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ABSTRACT

Most Full Waveform Inversion (FWI) applications use quasi-Newton based optimization algorithms
to perform the inversion for the velocity model. In this report, we will discuss the application of an
Augmented Lagrangian method, which can easily incorporate constraints to the FWI problem. We will
also consider that the velocity model can be written as a linear combination of some base functions,
in order to reduce the computational cost. In the presented numerical examples, such base functions
are chosen trivially, due to the fact that the tested velocity models are very simple. Nevertheless, they
show the importance of considering the constraints to the optimization problem.

INTRODUCTION

The seismic Full Waveform Inversion (FWI) is a powerful tool to seismic imaging because it tries to
estimate subsurface medium parameters from seismic data. However, accurate reconstruction of interfaces
is yet a big challenge for current techniques. The fundamental basis for FWI unites two important worlds
of computational geophysics that are seismic modeling (direct problem) and seismic inversion (inverse
problem). A good review on the classic FWI theory cab be found in Virieux and Operto (2009). A big
difficulty is how to avoid local minima but there are many algorithms based on FWI that try to improve the
final results. See, e.g., Symes (2008); Leeuwen and Herrmann (2016); Bunks et al. (1995). Most of the
applications mentioned above use algorithms for unconstrained optimization, such as the a limited memory
quasi-newton method — LBFGS (see, e.g., Nocedal and Wright (1999)). In general, regularization terms
are added to the objective function to help accelerate the convergence of the procedure.

In this work, we analyse the FWI as a constrained optimization problem, where we use an Augmented
Lagrangian algorithm, the software Algencan developed by Birgin and Martinez (2014a). To reduce the
cost of optimization we will consider that the bidimensional velocity model can be written as a combination

of some base functions, ¢; : IR? — IR (i = 0,1,...,n), i.e., the acoustic propagation velocity c is given
by
c(w;x) = do(x) + > widi(x), M
i=1

where x = (x,2) € IR? are the spatial variables and w € IR™ (weights) are the parameters that will
be inverted by the algorithm. In the experiments done in this work, the base functions ¢; were chosen
according to the desired complexity of the velocity model. For example, for a constant gradient velocity
model we can chose ¢y (x) = ¢y (constant), ¢;(x) = x and ¢o(x) = z.
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SEISMIC MODELING

The seismic modeling plays a key role for FWI. In the two-dimensional case of a acoustic velocity medium,
the wave equation with constant density and considering the velocity given by equation (1), we have

1

Wutt(w;xt) — Au(w;x,t) = F(x,t), 2)

where A is laplacian operator, I’ is the function that describes the source and u is the wavefield. Notice
that we are considering an implicit dependency on the variable w in the wavefield.

To solve equation (2) we use a finite-difference method of second-order in time and 2M th_order in
space (Liu and Sen, 2009). Typical values for M in the literature are 1 < M < 5. For the numerical
method to be well defined, we must include the initial and boundary condition, which are

u(w;x,t) =0, for ¢<0 and w(w;x,0)=0. 3)

To avoid boundary reflections, we use an absorbing boundary condition based on the work of Kosloff and
Kosloff (1986). The numerical scheme for solving (2) is given by

~ 0+l 5 4 ~ 0—1, .2 ¢ 2 2 10
VikWi g = VikWj g — Viklj g + (FWANTIFRE S CERWAN ¥ gt @)

where the indices j, k, £ refer to discretization x; = xo+jA, 2z, = 20+kA, ty = AL, withj =0,1,...,J,
k=0,1,...,K,¢=0,1,..., L, where

u?k ~u(wixg, 2k, te), Tk =cipAt/A, and ¢ = c(w;xj, 2). 5)

The laplacian operator is approximated by

M
J4 2 £ £ £ £
At = 200t + > @m (U + Ui + W + Wtm) (6)

m=1
where the a,,’s are the finite difference coefficients given by (Liu and Sen, 2009)

M 2

(_1)m+1 n

3 ,m=1,....M,
m

Ay —

2 2
n ™m
n=1,n#m

M
ag = —2 § Qs
m=1

Parameters 7, 1, ;5 and 7, are related to the absorbing boundary conditions and are given by (Kosloff
and Kosloff, 1986)

Yik =1+ Atyje, ik =2—AY 1 Ak =1— Aty ®)
where o
0 .
M i=01,...,J and
cosh?(ujA) J ’
k=0,... K,
Vik = il il j=J—Jy...,J,and ©)

+ )
cosh?(u(J — §)A)  cosh?(u(K — k)A)
k=K —K, ... K

0, otherwise.

Morever, o and p are dimensional constants, 0 < J, < J and 0 < K} < K indicate how many indices
will be considered for the absorbing boundary. In this work we have used ap = 140s~* and p1 = 8.3 km ™!
as recommended in Seki and Nishikawa (1988), and J, = K} = 50.
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SEISMIC INVERSION

The inverse problem tries to find an approximation for the velocity model that best fits the seismic data
ds(x,,t), where x,. = (z, z,) are the receiver positions for each shot s. For conventional FWI, the inverse
problem gives an approximation of m(x) = 1/c¢(x)? for x in a certain pre-defined grid. For example, for a
100 x 100 grid in zz-plane, there are exactly 10* values to be determined. Therefore, to reduce the number
of variables to be inverted, we will consider that the velocity is given by a the linear combination given
by (1) and thus the inverse problem can be formulated as

min f(w), (10)
where f(w) is the objective function and can be given by the classical least-squares functional,

2

Z / Us (Wi Xy, t) — dy(x,, )| dt, (11)

slrl

where [0, 7] is the time window of the sampling, and N and N, are the number of shots and receivers,
respectively. Moreover, u; is the simulated data for shot s, using velocity ¢(w; x).

Equation (10) is an unconstrained optimization problem and, in general, regularization terms are added
to the objective function. Some previous works analyse different objective functions for the inverse problem
(see, e.g., (Shin and Ha, 2008; Wu et al., 2014; Liu et al., 2016)). We can rewrite equation (11) as,

Ly [ ] i) ax (12
22+ )y J
where
E(us(w; %, 1)) Za [ué(w X, t) — ds(x,t)r, (13)

with § being the two-dimensional Dirac’s delta fuction. If we are interested in using some opimization
algorithm that uses derivatives, it is necessary to compute the gradient of the objective function. Applying
the chain rule on equation (12), and writing the result in jacobian notation, we obtain

E
// d d“S-Ed dt. (14)
re dus  dec  dw

The difficulty in using equation (14) is the high cost to compute the jacobian dus/dec. However, through
the use of the adjoint method (Plessix (2006); Fichtner (2011)) it is possible to avoid the calculus of such
term. The gradient can be computed as

af _ T OPus(W;x,t) $(x)
Tw = 72/11%2 [/0 p(x,t) pre dt] wix)? dx, (15)

where ¢(x) = [01(x), ..., Pn(X)], p(x,t) is the adjoint wavefield given by the solution of

1 ~
an(x, t) — Ap(x,t) = —E(x,1), (16)
with
~ N
E(x,1) = ZMX-M)[%(W;XJ) —ds(x,1), (17)
=1

and the following “final” conditions,
p(X, T) =0, and pt(xa T) =0. (13)

The adjoint equation (16) is the wave equation (2) with a different source term. It can be physically
interpreted as a backpropagation of the residual value. Thus, we can use the numerical scheme used for the
modeling, with the following transformation in order to have initial conditions, p(x,t) = p(x,T — t).
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AN AUGMENTED LAGRANGIAN METHOD
Let us consider the following constrained optimization problem
Minimize f(w) subjectto h(w) =0, w €, (19)

where f : IR™ — IR and h : IR™ — IR™ are differentiable functions, and 2 C IR™. The Augmented
Lagragian function is given by

Ly(w,\) = f(x) + & > [ratw) + =], 20)

where p > 0, w € Q and A € IR™ is an approximation for the Lagrange multiplier’s vector. Notice
that L,(w,0) is the classical Lo penalty function. The Augmented Lagrangian function (20)be seen as
a penalty function in which the “punishment” for infeasibility points is not applied with respect to the
original constraints h(w) = 0 but with a respect to the shifted constraints h(w) + A/p = 0.

The Augmented Lagrangian algorithm for solving (19) proceeds by minimizing function (20) with
respect to w at each iteration and updating the Lagrange multipliers vector (\) and the penalty parameter
(p). In other words, at each iteration the algorithm solves the subproblem

Minimize L,(w,\) subjectto w €, 20

for a given p and A. Ideally, if enough progress has been obtained in terms of improvement of feasibility,
the same penalty parameter may be used at the next “outer iteration”, but the penalty parameter must be
increased if progress is not satisfactory. The vector A/p can be interpreted as a “shift”, because in (21) the
penalty parameter, will not punish only the violation of infeasibilities (this would be the case if the shift
is null), but the infeasibilities modified by the shift. The idea is that, even with a penalty parameter of
moderate value, a reasonable choice of the shift makes possible the coincidence, or near coincidence, of
the solution to problem (19). As there are updates of both Lagrange multipliers and the penalty parameter,
we must take care to ensure the boundedness of \ and this is done by a safeguard: when p tends to infinity,
common sense dictates that the shifts should be tend to zero.

For the FWI problem, let us assume that we know the velocity somewhere in the analysed region (this
information may come from a vertical well profile, for example). Therefore, the constraints can be written
as

hw; g, 2q) = c(W; g, 2¢) — Vg(2q,29), ¢=1,2,...,Q, (22)
where each pair (x4, z,) indicates the position of a known velocity value v, (x4, z4). For example, for a
known vertical well profile, we can use z, fixed for different values of z,. In addition, the set Q will be a
box, ie., Q= {w € R" | a<w < b}, with a,b € IR". The choice for a and b must be made to ensure
that c¢(w;x) > 0 for all x € Q.

NUMERICAL EXPERIMENTS

We have used the software ALGENCAN (Birgin and Martinez (2014b)) which contains the computational
implementation of the Augmented Lagrangian method discussed in the previous section. The book Birgin
and Martinez (2014a) presents a detailed description of ALGENCAN, with both theoretical and practical
aspects.

We will consider teo different velocity models. The seismic data was obtained by the finite-difference
algorithm previously presented, with A/ = 3 and the source term given by F'(x) = d(x — x,)S(t), where
Xs = (s, 25) is the source position and S is a Ricker wavelet, with peak frequency of f, = 20 Hz,

S(t) = (1= 2(fymt)2)e o)’ 23)
For the discretization, we have .
Fjp. = 1593005 (t), 24)

where js, ks are the indices for the source position and 6, , denotes the Kronecker’s delta. Altough we
are useing absorbing boundary conditions, the seismic survey will be simulated considering a free-surface
at z = —40 m.
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Problem [ Estimated w [ CPU Time (h) | Flag

COp (0.5000, 3.0000) 6.4 Solution found
COp-vp5 (0.4585,3.1142) 3.7 Infeasible stationary point found
UOp (0.8214,0.5654) 2.7 Solution found

COp30 (0.5000, 3.0000) 10.1 Solution found
COp30-vp5 || (0.4585,3.1142) 3.8 Infeasible stationary point found
UOp30 (0.8229,0.5579) 1.8 Solution found

Table 1: Numerical results for Experiment 1.

Experiment 1: Constant Gradient Velocity
For the first experiment, the velocity model is given by,
v(x,z) = 2.0+ 0.52 + 3.0z, (25)

with x and z measured in kilometers and ¢ in seconds, so that velocities are measured in km/s. For con-
venience, we will denote by v the true velocity used to create the observed data and by c the velocity that
will be estimated by Algencan. For —4 < x < 4and 0 < z < 2.5 we have v,,,;, = 2 km/s V0, = 5.5
km/s as illustrated in Figure 1. The finite difference parameters are A = 10 m, At = 1 msand 7" = 2 s.
The seismic survey consists of three shots, with x; = —3.5, —2.5, —1.5 and z, = 0. For each shot the first
receiver is at a distance of 200 m from the source with 41 receivers with a distance between them of 125
m. Figure 1 also shows, for the second shot, the modeled data with the exact velocity model, without noise
and with a 30% random noise added.
For the inverse problem, we want to estimate the weights w = (w1, ws), such that

c(w;x,2) = ¢o(x) + w11 (x, 2) + wada(x, 2), (26)

where ¢o(x) = 2, ¢1(z, 2) = x and ¢o(z,2) = 2. We choose Q = {w € IR? | 0 < w1, wy < 5}, and for
the equality constraints given by equation (22) we have considered a vertical velocity profile at z;, = 2 km
and () = 49 equally spaced values for z, between 60 m 2.46 km (black x’s in Figure 1a).

In order to analyze whether the addition of the constraints contribute positively to the problem, we also
solve the inverse problem without the constraints, considering the set {2 only. In this case, the subprob-
lem (21) is solved only once.

The initial guesses were w’ = (0,0) and )\2 = 0, and we have used €,,t = 107 and €f¢4s = 107°, as
the precisions for the stopping criteria for optimality and feasibility, respectively. The maximum number
of iterations for the method is 15, with a maximum number of inner iteration equals to 20 (subproblems).

The results for the inverted weights using the ALGENCAN package are shown in Table 1, where we
have used the following code:

* COp means that the problem was solved considering the constraints and observed data without noise.

* COp-vp5 means that the problem was solved considering the constraints with a 5% random noise
added to the known velocity profile and observed data without noise.

* UOp means that the problem was solved without constraints and observed data without noise.

* COp30, COp30-vp5 and UOp30 indicates that we have added a 30% noise to the observed data.

From Table 1 we see that when the problem has constraints we have more success to find the best
velocity model approximation, even in the case where the constraint was contaminated with random noise.
For the unconstrained case, even though the solution found is a minimizer, it is not a good enough. Figure 2
shows the modeled data for the second shot using the estimates found and Figure 3 shows the difference
between the observed and modeled data. As expected for COp, the difference between the data is very
close to zero. In Figure 4 we show the velocity models obtained with the optimized weights and Figure 5
depicts the percentage errors. We can observe that for the COp cases the percentage errors are very small (a
maximum of 2%) whereas for the UOp cases the percentage errors can reach 80%. To look in more detail,
in Figure 6 we plot the velocity profile used for the constraints compared to the estimated one.
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Figure 1: Data for Experiment 1: (a) Exact velocity model; (b) Second shot without noise; (c) Second shot

with the addition of 30% random noise.
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Figure 2: Modeled seismic data for the second shot in Experiment 1, after the optimization procedure: (a)

COp; (b) COp-vpS; (c) UOp; (d) COp30; (e) COp30-vpS; (f) UOp30.
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Figure 3: Difference between modeled and observed data for the second shot in Experiment 1: (a) COp;

(b) COp-vp5; (c) UOp; (d) COp30; (e) COp30-vpS5; (f) UOp30.
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Figure 4: Velocity models estimated by inversion in Experiment 1: (a) COp; (b) COp-vp5; (c) UOp; (d)

COp30; (e) COp30-vp5; (f) UOp30.
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Figure 5: Percentual error for the velocity in Experiment 1: (a) COp; (b) COp-vp5; (c) UOp; (d) COp30;
(e) COp30-vpS; (f) UOp30.

5.5 T T T T
p— ! !
I I s

5H vw> L - - - - - L _1_ 4
COp \ \

4.5 COp30 o 7‘ 777777 s 7‘ 777777
UOp30 N

4-——-COp—Vp5 I ANy /| N, l_ - _ _ _
= = = COp30-vp5 |

cp (km/s)

S e = 1 \77777:7 77777 o
3 — — — [ l HH—"—0_ _ _ |
% ) i | I
'2’,',‘1‘4 ,,,,, I _ _ L _ ]
25 | | | |
2 | | | |
0 0.5 1 1.5 2 2.5

Figure 6: Comparison of the estimates with the exact value in the vertical velocity profile at x,, = 2 km in
Experiment 1.
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Problem  [[ Estimated w CPU Time (h) | Flag

COp (2.5000, 2.5000, 2.5000, 2.5000 5.7 Solution found
3.5000, 3.5000, 3.5000)

COp-vp5 (2.6115,2.4142,2.4637,2.4945 4.2 Infeasible stationary point found
3.5179,3.5302, 3.5529)

UOp (5.0000, 5.0000, 5.0000, 5.0000 2.9 Solution found
5.0000, 5.0000, 4.7123)

COp30 (2.5000, 2.5000, 2.5000, 2.5000 6.6 Solution found
3.5000, 3.5000, 3.5000)

COp30-vpS || (2.6119,2.4142,2.4637,2.4945 4.3 Infeasible stationary point found
3.5179,3.5178,3.5302)

UOp30 (4.9775,3.8496,2.9918,2.5100 4.7 Failure
2.3027,2.5535,2.5448)

Table 2: Numerical results for Experiment 2.

Experiment 2: Plane Interface

The velocity model for this experiment is illustrated in Figure 7 and is given by

o(z, 2) = 2.5, for z<1.0, 7
185, for 2> 1.0.

The seismic survey consists of five shots with for z, = —2.0, —1.5, —1.0, —0.5,0.0 and z, = 0. For each
shot the first receiver is at a distance of 200 m from the source with 41 receivers spaced by 50 m. The
finite difference parameters are A = 10 m, At = 102 s, and the maximum time registrated is 7' = 2 s.
Figure 7 also shows the modeled data, for the third shot located at —1.0 km, using the exact velocity model
and without noise and with 30% random noise added.

Since we are considering that the velocity model can be described by a combination of base functions,
we take ¢o(x) = 0 and

1 Aif < < Aia .
pi(m,z) =4 0 TE=ESF g9 7, (28)
0, otherwise,
where Z; = 0.25 i = 1,2,...,5), 2¢ = 2 and 27 = 4. Therfore, the optimal solution is w* =

(2.5,2.5,2.5,2.5,3.5,3.5,3.5). We choose 2 = {w € R" | 1.5 < w; <5, i=1,2,...,7}, and for the
equality constraints given by equation (22) we have considered a vertical velocity profile at x4, = 1.5 km
and Q = 49 equally spaced values for z, between 60 m 2.46 km (black x’s in Figure 7a.

For the optimization procedure, the initial guesses were w® = (1.5,2.0,2.5,3.0,3.5,4.0,4.5) and
)\2 = 0, and we have used g,y = 10~% and feas = 1075, as the precisions for the stopping criteria for
optimality and feasibility, respectively. The maximum number of iterations for the method is 15, with a
maximum number of inner iteration equals to 20 (subproblems). The corresponding velocity model for w*
is depicted in Figure (8).

Table 2 shows the numerical results, which are very similar to the results for Experiment 1. The es-
timated values for the weights from the optimization procedure with constraints are much better than the
ones that came from the unconstrained procedure. In particular, for the UOp problem, the solution found is
almost the upper limit for the box defined by 2. We also have a new flag for UoOp30, indicating a failure
to obtain the solution.

Figure 9 shows the modeled data for the third shot at x;, = —1.0km and Figure 10 shows the differences
with the observed data. In Figure 11 we show the velocity models obtained with the optimized weights and
Figure 12 depicts the percentage errors.

We can observe that for the COp cases, the percentage errors are very small (a maximum of 4%)
whereas for the UOp cases the percentage errors can reach 50%. In Figure 13 we plot the velocity profile
used for the constraints compared to the estimated one.
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Figure 7: Data for Experiment 2: (a) Exact velocity model; (b) Third shot without noise; (c) Third shot
with the addition of 30% random noise.

Figure 8: Initial velocity model for Experiment 2.
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Figure 9: Modeled seismic data for the third shot in Experiment 2, after the optimization procedure: (a)
COp; (b) COp-vp5; (c) UOp; (d) COp30; (e) COp30-vpS; (f) UOp30.
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Figure 10: Difference between modeled and observed data for the third shot in Experiment 2: (a) COp;

(b) COp-vp5; (c) UOp; (d) COp30; (e) COp30-vpS5; (f) UOp30.
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Figure 11: Velocity models estimated by inversion in Experiment 2: (a) COp; (b) COp-vp5; (c) UOp; (d)

COp30; (e) COp30-vp5; (f) UOp30.
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Figure 12: Percentual error for the velocity in Experiment 2: (a) COp; (b) COp-vp5; (c) UOp; (d) COp30;
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CONCLUSIONS

We tested the problem of seismic inversion from the point of view of a constrained optimization problem
through an Augmented Lagragian method using the software ALGENCAN. The advantage of considering
constraints in the experiments performed show good benefits for the results when compared to the uncon-
strained problem. Further studies are necessary, mainly to apply the same approach to more a complex
velocity model and alanlyse diferent type of possible constraints.
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