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ABSTRACT

A reliable and fast automatic workflow for smooth velocity model building is of interest for subse-
quent depth migration and as a source of initial models for full-waveform inversion. At the same time,
seismic data enhancement by means of stacking is widely performed. Common-reflection-surface
(CRS) stack results in kinematic wavefield attributes, which locally characterize the wavefront. We
propose a novel wavefront curvature based post-stack tomography method valid for reflection, diffrac-
tion and passive seismic data inversion. The basis of the new approach is an overall minimizing of
diffracted waves geometrical spreading at source positions and emergence time. We call this proce-
dure dynamic focusing. During the optimization the wavefield attributes remain constant and serve as
initial conditions and travel time for kinematic and dynamic ray tracing. The natural parametrization
of the inverse problem by velocity model as the only unknown significantly decreases tomographic
matrix dimension and improves the data-unknowns ratio. After a velocity model is retrieved reflectors
and diffractors are localized by ray tracing. Since deriving and coding the conventional wavefront to-
mography is cumbersome even in the isotropic case, the reduction of the Fréchet derivatives number,
which takes place in our approach, is an attractive feature if generalization to anisotropy is desired.
Both Fréchet derivatives and adjoint-state method formulae for computing the gradient were derived.
The algorithm combined with the L-BFGS-B quasi-Newton solver was tested on a full of diffracted
energy marine dataset.

INTRODUCTION

Seismic reflection and diffraction multiparameter data stacking is a conventional and powerful processing
tool. It universally serves for the signal-to-noise ratio enhancement both for the stack section (Mayne, 1962;
Mann et al., 1999; Jäger et al., 2001) and pre-stack data (Baykulov and Gajewski, 2009), crucially saves the
depth migration computing time and produces physically meaningful wavefield attributes (Hubral, 1983).
The quality of a stack section depends on the choice of stacking travel time based operator. Historically
the first, normal move-out stack for common mid-point (CMP) gathers (Mayne, 1962) was generalized by
common-reflection-surface (CRS) operator (Mann et al., 1999; Jäger et al., 2001) designed to utilize the re-
dundancy of the seismic records. Multifocusing (Gelchinsky et al., 1999) is known to be efficient in smooth
environments with curved interfaces, whereas CRS is robust to overburden heterogeneities. Recently, an
implicit CRS (iCRS) method accounting for the reflector curvature and combining the advantages of CRS
and multifocusing was proposed (Schwarz et al., 2014).

Kinematic wavefield attributes represent an extra output of the seismic data stacking during the co-
herence analysis. For the CRS operator they describe two hypothetical waves: a wave emerging from a
zero-offset ray normal incidence point and an exploding reflector wave (Hubral, 1983). Namely, four at-
tributes are zero-offset ray travel time, horizontal component of slowness, curvature of the normal incidence
point wave wavefront and curvature of the exploding reflector wave wavefront. For the point diffractor the
kinematic wavefield attributes describe the real wavefront and these curvatures coincide. This property
yields a criterion for diffraction separation (Dell and Gajewski, 2011).
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The idea of utilizing kinematic wavefield attributes representing an extra stacking output as input data
for a fast smooth velocity model inversion was first proposed in a paper of Duveneck (2004) and improved
by Dell et al. (2014). Recently, this method of zero-offset wavefront tomography has found its application
to passive seismic source localization (Schwarz et al., 2016) and diffraction imaging (Bauer et al., 2017).

The inverse problem was formulated similarly to stereotomography (Lambaré, 2008) with velocity
model, diffractors and scattering angles as unknowns and objective function minimizing the attributes and
mid-point coordinates misfits. The number of unknowns depends on the number of data points. When a
new pick is added to the dataset four numbers are added to the data vector but automatically three new un-
knowns arise. Seismic tomography is ill-conditioned and requires sufficient regularization which smooths
the velocity model and reduces resolution (Hansen, 1998; Costa et al., 2008). Usually, the smaller is the
size of tomographic matrix the smaller regularization is needed. Moreover, a stable and unique inversion
implies the amount of data significantly exceeding the amount of unknowns, which is not the case in this
way formulated wavefront tomography. In contrast to the pre-stack stereotomography the wavefront to-
mography data contains travel times for all involved rays. To fully exploit this fact we developed a novel
kinematic wavefield attributes inversion workflow and tested it with a full of diffracted energy marine
dataset from the Levantine Basin (Netzeband et al., 2006).

THEORY AND METHOD

The hyperbolic zero-offset CRS stacking operator

t2(4xm, h) = (t0 + 2p04xm)2 + 2t0(M̂N4x2m + M̂NIPh2) (1)

results in zero-offset travel time t0, horizontal component of slowness p0, second derivative of normal
incidence point (NIP) wave travel time M̂NIP and second derivative of normal (N) exploding reflector
wave travel time M̂N . If the surface velocity is locally constant M̂ = cos2 α0M , where α0 is an angle
at which the zero-offset ray arrives to the surface and M is a ratio of projection of slowness derivative
along the wavefront to the wavefront P and geometrical spreading Q (Cervený, 2001). It is related to the
wavefront curvature κ = vM . If a point diffractor is considered the kinematic wavefield attributes describe
the actual wavefront and M̂N = M̂NIP .

An objective function introduced by Duveneck (2004)

J(m) =

Ndata∑
i=1

(ti− ti(mi))
2 +

Ndata∑
i=1

(xi−xi(mi))
2 +

Ndata∑
i=1

(pi−pi(mi))
2 +

Ndata∑
i=1

(M̂i−M̂i(mi))
2 (2)

is a sum of squared attributes misfits over all the automatically picked Ndata data points. A vector of
unknowns m comprises diffractors coordinates xdi , zdi and zero-offset rays emergence angles αdi for each
pick i = 1, 2, . . . , Ndata together with coefficients vij defining a smooth velocity model in terms of B-
splines

v =

Nx∑
j=1

Nz∑
k=1

vjkβj(x)βk(z) (3)

with Nx × Nz nodes, mi = (xdi , z
d
i , α

d
i , v). The defined velocity model has a slight spatial non-equality.

Due to a lack of the B-splines outside of the model velocity decays to the model boundaries in the case
of equal vjk. We achieve a constant velocity model with equal vjk coefficients by nodes sequence expan-
sion beyond the model boundaries. The external nodes values are chosen to coincide with the boundary
coefficients. The inverse problem has 4Ndata data points and 3Ndata + NxNz unknowns. The number
of unknowns depends on the data points number. At best the Ndata picks number significantly exceeds
the number of basis functions nodes. This leads to a ratio of the number of data points and the number of
unknowns equal to 4

3 . Other cases with higher velocity sampling leads to even smaller ratio close to one.
We aim to have a free choice of unknowns number for a given data amount.

The first idea that comes to mind is to rearrange the available data replacing the previous objective
function (2) with one minimizing only wavefronts curvatures. If x, p and t are fixed the objective function

J(v) =

Ndata∑
i=1

(M̂i − M̂i(mi(v)))2 (4)
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becomes a function of only velocity model. The coordinates of diffractors and the zero-offset ray emer-
gence angles are determined by velocity model with time reversal ray tracing as soon as the values x, p
and t are given, mi(v) = (xdi (v), zdi (v), αdi (v), v). M̂ turns out to be a composition of reverse time kine-
matic ray tracing to a diffractor and forward dynamic ray tracing from the diffractor to the surface. Hence,
to get a gradient of this objective function one needs a chain rule for Fréchet derivatives. All the partial
derivatives could be interpreted within kinematic and dynamic ray tracing perturbation theory (Farra and
Madariaga, 1987). However, we find this approach cumbersome and present another natural solution which
preserves all the advantages and doesn’t require a hard derivation. The idea is to minimize a third-party
quantity at the reflector (diffractor) position while keeping all the kinematic wavefield attributes fixed as
initial conditions and travel time for kinematic and dynamic ray tracing.

Dynamic focusing

We refer to dynamic focusing as a procedure of simultaneous minimizing of geometrical spreading of all
the diffracted and normal incidence point waves presented in the kinematic wavefield attributes dataset.
Wherein the kinematic attributes t,M, p are considered as fixed at x experimental quantities. Since diffrac-
tors and normal incidence points are kinematically equivalent to the point sources, for the true velocity
model geometrical spreading vanishes when is back propagated up to arrival time. This imaging principle
is valid for the passive seismic sources as well.

To be solved in depth the dynamic ray tracing system (Cervený, 2001)

d

dt

(
Q
P

)
= S

(
Q
P

)
, S =

(
0 v2

− 1
v
∂2v
∂q2 0

)
. (5)

requires the initial conditions for Q and P . Unfortunately, they are not presented in the set of CRS at-
tributes. The only available after processing dynamic quantity is the related to wavefront curvature value
M . Although dynamic tracing of M is theoretically possible by solving the Riccati equation, it fails due
to unlimited growth in the vicinity of point sources and caustics. It is known that geometrical spreading
Q is defined on a ray only up to a certain constant quotient determined by rays fan parametrization. If the
geometrical spreading is defined somehow, e.g., by emergence angle parametrization, with the help of M
value at a ray point we are able to retrieve the geometrical spreading on the whole ray up to a constant
quotient. This is done by choosing the initial conditions satisfying

P (0)

Q(0)
= M. (6)

Since there exist an infinite number of such choices, we fix one with a condition for geometrical spreading
to be normalized at the surface. All the attributes picks are independent. Hence, in order to simplify the
notations we assume the corresponding waves emerging at the same time t = 0 and arriving to the surface
at coordinate x and time τ(x), which is known from the experiment. A propagator of dynamic ray tracing
system (5)

Π(x; t, τ(x)) =

(
Q(1)(x; t, τ(x)) Q(2)(x; t, τ(x))
P (1)(x; t, τ(x)) P (2)(x; t, τ(x))

)
, Π(x; τ(x), τ(x)) =

(
1 0
0 1

)
(7)

has to be traced back in time (t < τ(x)) to the subsurface. We define normalized dynamic ray tracing
quantities as a special linear combination of its columns(

Q̂

P̂

)
(x, t) = Π(x; t, τ(x))

(
1

M(x)

)
, (8)

where M(x) is the experimental wavefront curvature related attribute at x coordinate. Q(1) and P (1) are
multiplied by one with the units of M . Therefore, the units of Q̂ coincide with the units of P . As a linear
combination of solutions the normalized quantities vector satisfies the dynamic ray tracing system (5).
Indeed, for normalized dynamic quantities we obtain Q̂(x, τ(x)) = 1 and P̂ (x, τ(x)) = M(x). Therefore,

P̂ (x, τ(x))

Q̂(x, τ(x))
=
P (x, τ(x))

Q(x, τ(x))
= M(x), (9)
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where Q(x, t) and P (x, t) are the actual dynamic quantities along the ray. Due to linearity of the system
the actual Q,P pair and the pair of normalized Q̂, P̂ are proportional at any travel time with the quotient
equal to the actual geometrical spreading value at the surface

Q(x, t) = Q(x, 0)Q̂(x, t), P (x, t) = Q(x, 0)P̂ (x, t). (10)

Geometrical spreading for a given travel time andM value can be retrieved only up to a constant. However,
if at some travel time the actual geometrical spreading Q vanishes the normalized geometrical spreading Q̂
necessarily does the same. In particular at the source positions

Q̂(x, 0) = Q(x, 0) = 0. (11)

In accordance to this we introduce an objective functional for the dynamic focusing as a sum of squared
normalized geometrical spreading propagated back up to one-way travel time over all the data picks

J =
1

2

Ndata∑
i=1

Q̂2(xi, 0). (12)

Finally, the wavefront tomography is formulated as inversion in velocity model as the only unknown with
Ndata data dimension and Nx ×Nz - dimensional unknowns space. The tomographic matrix block corre-
spondent to a pick at xi of the dynamic focusing

∂Q̂i

∂v1

∂Q̂i

∂v2
· · · ∂Q̂i

∂vNxNz
(13)

and of the broad functional approach

∂ti
∂xdi

∂ti
∂zdi

∂ti
∂αd

i

∂ti
∂v1

∂ti
∂v2

· · · ∂ti
∂vNxNz

∂xi
∂xdi

∂xi
∂zdi

∂xi
∂αd

i

∂xi
∂v1

∂xi
∂v2

· · · ∂xi
∂vNxNz

∂pi
∂xdi

∂pi
∂zdi

∂pi
∂αd

i

∂pi
∂v1

∂pi
∂v2

· · · ∂pi
∂vNxNz

∂Mi

∂xdi

∂Mi

∂zdi

∂Mi

∂αd
i

∂Mi

∂v1

∂Mi

∂v2
· · · ∂Mi

∂vNxNz

(14)

illustrate the redundancy of the latter one.

Fréchet derivatives and adjoint-state method

Fréchet derivative of the functional (gradient) can be expressed through the Fréchet derivatives of the state
variables

4J =

Ndata∑
i=1

Q̂(xi, 0)4Q̂(xi, 0). (15)

From the perturbation theory of dynamic ray tracing (Farra and Madariaga, 1987) we know that perturba-
tions of dynamic quantities satisfies the inhomogeneous system

d

dt

(
4Q̂
4P̂

)
= S

(
4Q̂
4P̂

)
+4S

(
Q̂

P̂

)
, (16)

4S = S4q,4p + S4v, (17)

S4q,4p =

(
2v ∂v∂q4p 2v ∂v∂q4q(

3
v2
∂v
∂q

∂2v
∂q2 − 1

v
∂3v
∂q3

)
4q −2v ∂v∂q4p

)
, S4v =

(
0 v4v

− ∂2

∂q2

(
4v
v

)
+ 4v

v2
∂2v
∂q2 0

)
, (18)

where4q(t) and4p(t) are ray-centered coordinate and slowness of the perturbed ray, which in turn have
to be evaluated by

d

dt

(
4q
4p

)
= S

(
4q
4p

)
+

(
0

4v
v2

∂v
∂q − 1

v
∂4v
∂q

)
. (19)
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The initial conditions 4Q̂(x, τ(x)) 4P̂ (x, τ(x)) are zero because Q̂ and P̂ are defined by the elements
of propagator. And the propagator is equal to identity matrix at t = τ(x) regardless of the velocity model.
We fix the arrival point of the ray and, hence,4q(x, τ(x)) is also zero. However,4p(x, τ(x)) differs. px
is assumed to be known from the experiment and also fixed. Accounting for the first order perturbation of
the eikonal equation at the point of arrival

(p,4p) = −4v
v3

(20)

together with the transform of perturbed slowness4p from Cartesian to ray-centered coordinate system(
−4vv2
4p

)
=

(
vpx vpz
−vpz vpx

)(
0
4pz

)
, (21)

yields

4p(x, τ(x)) = −4v
v20

px
pz
. (22)

The inhomogeneous system (16) is solved with the propagator of homogeneous one (see, e.g, Gilbert and
Backus, 1966; Bellman, 1997)

4Q̂(x, 0) =

(
Q(1)(x; 0, τ(x))
Q(2)(x; 0, τ(x))

)T 0∫
τ(x)

Π−1(x; t′, τ(x))4S(x, t′)

(
Q̂(x, t′)

P̂ (x, t′)

)
dt′. (23)

We also derived a formula (see the Appendix) for the gradient in form of the adjoint-state method
(Plessix, 2006; Chavent, 2010):

4J =

Ndata∑
i=1

0∫
t(x)

(
−Q̂(xi, t

′)− λP (xi, t
′) λQ(xi, t

′)
)
4S(x, t′)

(
Q̂(xi, t

′)

P̂ (xi, t
′)

)
dt′, (24)

where adjoint-state variables λQ and λP are uniquely defined being a solution of inhomogeneous system

∂

∂t

(
λQ
λP

)
= S

(
λQ
λP

)
+ v2

(
Q̂

−P̂

)
(25)

with zero initial conditions at emergence time λQ(x, 0) = 0, λP (x, 0) = 0. The dynamic ray tracing
system is self-adjoint.(

λQ
λP

)
(x, t) = Π(x; t, 0)

t∫
0

v2(x, t′)Π−1(x; t′, 0)

(
Q̂

−P̂

)
(x, t′)dt′. (26)

The property
Π(x; t, 0) = Π(x; t, τ(x))Π(x; τ(x), 0) (27)

provides a way to compute the adjoint-state variables(
λQ
λP

)
(x, t) = Π(x; t, τ(x))

t∫
0

v2(x, t′)Π−1(x; t′, τ(x))

(
Q̂

−P̂

)
(x, t′)dt′. (28)

The adjoint-state method formula (24) assumes an integration of the scalar function, whereas the gra-
dient expressed through the Fréchet derivatives (15, 23) needs an integration of the vector. However, the
elements of this vector are computed not independently because the 4S matrix is prepared for both. And
the additional integration during the adjoint-state system solution may cancel the adjoint-state method per-
formance advantage. Indeed, we haven’t noticed a significant difference in the performance comparing
the methods for 21 × 41 4th order B-splines nodes grid. But increasing the nodes number in the ray
propagation direction and the basis function support (e.g., by taking the B-splines of higher order) could
make this advantage significant. Probably, this also can make sense with transition to 3D similar to the
stereotomography (Plessix, 2006).
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(a) (b)

Figure 1: (a) Initial constant gradient overburden. (b) Objective function projected gradients.

FIELD DATA EXAMPLE

A marine field dataset provided by TGS was already processed by Bauer et al. (2017) with diffraction and
reflection simultaneous inversion by means of Duveneck (2004) workflow. The full of diffracted energy
data was collected in the Levantine Basin of Mediterranean sea in a strongly heterogeneous part with salt
rollers (Netzeband et al., 2006). 5525 diffraction picks in addition to 6430 reflection picks were inverted
by dynamic focusing in the frame of 21 × 41 4th order B-spline nodes grid with 675 m nodes spacing
in horizontal direction and 200 m nodes spacing in the vertical direction. To perform convergence we
used limited-memory constrained Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) algorithm (Byrd et al.,
1995) starting with a model from Figure 1(a). The initial velocity linearly increases from 1.8 km/s for sedi-
ments at the seabed (marked with a white line) to 4.4 km/s for salt at the lower boundary of the model. The
constraints for the algorithm were the following: the nodes values over the seabed were fixed (lower and
upper limits equal to the water velocity 1480 m/s), lower and upper limits for the subsurface nodes values
coincide with the limits of the initial constant gradient. We applied no regularization (no additional terms
in the functional and gradient like in Tikhonov or total variation approach). A comparison of initial and
final projected gradients is an illustration for the convergence process (Figure 1(b)). As a measure of func-
tional variation with slight increment in velocity these plots outline the domains of maximum convergence
impact. The result of inversion is presented in Figure 2(a). An interface between the seabed sedimentary
layer and salt is in good agreement with the image obtained by Bauer et al. (2017) for the same dataset.
The diffractors and normal incidence points were finally traced to their positions and superimposed on the
retrieved velocity image (Figure 2(b)).

CONCLUSIONS

A novel workflow for smooth velocity model building by inversion of kinematic wavefield attributes is
proposed and tested with marine field dataset. Concerning the ratio and independence of the data points
number and the number of unknowns the method is more attractive than the conventional one. Both the
Fréchet derivatives and the adjoint-state method gradients were derived. In application to the Levantine
Basin dataset the retrieved tomographic image highly correlate with the previous studies. We consider the
new workflow to be promising and a comprehensive comparison with the conventional wavefront tomog-
raphy with the same data, grid spacing and regularization as the next step in our research.
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(a) (b)

Figure 2: (a) Retrieved tomographic image. (b) Localized normal incidence points and diffractors.
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APPENDIX A

We will derive the adjoint-state method formula (24) for the gradient computing. Adjoint-state variables
λQ(x, t) and λP (x, t) are some functions not defined so far. Let us take a dot product of equation (16) with
vector (λP ,−λQ), integrate it by travel time from source to receiver and sum over all receivers

4J =

Ndata∑
i=1

τ(xi)∫
0

dt

(
λP

(
∂

∂t
4Q̂− v24P̂ −4S11Q̂−4S12P̂

)

− λQ

(
∂

∂t
4P̂ +

1

v

∂2v

∂q2
4Q̂−4S21Q̂−4S22P̂

))
. (29)

4J = 0 since the system is satisfied. We want to transform this expression to get perturbations 4Q̂,4P̂
as multipliers. For this we integrate by parts

4J =

Ndata∑
i=1

(λP4Q̂)|t=τ(xi)
t=0 −

Ndata∑
i=1

(λQ4P̂ )|t=τ(xi)
t=0

−
Ndata∑
i=1

τ(xi)∫
0

dt

(
∂

∂t
λP4Q̂+ λP v

24P̂ + λP4S11Q̂+ λP4S12P̂

)

+

Ndata∑
i=1

τ(xi)∫
0

dt

(
∂

∂t
λQ4P̂ − λQ

1

v

∂2v

∂q2
4Q̂+ λQ4S21Q̂+ λQ4S22P̂

)
. (30)

As was previously mentioned 4Q̂(x, τ(x)) = 0 and 4P̂ (x, τ(x)) = 0. To remove the external terms we
impose initial conditions λQ(xi, 0) = 0, λP (xi, 0) = 0. The formula (15) should be modified to include
the integration in time

4J =

Ndata∑
i=1

Q̂(xi, 0)4Q̂(xi, 0)−
Ndata∑
i=1

Q̂(xi, τ(xi))4Q̂(xi, τ(xi))
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= −
Ndata∑
i=1

τ(xi)∫
0

dt
∂

∂t
(Q̂(xi, t)4Q̂(xi, t)) = −

Ndata∑
i=1

τ(xi)∫
0

dt(v2P̂4Q̂+v2Q̂4P̂+Q̂(4S11Q̂+4S12P̂ )).

(31)
4J = 4J +4J (32)

and the last step is to define the adjoint-state variables by forcing the sum of terms with 4Q̂ and the sum
of terms with 4P̂ to be zero. This leads to the system of differential equations (25) and the formula (24)
for the gradient computing.


