∆x at the sample t0 + ∆t + τ within the moveout-shifted vertical window
(t0 + ∆t) ± τmax. If Smatchφ exceeds the pre-defined thresholds for all attributes, the measurements at
(t0, x0) and (t0 + ∆t+ τ, x0 + ∆x) are assumed to belong to the same event. If various matching events
are found during the search to the left, the one with the highest matching coefficients Smatchφ is chosen and
the event tag is copied from the corresponding location (t0 + ∆t+ τ, x0 + ∆x) to (t0, x0). If there are no
traces to the left or the target regions of the neighboring traces do not contain previously matched events, a
new event tag is assigned to the current sample (t0, x0).

As a next step, the traces to the right (∆x > 0) of the seed event at (t0, x0) are searched for matching
events. For each event identified during step 1 within the moveout-adapted search space to the right, the
wavefront attributes of the seed event at (t0, x0) are compared to the ones at the corresponding location
(t0 + ∆t+ τ, x0 + ∆x). If Smatchφ exceeds the thresholds for all attributes, the current event tag is copied
from (t0, x0) to (t0 + ∆t+ τ, x0 + ∆x).

After searching all traces of the zero-offset sections for matching events, we obtain a section with a
unique tag assigned to each diffraction or passive event. Events occurring on very few traces are considered
outliers and sorted out. The result for the simple synthetic diffraction data is displayed in Fig. 3(b). As
desired, all three diffractions could be identified globally by assigning them a unique tag. Note that this
result was obtained in a fully unsupervised fashion. Applications of the event tagging algorithm to synthetic
diffraction data with more events and to field data are presented in the Examples section of this paper.

Event tagging in 3D

The current implementation of the event tagging algorithm in 3D is based on the 2D implementation.
However, in the current version, absolute attribute differences instead of the semblance coefficient are used
for the analysis of attribute similarity. Since seismic diffractions are intrinsically 3D phenomena, the step
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Figure 3: Event tags for the simple synthetic diffraction data: (a) the trace-wise detected events and (b)
the final event tags after the lateral matching of the detected events.

from 2D to 3D is a natural one. While the larger number of wavefront attributes in 3D is an advantage
because the discrimination of different events is better constrained, on the other hand wavefront attributes
are more difficult to obtain in a stable fashion in 3D due to the same reason. We present first promising
results of an application of the 3D event tagging algorithm to synthetic diffraction data in the Examples
section.

EXAMPLES

In this section we present applications of the introduced event tagging algorithm to synthetic 2D and 3D
diffraction data as well as complex 2D marine field data.

2D synthetic diffraction data

The results of the application of the 2D event tagging algorithm to synthetic diffraction data containing
eight diffractions are presented in Fig. 4. The diffraction-only dataset is based on a vertically inhomoge-
neous velocity model with a velocity gradient of 0.5 s−1. Fig. 4(a) shows the zero-offset coherence and
Figs. 4(b) and 4(c) the wavefront attributes α andRNIP, respectively, as resulting from the application of the
CRS stack. The apex coordinates calculated via equations (8) and (9) are displayed in Figs. 4(d) and 4(e).
All wavefront attributes reveal the expected smooth behaviour, which permits the assumption of their local
similarity. The result of the application of the introduced event tagging algorithm to the shown zero-offset
sections is presented in Fig. 4(f). All eight diffractions contained in the data could be discriminated and
were assigned with a unique event tag. Difficulties merely occurred on the tails of the two diffractions in
the upper left of the section. These two diffractions lie so close together that a discrimination is hardly
possible, because the wavefront attributes are practically the same, particularly on the tails. Since this also
means that the two diffractions stem from almost the same subsurface region, this is not a critical problem,
though.

3D synthetic diffraction data

Fig. 5 presents the results of the application of the 3D event tagging algorithm to synthetic 3D diffraction
data. The dataset contains five diffractions and is also based on a vertically inhomogeneous velocity model.



Annual WIT report 2018 23

0

1

2

3

4

T
w

o
-w

a
y
 t

im
e

 [
s
]

0 2 4
Lateral distance [km]

0

0.2

0.4

0.6

0.8

1.0

S
e

m
b

la
n

c
e

(a)

0

1

2

3

4

T
w

o
-w

a
y
 t

im
e

 [
s
]

0 2 4
Lateral distance [km]

-40

-20

0

20

40

E
m

e
rg

e
n

c
e

 a
n

g
le

 [
d

e
g

]

(b)

0

1

2

3

4

T
w

o
-w

a
y
 t

im
e

 [
s
]

0 2 4
Lateral distance [km]

0

0.2

0.4

0.6

0.8

1.0

x104

W
a

v
e

fr
o

n
t 

c
u

rv
a

tu
re

 [
m

]

(c)

0

1

2

3

4

T
w

o
-w

a
y
 t

im
e

 [
s
]

0 2 4
Lateral distance [km]

0

1

2

3

4

A
p

e
x
 t

im
e

 [
s
]

(d)

0

1

2

3

4

T
w

o
-w

a
y
 t

im
e

 [
s
]

0 2 4
Lateral distance [km]

0

1000

2000

3000

4000

5000

A
p

e
x
 c

o
o

rd
in

a
te

 [
m

]

(e)

0

1

2

3

4

T
w

o
-w

a
y
 t

im
e

 [
s
]

0 2 4
Lateral distance [km]

0

2

4

6

8

E
v
e

n
t 

ta
g

(f)

Figure 4: Results for 2D synthetic diffraction data with eight events: (a) the zero-offset coherence, the
wavefront attributes (b) α and (c) RNIP, the apex coordinates (d) tapex and (e) xapex and (f) the resulting
event tags.
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Figure 5: Results for 3D synthetic diffraction data with five events: (a) the zero-offset coherence cube, (b)
an inner excerpt of the coherence cube, (c) the resulting event tag cube and (d) an excerpt of the event tag
cube.

While Figs. 5(a) and 5(b) show the full zero-offset coherence volume and an inner excerpt of it, Figs. 5(c)
and 5(d) present the resulting event tags. Although some problems occurred at the apices of the diffractions,
all five events could be tagged correctly. Since the number of wavefront attributes is larger in 3D, the
discrimination of diffractions is even better constrained than in 2D. In contrast to the presented 2D results,
for the generation of these results absolute attribute differences instead of the semblance coefficient were
used. Further, the apex coordinates have not yet been incorporated into the 3D implementation.

2D field data

In Fig. 6, the results of an application of the proposed 2D event tagging algorithm to complex 2D ma-
rine field data are presented. The dataset was acquired by TGS in the Eastern Mediterranean offshore
Israel. It is characterized by pronounced salt roller structures (Netzeband et al., 2006), which cause a lot
of diffracted energy (Bauer et al., 2017b). The wavefront attributes for these results were obtained with a
CRS implementation using global optimization and accounting for conflicting dips (Walda and Gajewski,
2017). Before the application of the event tagging algorithm, a poststack diffraction separation (Dell and
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Figure 6: Results for the marine field data: (a) the zero-offset coherence after diffraction separation, (b) the
coherence section overlain with resulting event tags, (c) an excerpt from the far right part of the coherence
section, (d) the event tags for the same excerpt.
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Gajewski, 2011) was applied to the CRS results. The full resulting zero-offset diffraction coherence section
is shown in Fig. 6(a), while Fig. 6(c) presents a close-up taken from the far right part of the profile. The
corresponding event tags are plotted in Fig. 6(b) as an overlay over the entire coherence and in Fig. 6(d)
for the close-up. The results reveal that a large number of diffractions among the whole profile could be
identified and tagged correctly. Problems only occurred in regions, where diffraction apices lie very close
together resulting in very similar wavefront attributes. Please note that this result was obtained in a com-
pletely unsupervised fashion without any manual quality control involved. As an interesting by-product,
the event tagging algorithm also provides a total event count.

Potential applications

As previously outlined, various subsequent processing steps may benefit from the identification and tagging
of diffractions, three of which we will outline in the following.

Diffraction decomposition
In the case of diffractions, i.e. non-Snell scattering, one can make use of the fact that up- and downgoing
waves are decoupled and therefore, the moveout of a diffraction can be described entirely in the zero-offset
setting (Bauer et al., 2016). This means that any finite-offset stacking operator can be composed out of two
zero-offset operators extracted at the source and receiver locations corresponding to the desired offset,

tFO(x0s, x
0
g, t

FO
0 , αs, αg, Rs, Rg) =

tZO(x0s, t
ZO,s
0 , αs0, R

s
NIP)

2

+
tZO(x0g, t

ZO,g
0 , αg0, R

g
NIP)

2
,

(15)

where tFO is the finite-offset operator for the half-offset (x0g − x0s)/2 composed out of two independent
zero-offset diffraction operators measured at x0s and x0g , respectively. The finite-offset wavefront attributes
coincide with their zero-offset counterparts from the corresponding source and receiver locations and the
finite-offset reference traveltime tFO

0 is given by (tZO,s
0 +tZO,g

0 )/2. Unlike the extrapolation method mentioned
in section I, the diffraction traveltime decomposition is exact, as recently shown in theory and proven in
synthetic and field data applications by Bauer et al. (2015, 2016). Since it depends on the unique properties
of diffractions, this method is not applicable to reflection data. Event tagging is an essential ingredient
for the application of diffraction decomposition, because the information, which zero-offset measurements
belong to the same event, is needed in order to find the two zero-offset operators in Equation (15). If the
information is available, the contributions do not have to be searched for in the data by coherence analysis,
which significantly speeds up the application.

Wavefront tomography
Wavefront tomography (Duveneck, 2004b) is an efficient and stable seismic inversion scheme, which uses
zero-offset wavefront attributes for velocity model building in the depth domain. Initially, wavefront to-
mography was mainly applied using attributes measured for reflections (Duveneck, 2004b; Dümmong et al.,
2008). Bauer et al. (2017b) recently showed that diffractions can help to improve the resolution of the ve-
locity models obtained with wavefront tomography and that their unique properties may contribute not
only to further constrain the inversion, but also to estimate uncertainties (Bauer et al., 2017a). Further,
Schwarz et al. (2016) have shown that wavefront tomography may likewise be used for passive seismic
source localization.

Wavefront tomography is an efficient method because it does not require any interaction with the
prestack data. The data points, which form the input for the inversion, can be picked in a completely
automatic fashion in the attribute volumes estimated by the zero-offset CRS stack based on their local
coherence (Bauer et al., 2017b). Each data point consists of the set of zero-offset attributes

di = (x0, T, p,MNIP)i, i = 1, . . . , npicks , (16)

where T = t0/2 is the one-way zero-offset traveltime. The velocity model v(ξ, ζ) is described by B-
splines, whose user-defined knot locations are given by a nξ × nζ grid. During the inversion, kinematic
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Figure 7: Application of wavefront tomography to 2D synthetic diffraction data: The picked data points
(a) are the input for the inversion, (b) the constant initial model, (c) the inverted model with the final
localizations of all data points and (d) the correct model with the correct diffractor positions. (e) shows the
cost function and the standard deviations σx and σz of all locations belonging to the same event. The peaks
in the cost function correspond to refinements of the B-spline-knot grid. In (f), the trajectories of the mean
event locations during the inversion are depicted. The red stars indicate the mean initial locations, the red
circles the mean final locations and the red lines the corresponding trajectories during the inversion. The
black circles are the correct locations of the diffractors.
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ray tracing into the subsurface is performed for all data points starting from di to obtain initial subsurface
locations (NIPs) (ξ, ζ, θ)i, where θ is the angle at which the ray arrives at (ξ, ζ). Subsequently, dynamic ray
tracing in the upward direction starting from (ξ, ζ, θ)i yields modeled data points d̃i = (x̃0, T̃ , p̃, M̃NIP )i.
The least-squares misfit between measured and modeled data is used as the objective function for the
inversion, which is given by

Ψ(m) =
1

2
‖d− d̃‖22 + Λ (∂xxv(ξ, ζ)), ∂zzv(ξ, ζ)) , (17)

where m is the model vector that contains the B-spline coefficients vi and the subsurface locations (ξ, ζ, θ)i
related to the data points. The additional regularization term Λ ensures a smooth velocity model by mini-
mizing the second derivatives of v(ξ, ζ). In our implementation, the velocity model is updated iteratively
by minimizing the misfit function Ψ(m) using a least-squares algorithm (Paige and Saunders, 1982). A
working implementation of wavefront tomography in 3D is also available (Duveneck, 2004a).

In the context of wavefront tomography, the event tags pave the way for an assessment of the obtained
velocity models via the quantification of localization uncertainties in depth. Also, contributions which
belong to the same diffraction may be forced to focus in depth by introducing a constraint into the inversion.
As an example, Fig. 7 shows the results of an application of wavefront tomography to the 2D synthetic
diffraction data introduced in Section I. Fig. 7(a) shows the data points, which form the input for the
inversion and were picked in an automatic fashion based on their coherence. The initial model (Fig. 7(b))
merely consists of the constant near-surface velocity used for the estimation of wavefront attributes. Black
asterisks indicate the initial ray starting locations for all data points, which are obtained by kinematic ray
tracing. The final model (Fig. 7(c)) was obtained after a total of 61 iterations. During the inversion, the
initial 6×5-grid of B-spline knots with a knot spacing of 1000 m in both x and z-directions was refined
twice by halving the knot spacing, such that the final 21×17 grid has a knot spacing of 250 m in both
directions. The result shows that the final ray starting locations (black asterisks) focused at eight distinct
locations, although they were treated independently in this application, i.e. no focusing constraint has
been included into the inversion. A comparison to the true model with the correct positions of the eight
diffractors (Fig. 7(d)) directly reveals that both velocity and localizations could be retrieved successfully
by the inversion algorithm.

In this application, the event tags were used to calculate the mean positions and standard deviations
of the depth locations connected to all data points with the same event tag during the inversion. Fig 7(e)
shows the horizontal and vertical standard deviations σx and σz for each of the eight events along with the
cost function (17). The peaks in the cost function correspond to the two refinements of the B-spline grid.
As expected, the standard deviations of all events decrease in a similar fashion as the cost function and
converge to very small values, indicating a good localization quality. In Fig. 7(f), the trajectories of the
mean event positions during the inversion are plotted. The stars indicate the mean positions in the initial
model, the lines correspond to the trajectories of the mean positions during the inversion and the red circles
are the mean positions in the final model. The black circles denote the correct positions of the diffractors,
which are almost congruent with the final localizations for all eight events.

Passive-source data
Diffractions are focusing wavefields and kinematically, from a wavefront perspective, behave exactly like
passive-source wavefields excited at the diffractor location. The previously described process of wavefront
tomography back-projects emerging wavefronts, characterized through local coherence measurements, into
the subsurface, which lets one arrive at an estimate of both, the focusing location, and the traversed velocity
structure. Thus, it is likewise naturally applicable to passive seismic data (Schwarz et al., 2016; Diekmann
et al., 2018). While in controlled-source acquisitions, the zero-offset response directly reveals (twice) the
reference propagation time t0, in the passive case this quanitity needs to be estimated additionally due to
the fact that the excitation time ts is generally not known. For the general 3D case we have

[tdata + t(t0,m0)− t0]2 = (t0 + p∆m)2 + t0 ∆mTN∆m , (18)

where tdata = ts + t0 is the reference recording time and t0, here, represents the one-way rather than the
two-way propagation time at the reference receiver location m0. In correspondence with the general 3D
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paraxial two-way traveltime operator (4), ∆m denotes the lateral receiver separation of every considered
trace, and the quantities p and N represent the 2-component slope vector and the 2x2 curvature matrix,
respectively. As Equation (18) suggests, the propagation time t0 and the time coordinate of the considered
data point, in contrast to the controlled-source case, generally differ, thereby demanding the estimation of
an additional unknown from the data. Please note, however, that the source excitation time ts, which can
directly be derived from the given recording time tdata and the estimated t0, represents a natural global event
attribute that can also be used for event discrimination (Schwarz et al., 2016; Diekmann et al., 2018). In
the common-source or the common-receiver gather, diffractors appear exactly like passive sources and the
time of diffraction is generally not known and needs to be estimated (e.g. Schwarz and Gajewski, 2017b).
Similar to the example presented in the previous subsection, the application of wavefront tomography to
passive seismic data benefits directly from the event tagging scheme (Diekmann et al., 2018).

DISCUSSION

A main pre-requisite for the suggested event-tagging scheme is the sufficiently dense sampling of the
recorded wavefields. While user-defined constraints can help to guide the coherence analysis in cases of
moderate sparsity, too large trace separations are likely to result in spatial aliasing which makes conven-
tional coherence analysis suffer or even fail. However, this limitation is intrinsic and well-acknowledged
in the general context of migration. Therefore, it is by no means exclusive to the presented method. In
addition, owing to the symmetry of diffractions in different data configurations, dense trace spacing –
at least in one of these domains – can be safely assumed in most realistic circumstances. If diffracted
wavefields are numerous and strongly interfere with each other – an observation that can often be made
e.g. in crystalline rock environments – large portions of an event might be hidden behind other, more
prominent contributions, resulting in the so-called conflicting-dip problem, which represents a notorious
challenge in multi-dimensional stacking (e.g. Walda and Gajewski, 2017). Schwarz and Gajewski (2017a)
presented a simple yet powerful solution to this problem, in that the less prominent interfering wavefields
can be accessed by adaptively subtracting the amplitude-strong contributions that are normally favored.
Although only reflections were targeted, the same methodology can also be applied to adaptively separate
one diffraction from another. As is the case with other methods, the estimation of local attribute similar-
ity can be flawed if different diffractions are largely tangential, i.e. of similar shape and location, in data
space. While the formulation of more discriminative attribute representations and similarity measures can,
to a certain extent, help to improve selectivity in these situations, natural limitations are reached when dif-
ferences in onset and overall shape approach the order of the predominant signal’s period. However, it may
be argued that in this case, the two events from a wavefront perspective are largely equivalent and likely
have originated in a similar subsurface region.

Building on the potential for full automation in coherence analysis and multi-dimensional stacking,
the presented strategy links individual measurements of one particular diffracted event without supervi-
sion by evaluating the local similarity of a set of wavefront attribute representations. While the presented
attributes turned out to already work reasonably well, they should merely be viewed as exemplary mea-
sures for discrimination. In general, the algorithm, depending on the wavefield complexity encountered
in the preceding coherence analysis stage, couples to the data through these wavefront characteristics and
other, more elaborate versions might be considered in the future. The unsupervised grouping or tracking
of individual contributions of a dataset is well-known in other fields. In image processing, a variety of
sophisticated techniques exist to perform the segmentation of an image e.g. based on color. As the color-
coded images of the presented event attributes suggest, the detection of their local similarity can be fully
transformed to an image processing objective, which lets a vast ecosystem of commercial or open-source
segmentation routines be readily exploitable for the discrimination of individual diffracted events. In ad-
dition, concepts from machine learning, i.e. more sophisticated types of pattern recognition, should prove
useful in further improving the presented results. Despite these strong and fruitful interfaces, however,
it needs to be appreciated that the extracted attributes represent physically meaningful characteristics of
the emerging diffracted wavefronts, which helps to naturally constrain and guide existing techniques. As
illustrated with different concrete examples, we are convinced that the global identification and tagging
of individual diffracted contributions bears the potential to significantly improve existing applications, in-
cluding but certainly not limited to velocity model building. We have demonstrated with a simple example
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that the detection of a joint origin in depth directly helps to constrain wavefront-tomographic inversion
potentially leading to improved estimates of the scatterer location and the principal assessment of event-
consistent uncertainties. Although not explicitly presented here, it appears natural to assume that in the
same fashion, full-waveform-based as well as migration techniques are expected to equally benefit from
these constraints. Note that the presented method does not intrinsically assume a type of event and thus,
in principle, is applicable to any type of event. While an application to reflections is not worthwhile in the
context of focusing in the subsurface, since every reflected contribution in a zero-offset section originates at
a different subsurface location, in the case of edge or line diffractions it makes sense to tag their diffractive
parts, which also belong to the same subsurface point. However, the reflective parts, whose directional
behavior honors Snell’s law, may be neglected.

CONCLUSIONS

We have introduced a fully unsupervised scheme for the global identification and tagging of diffractions,
which stem from the same subsurface region. The proposed method works entirely in the data domain
and only relies on the assumption of local similarity of wavefront attributes estimated during the common-
reflection-surface (CRS) stack. Since wave propagation is a smoothing process, this assumption does not
restrict the suggested approach to moderately heterogeneous subsurface settings. Applications to synthetic
2D and 3D diffraction data have confirmed that diffractions can be identified and tagged correctly. An
application to complex marine field data further revealed the potential and stability of the method in com-
plex settings. Future work may include the integration of sophisticated image segmentation algorithms as
well as machine learning techniques into the suggested scheme. As illustrated by means of a synthetic
diffraction example, the gained knowledge may be exploited to further constrain diffraction wavefront to-
mography by focusing common contributions in depth and to assess uncertainties in the obtained velocity
models. Also, other processing steps such as time migration and prestack diffraction enhancement may
benefit from the proposed event tagging scheme. In addition, the suggested scheme is likewise applicable
to passive seismic data.
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