
125

FINITE-DIFFERENCE SEISMIC MODELLING ON CPUS AND
GPUS USING MATRIX-VECTOR PRODUCTS

F. Wittkamp, T. Steinweg, and T. Bohlen

email: tilman.steinweg@kit.edu
keywords: seismic modelling, matrix-vector formalism, CPU/GPU

ABSTRACT

Modern seismic imaging methods such as reverse-time migration (RTM) or full-waveform inversion
(FWI) require large high-performance computing (HPC) systems to provide enough computational
power to solve a large number of forward problems based on the wave equation. These wavefield
simulations are conventionally performed by explicit time-domain finite-difference (FD) methods on
regular numerical grids, where the parallelization is often based on a fixed and rather inflexible decom-
position of the computational domain. However, such parallelization cannot exploit the computing
capacities of modern and especially future exascale HPC architectures, which are expected to become
more and more hierarchical and non-uniform. For this purpose, we developed a matrix-vector formu-
lation of the explicit time-domain FD method solving the 3D elastic wave equation. To implement
the matrix-vector formalism, we chose the open-source framework LAMA, which allows the develop-
ment of hardware-independent code. We found that the implementation of such a matrix-vector based
3D elastic forward solver is straightforward. In a strong and weak scaling benchmark, we subse-
quently explored the scaling behavior of our implementation. The overall scaling performance shows
the large potential of our method, which can be improved even further by tuning on the application
and framework level.

INTRODUCTION

Modern seismic imaging methods such as reverse-time migration (RTM) or full-waveform inversion (FWI)
require large high-performance computing (HPC) systems to provide enough computational power to solve
a large number of forward problems based on the wave equation. These wavefield simulations are conven-
tionally performed by explicit time-domain finite-difference (FD) methods on regular numerical grids,
where the parallelization is often based on a fixed and rather inflexible decomposition of the computational
domain. Such parallelization cannot exploit the computing capacities of modern and especially future ex-
ascale HPC architectures, which are expected to become more and more hierarchical and non-uniform. In
recent years open-source HPC libraries have become available that allow to run the same software code on
different hardware architectures. However, these libraries typically require the problem to be formulated
using matrices and vectors. We therefore developed a matrix-vector formulation of the explicit time-domain
FD method solving the 3D elastic wave equation. This formulation allows us to hide and outsource most
of the HPC issues, such as efficient domain decomposition, inter-node communication and load balanc-
ing, to an HPC library. We chose the open-source framework LAMA, which allows the development of
hardware-independent code.



126 Annual WIT report 2017

METHODOLOGY

We demonstrate the matrix-vector formalism using the 1D acoustic wave equation in stress-velocity for-
mulation:

∂v(x, t)

∂t
= γ(x)

∂p(x, t)

∂x
,

∂p(x, t)

∂t
= λ(x)

∂v(x, t)

∂x
, (1)

where p is the pressure wavefield, v is the particle velocity, λ is the first Lamé parameter and γ is the inverse
density ρ−1. We solve the wave equations on a staggered grid by an explicit FD time-stepping scheme,
which is second-order accurate in time and higher-order accurate in space (Virieux, 1986). We first review
the application of the conventional second-order accurate FD operator to the first-order spatial derivative
of a differentiable function f which is evaluated on discrete grid points:

∂f(x)

∂x

∣∣∣
x1+x2

2

=
fx2
− fx1

∆x
(2)

The discrete points x1 and x2 are spaced by the distance ∆x. For FD modeling this operator has to be
evaluated individually for each grid point. Therefore, we can express it as a matrix-vector product:


∂f(x)
∂x

∣∣∣
x1+x2

2

∂f(x)
∂x

∣∣∣
x2+x3

2

...

 =
1

∆x

−1 1 0 . . .
0 −1 1 . . .
...

...
...

. . .

 ·

fx1

fx2

fx3

...

 , (3)

where we obtain the derivatives by a multiplication of a matrix with a vector containing the functional
values of f at the discrete grid points. This can be formulated in matrix-vector notation as follows:

∂ ~f

∂x
=

1

∆x
Df · ~f (4)

The derivative matrixDf contains the FD coefficients. It exhibits strong sparsity because it only contains n
non-zero entries per row (resp. grid point), where n is the order of the spatial operator (e.g., n = 2, 4 or 6).
The sparsity allows an efficient storage and optimized access pattern for the multiplication. Using this
approach we obtain the explicit second-order time-stepping (leapfrog) scheme for the 1D acoustic wave
equation in matrix-vector notation:

~v n+1 = ~v n +
∆t

∆x
~γ ◦
(
D f · ~pn+

1
2

)
, ~pn+

1
2 = ~pn−

1
2 +

∆t

∆x
~λ ◦
(
D b · ~v n

)
, (5)

where ∆t is the temporal sampling interval, ~γ and ~λ are the vectorized material parameters and
Db = −DT

f , which accounts for the spatial grid staggering. The symbol ◦ denotes the elementwise prod-
uct. Higher-order accuracy in space can be achieved by adjusting the FD coefficients contained in D.
Moreover, the derivative matrix allows to explicitly consider boundary conditions, like the free-surface
condition, by modification of the relevant rows at initialization.

3D ELASTIC IMPLEMENTATION

To transfer the methodology to the 3D elastic wave equation it is necessary to store the 3D parameter
fields, such as the wavefields, in 1D vectors. We obtain this transfer by a row-major-wise mapping of 3D
coordinates to 1D indices. By applying the shown approach to the 3D elastic wave equation in stress-



Annual WIT report 2017 127

velocity formulation, which is straightforward, we obtain:

~vn+1
x = ~vnx +

∆t

∆h
~γ ◦
(
Dx,f · ~σ

n+ 1
2

xx +Dy,b · ~σ
n+ 1

2
xy +Dz,b · ~σ

n+ 1
2

xz

)
, (6a)

~vn+1
y = ~vny +

∆t

∆h
~γ ◦
(
Dx,b · ~σ

n+ 1
2

yx +Dy,f · ~σ
n+ 1

2
yy +Dz,b · ~σ

n+ 1
2

yz

)
, (6b)

~vn+1
z = ~vnz +

∆t

∆h
~γ ◦
(
Dx,b · ~σ

n+ 1
2

zx +Dy,b · ~σ
n+ 1

2
zy +Dz,f · ~σ

n+ 1
2

zz

)
, (6c)

~σ
n+ 1

2
xx = ~σ

n− 1
2

xx +
∆t

∆h
~λ ◦
(
Dx,b · ~vnx +Dy,b · ~vny +Dz,b · ~vnz

)
+ 2 · ∆t

∆h
~µ ◦Dx,b · ~vnx , (6d)

~σ
n+ 1

2
yy = ~σ

n− 1
2

yy +
∆t

∆h
~λ ◦
(
Dx,b · ~vnx +Dy,b · ~vny +Dz,b · ~vnz

)
+ 2 · ∆t

∆h
~µ ◦Dy,b · ~vny , (6e)

~σ
n+ 1

2
zz = ~σ

n− 1
2

zz +
∆t

∆h
~λ ◦
(
Dx,b · ~vnx +Dy,b · ~vny +Dz,b · ~vnz

)
+ 2 · ∆t

∆h
~µ ◦Dz,b · ~vnz , (6f)

~σ
n+ 1

2
xy = ~σ

n− 1
2

xy +
∆t

∆h
~µ ◦
(
Dy,f · ~vnx +Dx,f · ~vny

)
, (6g)

~σ
n+ 1

2
xz = ~σ

n− 1
2

xz +
∆t

∆h
~µ ◦
(
Dz,f · ~vnx +Dx,f · ~vnz

)
, (6h)

~σ
n+ 1

2
yz = ~σ

n− 1
2

yz +
∆t

∆h
~µ ◦
(
Dz,f · ~vny +Dy,f · ~vnz

)
, (6i)

where ~σ is the stress tensor, ~vi are the particle velocities, ∆h is the equidistant grid spacing and ~µ is
the second Lamé parameter. The symbol ◦ denotes again the elementwise product. The matrix-vector
formalism for the 3D elastic wave equation requires six separate derivative matrices, since two matrices
are needed per direction in space, due to the spatial grid staggering. Similar to the 1D case, the relation
between the forward (f) and backward (b) derivative matrix reads Db = DT

f .

We implemented the shown matrix-vector formalism of the explicit staggered-grid time-domain 3D
elastic FD method with the open-source framework LAMA, which is designed for writing hardware-
independent software code (Brandes et al., 2017). It facilitates the development of fast and scalable soft-
ware for distributed HPC systems currently including multicore CPUs, Nvidia® GPUs and Intel® Xeon®

Phi™. Besides, it allows a seamless integration of future architectures while offering an independent formu-
lation of algorithms, which makes rewriting code for new hardware obsolete. Routines like the presented
FD update (equation 6) operate on matrix and vector structures with a high level of abstraction, solving the
general problem without giving considerations to the actual implementation details.

BENCHMARKS

To explore the performance of the presented implementation, we perform strong and weak scaling
benchmarks based on the 3D elastic wave propagation. The benchmarks are run on the JURECA HPC
system (Krause and Thörnig, 2016), where each CPU node consists of two Intel Xeon E5-2680 v3 Haswell
CPUs (2x12 cores at 2.5 GHz) and each GPU node of two Nvidia Tesla K80. In the following discussion
we address both a single CPU node (with 24 cores) and a single GPU device as a processing unit (PU). A
GPU node thus holds two GPU PUs, while a CPU node is a single PU. To address multiple processes we
use an MPI-based parallelization, where we choose an MVAPICH2 implementation in combination with
the GNU compiler suite. For the GPU runs we additionally use asynchronous execution for overlapping
halo communication with computation to also benefit from the host CPU. To minimize the required
communication overhead, we manually optimize the partitioning of the 3D wavefields by assigning 3D
sub-cubes to individual processes. Each benchmark is measured at least three times to ensure stable results.

For the benchmark we use a homogeneous 3D elastic model with a P-wave velocity of 3500 m/s , an
S-wave velocity of 2500 m/s and a density of 2000 kg/m3. We propagate the waves over 1000 time steps
and set the temporal sampling to 2 · 10−3 s and the spatial sampling equidistantly to 50 m. For the time-
stepping we use the classical second-order leapfrog scheme, where we calculate the spatial derivatives with
8th-order FD stencils. We place a 5 Hz pressure source (Ricker wavelet) in the middle of the modeling



128 Annual WIT report 2017

domain and record the wavefield with 101 pressure receivers, which we line up on the 3D diagonal.

Strong scaling benchmark

For the strong scaling benchmark the 3D model contains a constant number of 300 grid points (GPs) in
each direction, which results in a total of 27 ·106 GPs. Figure 1 illustrates the results. The CPU benchmark
shows a nearly linear scaling behavior up to four CPU nodes. For a larger number of CPU nodes we
observe efficiency below linear scaling, most likely due to the decreased workload per PU combined with
the increased communication. Comparing the results of the CPU nodes to the same number of GPU devices,
we find the GPU runtimes to be between 34% and 46% lower. However, the GPU scaling efficiency is lower
than its CPU counterpart. This is due to the fact that the GPU performance depends more on its utilization
than the CPU, which causes the strong scaling behavior to stop earlier.

Weak scaling benchmark

For the weak scaling benchmark we increase the problem size with the number of PUs. Thereby, the
workload and utilization is kept constant at 13.5 · 106 GPs per PU during the benchmark. We start with the
grid dimensions of 150× 300× 300 GPs for a single PU and end with the dimensions of 600× 600× 600
GPs for 16 PUs. Figure 2 shows the results. When comparing CPU to GPU performance, we observe
40% to 45% lower runtimes when using GPU devices compared to the same number of CPU nodes. This
supports the statement that the GPU’s strong scaling performance is effected by the decreased workload.
In the case of our weak scaling benchmark the total runtime should ideally stay constant with the number
of PUs; the upper limit would be reached if the parallelization over the PUs introduces no overhead. In our
results we see an increase of the runtime between the single PU and the 16 PU execution, for the CPU by
17% and for the GPU by 27%. In both cases the introduced overhead comes by virtue of the needed halo
communication, which is particularly bad for 2 GPU PUs because of higher communication needs, since
in this case the manual partitioning cannot be done as 3D cubes, but only as 2D slices. Furthermore, the
GPU execution benefits from the asynchronous execution of communication and computation.

CONCLUSION

We have developed an efficient and hardware-independent 3D elastic finite-difference forward solver based
on matrix-vector products. We use the HPC framework LAMA for the execution on CPUs and GPUs.
The framework relieves us from the actual HPC implementation, such as parallelization and hardware-
dependent adaption, and consequently it makes maintenance of our software relatively easy. In a strong

1 2 4 6 8
Number of processing units (PUs)

1

2

3

4

5

6

7

8

Sp
ee

du
p 

re
la

tiv
e 

to
 a

 s
in

gl
e 

PU

Strong scaling speedup

CPU node (2x12 cores, 2.5 GHz)
GPU device (Nvidia Tesla K80)
Linear

1 2 4 6 8
Number of processing units (PUs)

0

50

100

150

200

250

300

350

400

450

R
un

tim
e 

in
 s

Total runtime

CPU node (2x12 cores, 2.5 GHz)
GPU device (Nvidia Tesla K80)

Figure 1: Results of the strong scaling benchmark.



Annual WIT report 2017 129

1 2 4 6 8 12 16
Number of processing units (PUs)

0.75

0.8

0.85

0.9

0.95

1

1.05

W
ea

k 
sc

al
in

g 
ef

fic
ie

nc
y 

re
la

tiv
e 

to
 a

 s
in

gl
e 

PU

Weak scaling efficiency

CPU node (2x12 cores, 2.5 GHz)
GPU device (Nvidia Tesla K80)

1 2 4 6 8 12 16
Number of processing units (PUs)

100

120

140

160

180

200

220

240

260

280

300
R

un
tim

e 
in

 s
Total runtime

CPU node (2x12 cores, 2.5 GHz)
GPU device (Nvidia Tesla K80)

Figure 2: Results of the weak scaling benchmark.

and weak scaling benchmark we found that the time-to-solution can be decreased by either increasing
the number of CPUs/GPUs or by replacing CPU nodes with GPU devices. We observed good overall
performance and convenient execution of the same software code on CPU- and GPU-based architectures.

ACKNOWLEDGMENTS

This work is financially supported by the German Ministry of Education and Research (BMBF) through
the project WAVE, grant 01IH15004A. The authors gratefully acknowledge the computing time granted by
the John von Neumann Institute for Computing (NIC), provided on the supercomputer JURECA at Jülich
Supercomputing Centre (JSC). Furthermore, we thank Fraunhofer SCAI for providing the open-source
framework LAMA as well as for extensive support. This work was kindly supported by the sponsors of the
Wave Inversion Technology (WIT) Consortium.

REFERENCES

Brandes, T., Schricker, E., and Soddemann, T. (2017). The LAMA approach for writing portable applica-
tions on heterogenous architectures. Projects and Products of Fraunhofer SCAI, Springer. Accepted, to
be published.

Krause, D. and Thörnig, P. (2016). Jureca: General-purpose supercomputer at Jülich supercomputing
centre. Journal of large-scale research facilities JLSRF, 2:62.

Virieux, J. (1986). P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference
method. Geophysics, 51(4):889–901.


