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ABSTRACT

The CRS method enhances the signal-to-noise ratio of stacked data significantly. Furthermore, its
wavefront attributes can be used in appealing subsequent processing steps, in particular diffraction
imaging and velocity model building. Increasing computational facilities research in recent years
showed, that a simultaneous parameter estimation is feasible nowadays and leads to more accurate
CRS parameters compared to the pragmatic approach, introduced when CRS was published. This
also made alternative methods of detecting intersecting events possible, where events are searched
for in different dip cluster. Nevertheless, modern methods still are expensive, in particular for 3D
acquisitions since the search space was divided into smaller spaces where CRS has to be performed in
each of the smaller spaces. In this paper, we use one application of CRS over the full search space and
detect clustering at each iteration based on the dip angle or slowness. The application to 2D synthetic
and field data shows promising results. The 3D case indicates issues with the acquisition footprint
which needs further investigation.

INTRODUCTION

The first idea to account for the problem of conflicting dips in the common-reflection-surface (CRS) method
(Jäger et al., 2001) was proposed by Mann (2001), where he used the angle search step within the pragmatic
approach, that estimates the CRS parameters in three individual search steps, to identify several local
maxima with a grid search. While this approach is quite efficient, the quality of attributes can be low
in challenging environments since very few traces contribute in this step. In recent years, several other
search algorithms where proposed to estimate the CRS parameters simultaneously (Garabito et al., 2012;
Witte, 2014; Barros et al., 2015; Walda and Gajewski, 2017). Those algorithms are designed to find a good
solution in a finite amount of time. This solution mostly coincides with the global maximum. However,
those algorithms are designed to find one maximum. In conflicting dip situations, we need to find all
contributing maxima, which are as many as there are conflicting events. Hence, we need to track passed
by local maxima during the search. Current approaches simply estimate CRS parameters multiple times,
either for a fixed dip, as in the CDS approach (Soleimani et al., 2009) or dip ranges (Walda and Gajewski,
2017). This is a stable approach but also very expensive, particularly in the 3D or common-offset case.
Furthermore, events are sometimes stacked multiple times with partly wrong attributes, which leads to
smearing in the stack and inaccurate results in subsequent wavefront attribute-based processing such as
wavefront tomography (Duveneck, 2004; Bauer et al., 2017). We propose to use a property of population-
based search algorithms, the existence of many starting solutions. While the population of the algorithm
converges, those algorithms tend to partly cluster in local maxima on their way to the global maximum.
We aim to track those local maxima discovered during the search to account for conflicting dips with just
one search. In order to do so, we need to identify if, where and when several population member are close
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to each other. We have to quantify close in the search space and account for varying sensitivity of the CRS
parameters. We use the first order derivative CRS parameter, which is the slowness, to identify clustering
of population members. In 3D an additional problem is the acquisition footprint which can lead to well
determined CRS attributes in one direction while the attributes in the perpendicular direction might be of
poor quality, e.g. due to a narrow azimuth acquisition. We therefore might need to neglect clustering in
one direction for such datasets.

MULTIPARAMETER STACKING

The CMP method stacks data along a traveltime curve in offset direction

S(t0,m0) =

∫∫
P (t(t0, h),m0, h)dh . (1)

This method uses only data redundancy in offset direction which becomes problematic if only few traces
are available. Challenging data, where CMP processing does not produce desired results, benefit from
stacking techniques where the summation is carried out in offset and midpoint direction

S(t0,m0) =

∫∫
P (t(t0,∆m,h),m, h)dmdh . (2)

In Equation 2, the quantity ∆m = m0 − m is the midpoint displacement. Since neighboring midpoints
m are stacked into the midpoint m0 as well, a higher amount of traces are summed which results in an in-
creased signal-to-noise ratio. However, the traveltime description depends on more parameters compared
to classical CMP stacking. Hubral (1983) introduced wavefront attributes that can be used as a parametriza-
tion to describe the required traveltime surface t(t0,∆m,h). Traveltime operators that use these attributes
can be classified as common-reflection-surface (CRS) type operators. They differ in their mathematical
structure which stem from the underlying assumptions. While CRS itself is a hyperbolic single-square-root
traveltime expression, there are other double-square-root operators. In the following, the classical CRS and
an efficient non-hyperbolic variant are described.

Common-reflection-surface

The CRS stack is a multiparameter stacking technique (Müller, 1999; Mann et al., 1999; Jäger
et al., 2001; Mann, 2002) that considers neighboring midpoints as well as the offset while the CMP
method uses only offsets. It describes an event in the vicinity of the zero-offset sample by a second-order
traveltime approximation. Since more traces are stacked, the signal-to-noise ratio is improved significantly.

In 2D the CRS operator is formulated in terms of three wavefront attributes, which are related to two
hypothetical one-way experiments. The resulting two waves are described by the angle of emergence α of
the zero-offset ray and the corresponding radii of curvature: RN for the normal (N) wave and RNIP for
the normal-incidence-point (NIP) wave (Hubral, 1983). The N wave is generated by a fictitious exploding
reflector experiment around the normal-incidence-point. The NIP wave is generated by a fictitious point
source placed at the normal-incidence-point.

Using the notation by Fomel and Kazinnik (2013), the CRS formula in its hyperbolic expression can be
written as

t(t0,∆m,h) =
√
F (∆m, t0) + 2t0Mh2 , (3)

F (t0,∆m) = (t0 + 2p∆m)2 + 2t0N∆m2 . (4)

The coefficients p, M and N can be related to the wavefront attributes α, RNIP and RN as

p =
sinα

v0

N =
cos2 α

v0RN

M =
cos2 α

v0RNIP
. (5)
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The quantity v0 is the near surface velocity. In the 3D case the curvaturesRN andRNIP become symmetric
2x2 matrices and the slowness p becomes a vector with two elements. Therefore, the 3D CRS operator
depends on 8 attributes and reads

t(t0,∆m,h) =

√
F (∆m, t0) + 2t0∆hTMh , (6)

F (t0,∆m) = (t0 + 2pT∆m)2 + 2t0∆mTN∆m . (7)

Non-hyperbolic common-reflection-surface

Fomel and Kazinnik (2013) introduced an extension of the conventional CRS approach. The non-
hyperbolic common-reflection-surface (nCRS) method assumes a hyperbolic reflector and reads in 2D

t(t0,∆m,h) =

√
F (t0,∆m) + Ch2 +

√
F (t0,∆m− h)F (t0,∆m+ h)

2
, (8)

where F is defined according to Equation 4 and C = 2t0(2M − N) + 4p2 accounts for the asymmetry
of the source-receiver traveltime contributions. From an implementation point of view, nCRS requires
very few additional computations compared to CRS (see Equation 3) which simplifies the implementation
in existing CRS codes. The 3D extension of nCRS is according to CRS and reads but similar to CMP
processing

t(t0,∆m,h) =

√
F (t0,∆m) + hTCh +

√
F (t0,∆m− h)F (t0,∆m + h)

2
, (9)

where C = 2t0(2M −N) + 4pTp.

METHODOLOGY

In our method, we assume the CRS parameters are estimated by a population-based search algorithm.
In literature, there are plenty of such algorithms around, especially evolutionary-based algorithms. For
demonstration purpose, we use the differential evolution (DE) algorithm here since it provided satisfying
results in the past.

Differential Evolution

The DE algorithm starts with a number of initial solutions referred to as starting population. In most
cases, they are randomly distributed. It is also possible to provide previously-determined solutions into the
starting population, for example obtained CRS attributes of neighboring samples or velocity estimations. In
the next step, information obtained from the initial solutions is used to generate a new set of trial solutions.
Each solution in DE is called agent. Each iteration, which generates new potential agents, is called a
generation. The process of creating new generations is repeated until a satisfying solution is found. In DE,
for each agent xi a trial agent ui is generated that is only accepted into the next generation if its fitness
value (i.e., semblance functional) is better than the original agent. The trial agent is generated by so called
mutation and crossover, where the index i denotes the agent in the population. The mutation yi of an agent
xi is carried out by the formula

yij = xaj + F · (xbj − xcj) (10)

where xa, xb and xc are randomly selected agents of the population that are different from each
other and xi. The subscripts a, b and c are determined randomly for each agent i. Variants of the DE
algorithm use the agent with the highest fitness instead of xa. This can lead to a faster convergence but
risks premature convergence. The index j denotes one dimension of the problem, here the number of
CRS wavefront parameters, and F ∈ [0, 2] is called the differential weight. The mutation of a dimension
is carried out with a probability determined by the crossover parameter CR. The size of the population
is determined by a control parameter called NP . These parameters are control parameters of the DE
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algorithm and have to be chosen upfront. (Pedersen, 2010) suggest certain choices of parameters based
on the dimensionality and desired number of function evaluations. Alternatively, it is also possible to
randomly select the control parameter F within a range at each iteration. This adds diversity and usually
leads to better coverage of the search space.

Since the CRS method in 3D has an 8D search space, we tested different combinations of control
parameters for the 8D Rosenbrock function, which is given by the formula

f(x) =

n−1∑
j=1

[
100(xj+1 − x2j )2 + (xj − 1)2

]
(11)

where j is the index over dimensions of the search space and n the total number of dimensions. The
function minimum for n > 3 is f(1, ..., 1) = 0. Figure 1 shows the convergence of the best agent at each
iteration for 200 realizations. In these tests F changes randomly at each iteration within 0.5 and 1.0. The
actual size of the population here is NP × n, where n is the number of dimensions. A low crossover
probability of 50% leads to no sufficient convergence. In 99.5% of the cases, the algorithm converged
prematurely. A crossover probability of 70% results in the least amounts of premature convergence
for ’smaller’ populations. However, the convergence rate is also rather slow compared to a crossover
probability of 90%. A larger population size on the other hand does not improve the convergence rate. It
mostly prevents premature convergence. However, an increase from a total of 96 to 180 agents lead only to
a total decrease of premature convergence of 2% for a crossover probability of 70% and 6% for a crossover
probability of 90%. Hence, as long as the population is not too small, a high crossover probability of 90%
should be chosen to converge efficiently.

So far we used random initialization, which can lead to uncovered areas in the search space as well as
unintended initial clustering. An alternative initialization can be done using the latin hypercube sampling
(McKay et al., 1979) which splits the search space into segments and seeds one staring point into each
segment. Usually, it leads to a better coverage of the search space and prevents clustering as shown in
Figure 2 for a 3D search space.

Clustering

Figure 3 illustrates a slice of the 3D search space of the 2D CRS operator for a sample, where two events
are present. The most spread red maximum corresponds to the global maximum. The considered sample
is extracted from the Sigsbee2A model shown in the following section. The two maxima represent two
intersecting diffraction tails originated from two artificially placed diffractions in the deeper part of the
model.

In order to account for conflicting dips during the stacking and further CRS-based processing steps such
as wavefront tomography (Duveneck, 2004; Bauer et al., 2017), we need to find both maxima. Unfortu-
nately, search algorithms are designed to find, either the global maximum, or the nearest local maximum.
Previously, the search space was divided into sub-cubes in which a search was performed. This means for
N amount of cubes, N full CRS searches had to be performed. Fortunately, a search algorithm like DE
covers large parts of the search space and should have a decent chance to pass the local maxima during
the search as seen in Figure 3. Furthermore, the search population tends to cluster at places where good
solutions are found until better solutions become available. This means, if we keep areas of clustering in
memory, we can assume there is a local maximum. After the search is finished, we might search those local
maxima with a fast converging algorithm which runs into the next local maximum it finds.

So far, we are not aware of a method to identify clustering in the search space for the general case,
particularly for multidimensional problems. The 3D CRS formula uses eight attributes of different ranges
and sensitivities with respect to the influence on the traveltime surface and the acquisition. Therefore,
we only use the most stable parameters, in 2D the angle of emergence α, in 3D the two components of
the horizontal slowness px and py . A cluster is considered when m amount of agents are within an user-
defined angle/slowness range. The number of required agents to cluster m is also specified by the user.
A smaller angle range enables more potential clusters in case of intersecting events with similar dips. A
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Figure 1: Convergence comparison of different control parameter choices. Please note that the vertical
logarithmic scales vary and the actual population size is NP · 8 due to latin hypercube sampling.

larger angle range might miss intersecting events but also reduces the risk of falsely detected clustering.
In a similar fashion, a high amount of clustered agents m will only find pronounced local maxima while
a small value of m leads to found local maxima that might not be actual events. To prevent clustering
noise the user can provide a minimal semblance which is required to consider a clustered event as a local
maximum. Furthermore, the acquisition in 3D can lead to well determined CRS parameters in one direction
and poorly determined CRS parameters in the perpendicular direction. This is the case for narrow azimuth
data. In such cases it is advisable to cluster considering only either px or py .

The objective function shown in Figure 3 shows that clustering also occurs in the RNIP (or M in
3D) dimension. However, this parameter depends on the velocities and depth of the considered sample.
Therefore, it is challenging to formulate a stable clustering criterion. Since machine learning became
popular in recent years and are particularly well suited to identify clustering in classification problems, a
well trained neural network might help to identify clustering during the optimization much more reliably.

SYNTHETIC DATA EXAMPLE

To evaluate whether our new approach is suitable to handle conflicting dip situations, we use the synthetic
Sisgbee2A dataset from SMAART JV (Subsalt Multiples Attenuation And Reduction Team Joint Venture
consisting of BHP Billiton, BP and ChevronTexaco). The model is shown in Figure 4. It contains a
prominent salt body in white as well as layering with some fault structures and artificially placed diffractors.
Due to all these features, the model produces tremendous amounts of scattering causing many conflicting
dip situations. In the previous implementation we simply divided the search space into smaller cubes along
the dip angle α and searched for the CRS attributes in each dip range. Depending on the width of these
dip ranges, one can reliably detect almost all apparent conflicting dip situations. However, the approach
is computationally very demanding and introduces some artifacts as well as smearing, if one maximum
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(a) Random initialization (b) Latin hypercube

Figure 2: Comparison of a random initialization (a) and an initialization using latin hypercube sampling.
In the latin hypercube sampling model the population is better spread over the search space while clustering
is prevented as it can appear in the random initialization.

Figure 3: 2D slice of the 3D search space during the parameter estimation using the 2D nCRS operator.
Two maxima can be observed that differ in their dip angle. White dots represent the location of an agent at
the 17th iteration. Most of the agents are already located in the global maximum while some are located in
the local maximum. The colorbar represents the semblance

stretches over several dip ranges. This is mostly the case for prominent reflectors of particularly strong
impedance contrast like top and bottom of salt or sea floor.

Figure 5(a) shows a CRS stack of the Sigsbee2A model where even diffractions caused by stair-stepping
effects during the modeling, are recovered. In this case, 9 dip intervals were used which increased in size
at higher dips. For comparison, Figure 5(b) shows the proposed method to account for conflicting dips.
Though a single application of CRS is roughly 50%-100% more expansive as in the previous case, it is
still much cheaper than before since the CRS method only has to be performed once here. The additional
computational cost mostly stems from a larger required population size which was 48 in this example. The
new implementation does not detect as many intersecting events as the former implementation but is more
efficient. Most events that are not resolved are rather weak. On the other hand, events are less smeared and
the amplitudes are not artificially increased as previously. This is of particular importance for amplitude
friendly processing. Since the synthetic example showed promising results, we apply the new approach on
a marine field data example.
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Figure 4: Velocity model of the Sigsbee2A data, which is based on salt structures in the Gulf of Mexico.
The model contains a prominent salt body in white and layered structures including faults and artificially
placed diffractors around it.

MARINE DATA EXAMPLE

The application of our method to synthetic data showed satisfying results. In order to estimate the applica-
bility to field data we apply our method to a marine data set from the Levantine Basin in the Mediterranean
Sea, offshore Israel (Netzeband et al., 2006). A comparison of our approach to the previous implementation
is shown in Figure 6. To ensure we get as many conflicting events as possible in our previous implemen-
tation (Figure 6(a)), we used 17 dip intervals here which made the processing very expensive but reliable.
As a result, we recovered the rich content of diffractions in this data which enables us to perform diffrac-
tion imaging. The disadvantage of this approach shows in the sea floor and salt body reflections which
are smeared since those event represent wide maxima in the search space which are stacked in several dip
cluster with partly wrong attributes. In our new implementation shown in Figure 6(b) we are able to recover
most events, apart from very weak ones. Comparing both implementations, it seems that the results of the
new implementation shows the found events, particularly diffractions, much more pronounced. The most
important advantage however, apart from the efficiency, is the much higher resolution which is evident in
the layered structures since we do not stack them multiple times with wrong attributes.

THE 3D CASE

In the previous parts of the paper we showed that our approach is feasible in 2D. The 3D case however,
introduces more challenges. We have to consider two dips, in X and Y direction. Additionally, more often
than not, the acquisition is not distributed similarly in X and Y direction. In the marine case, most of the
time one ship is carrying a source and above 10 streamer that are above 10 km long with a dense hydrophone
group spacing, e.g. every 12.5 m or 25 m. The streamer spreading however, often is 50 m to 200 m. This
means in sail-direction (inline) the acquisition is longer and denser than in the perpendicular (crossline)
direction. This so-called acquisition footprint needs to be considered as well. Finally, the higher amount
of involved traces and especially CRS parameters, hamper the search itself and raise the computational
cost. Splitting the search space in intervals for both directions rapidly leads to the curse of dimensionality
(Corporation, 1957). In case of 5 intervals per direction, we would need to estimate 25 times the 3D CRS
operator.

Fortunately, our new approach only needs the CRS parameter estimation once. However, we also
need to perform clustering based on the acquisition. In narrow azimuth data, we simply cluster along one
component of the slowness. If more azimuths are available, we use both directions. A preliminary result
is shown in Figure 7. In this example, no local refinement of the maxima was used while the clustering
criteria are quite narrow. This means the algorithm found more clusters compared to the 2D case which
are mostly meaningless and only contribute noise. Nevertheless, we can observe intersecting events at
numerous places, indicating that the principle idea can work when the method is improved, in particular
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the local refinement and treatment of acquisition footprint.

CONCLUSIONS

We introduce a new and efficient method to account for conflicting dips in the CRS method. If several
events are intersecting at a sample, weaker events will appear as local maxima in the search space that need
to be found additionally. We assume a population-based global optimization method to be used during the
parameter estimation. During the parameter estimation a local maximum is considered each time several
population members accumulate in a small region. In case this region has been recognized before, the
local maximum is updated. This enables us to track local maxima the algorithm has seen during the global
optimization. All found local maxima are stacked, together with the global maximum, to provide a stacked
section where intersecting events are resolved. We verify the method on 2D synthetic and field data.
Most events are efficiently recognized. Furthermore, the frequency content is not harmed as in previous
implementations. In the 3D case the acquisition needs to be considered. For narrow azimuth data, the
slowness in inline direction is much better determined than in crossline direction. Hence, for such data,
only the slowness in inline direction should be considered.

ACKNOWLEDGMENTS

The work was supported by the sponsors of the Wave Inversion Technology (WIT) consortium and the
Federal Ministry for Economic Affairs and Energy of Germany (project number 03SX427B). We would
like to thank the Applied Seismics Group Hamburg for continuous discussions. Furthermore, we thank the
SEG for providing the 3D synthetic dataset, SMAARTJV for the Sigsbee2A model and TGS for the marine
data. Finally, we thank TEEC, in particular Marco Diers, Gerald Eisenberg-Klein and Jürgen Prüßmann
for fruitful discussions and suggestions.

REFERENCES

Barros, T., Ferrari, R., Krummenauer, R., and Lopes, R. (2015). Differential evolution-based optimization
procedure for automatic estimation of the common-reflection surface traveltime parameters. Geophysics,
80(6):WD189–WD200.

Bauer, A., Schwarz, B., and Gajewski, D. (2017). Utilizing diffractions in wavefront tomography. Geo-
physics, 82(2):R65–R73.

Corporation, R. E. B. R. (1957). Dynamic programming, volume 1. Princeton University Press.

Duveneck, E. (2004). Velocity model estimation with data-derived wavefront attributes. Geophysics,
69(1):265–274.

Fomel, S. and Kazinnik, R. (2013). Non-hyperbolic common reflection surface. Geophysical Prospecting,
61(1):21–27.

Garabito, G., Stoffa, P. L., Lucena, L. S., and Cruz, J. C. (2012). Part i âĂŤ crs stack: Global optimization
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Figure 5: Comparison of the previous implementation in (a) and the new implementation in (b). The new
implementation does not recover as much events as the former method. However, CRS needs to be applied
only once for each sample in (b), while CRS is applied 9 times in (a).
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Figure 6: Comparison of obtained stacks from the previous and new implementation. The data shows
offshore Israel in the Mediterranean Sea. Similar to the Sigsbee2A results, less events are recognized and
some diffraction tails are interrupted. However, the thin layers near the sea floor are much better resolved.
Additionally, the image obtained by the new implementation seems less noisy.
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Figure 7: Inline section of the 3D SEG salt model containing many intersecting events. Since this data has
very limited azimuth information, we can only cluster using the slowness in inline direction. This might be
one reason we do not recover all intersecting events. The poor quality comes from the lack of a final local
optimization that we used in the 2D case.


