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ABSTRACT

Multi-parameter stacking schemes like the common-reflection-surface (CRS) stack have shown to
yield reliable results even for strongly noise-contaminated data. This is particularly useful for low-
amplitude events such as diffractions, but also in passive seismic settings. As a by-product to a zero-
offset section with a significantly improved signal-to-noise ratio, the CRS stack also extracts a set of
physically meaningful wavefront attributes from the seismic data, which are a powerful tool for data
analysis. Although the attributes vary laterally along the events, an analysis of their local similar-
ity allows the global identification of measurements, which stem from the same diffractor or passive
source, i.e., from the same region in the subsurface. In this work, we present a fully automatic scheme
to globally identify and tag diffractions in simple and complex data by means of local attribute similar-
ity. Due to the fact that wave propagation is a smooth process and due to the assumption of only local
attribute similarity, this approach is not restricted to settings with moderate subsurface heterogeneity.

INTRODUCTION

In the recent years, seismic diffractions have gained increasing interest due to the fact that they are linked to
complex geology nowadays often encountered in hydrocarbon exploration. However, they often have small
amplitudes and thus are masked by high-amplitude events such as reflections. Local coherence analysis
by means of multi-parameter stacking methods such as the common-reflection-surface stack (CRS, Jäger
et al., 2001) not only significantly increases the signal-to-noise ratio, but also yields physically meaningful
wavefront attributes, which may be utilized for further data analysis, such as time migration (Mann, 2002),
diffraction separation (e.g. Dell and Gajewski, 2011; Schwarz and Gajewski, 2017), prestack data enhance-
ment (Baykulov and Gajewski, 2009), prestack diffraction enhancement (Bauer et al., 2016), or velocity
model building (Duveneck, 2004; Bauer et al., 2017b). In addition, the concept of wavefront attributes is
equally applicable to passive seismic data (Schwarz et al., 2016; Diekmann et al., 2017) for which it allows
simultaneous source localization and velocity inversion. In some of these methods, we aim to make use
of the fact that all measurements that belong to the same diffraction are linked to the same spatial region
in the subsurface. Whereas for time migration, prestack diffraction enhancement (Bauer et al., 2016) and
diffraction separation (Dell and Gajewski, 2011) this knowledge may lead to better images, in the case of
wavefront tomography for both active and passive data it provides an additional inversion constraint and
even may allow the quantification of localization uncertainties (Bauer et al., 2017a). However, we can
only make use of this feature if we are able to globally identify and tag diffractions in the data domain.
In this work, we present a fully unsupervised scheme, which utilizes the local similarity of the zero-offset
wavefront attributes obtained by the CRS stack for the global identification and tagging of diffractions.
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Figure 1: Synthetic diffraction example: (a) the zero-offset semblance, (b) the emergence angle α, (c) the
wavefront curvature RNIP, the apex coordinates (d) tapex and (e) xapex and (f) the resulting event tags.
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AUTOMATIC TAGGING OF DIFFRACTIONS

The zero-offset wavefront attributes (Hubral, 1983) are physically meaningful parameters that are encoded
in an events moveout and can be related to the first and second derivatives of the traveltime. A seismic
reflection in 2D is characterized by three wavefront attributes: two wavefront curvatures, RNIP and RN,
which describe two hypothetical waves excited by a point source placed on the normal-incidence point and
an exploding reflector segment around the NIP, respectively, and their emergence angle at the recording
surface α. In the case of a diffraction, however, the wavefront curvatures RN and RNIP coincide and thus,
the number of wavefront attributes reduces to two. Furthermore, the remaining curvature RNIP no longer
describes a hypothetical wavefront, but the actually measured wavefront of the diffraction. The hyperbolic
traveltime moveout for a diffraction is given by (Jäger et al., 2001)

∆t(t0, x0) =

√(
t0 +

2 sinα

v0
∆xm

)2

+
2t0 cos2 α

v0RNIP
(∆x2m + h2)− t0, (1)

where h is the half-offset, ∆xm is the displacement from the central midpoint x0, t0 the reference travel-
time, and v0 the near-surface velocity. In 3D, the concept of the wavefront attributes is the same, but their
number increases to five in the diffraction case and eight in the reflection case: two emergence angles and
three or six wavefront curvatures, respectively. The attributes α and RNIP can be transformed into apex
coordinates (Mann, 2002) via

xapex(x0, t0) = x0−
RNIPt0v0 sinα

2RNIP sin2 α+ t0v0 cos2 α
, t2apex(x0, t0) =

t30v0 cos2 α

2RNIP sin2 α+ t0v0 cos2 α
. (2)

While these apex coordinates were initially designed for time migration, we use them as an additional
criterion for our approach, since they are almost constant along a diffraction event.

For the global identification of events we assume that the wavefront attributes do not change abruptly
along an event, i.e., that their local similarity is high although they vary globally. Since individual events
are smooth no matter how strong the heterogeneity this assumption is reasonable. The first step is the
detection of valid events, which is carried out trace-wise. For each sample with a coherence larger than a
pre-defined threshold, we calculate the local similarity of the corresponding wavefront attributes within a
window of n samples both above and below the considered sample i. The local similarity Sφ of a given
attribute φ is the semblance coefficient (Neidell and Taner, 1971) given by

Sφ(i, j) =
1

2n+ 1

(∑i+n
k=i−n φ(k, j)

)2
∑i+n
k=i−n φ(k, j)2

, (3)

where j is the current trace. If the local similarity of all attributes (α, RNIP, tapex, and xapex) is close to
1, the event is valid and a tag is assigned to it. If the previous n samples of the trace already contain an
event tag, the corresponding wavefront attributes are compared directly by calculating their similarity via
equation (3). If this similarity is close to 1 for all attributes, the event tag is copied. Otherwise, a new event
tag is assigned to the current event. Next, we calculate the similarity of the assigned event tags Stags for
all traces.

After the detection of events on all traces, the contributions belonging to the same diffraction have to
be matched laterally. For that, we define an additional window in midpoint direction, i.e. the maximum
number of neighboring traces to be considered for the search of matching events. At each previously
identified event, i.e. at each local maximum of Stags, we calculate the local moveout of the event via
equation (1). Then we step one trace to the left while shifting the search window into the direction of the
event’s moveout. In the resulting window we search for valid events and, for each found event, calculate
the similarity of the corresponding wavefront attributes. If a matching event is found, the search is stopped
and the event tag is copied to the respective sample. Otherwise, a new event tag is assigned to the sample
under consideration. In order to remove outliers, we sort out tags with very few occurrences in the end.
The proposed algorithm has also been implemented in 3D. However, in 3D the apex coordinates are not
yet considered and instead of using the semblance coefficient for the calculation of the attribute similarity,
the attributes are compared directly in the current implementation.
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Figure 2: An excerpt of a field dataset from the Eastern Mediterranean: (a) the coherence after diffraction
separation, and (b) the tags assigned to the diffractions.

DATA EXAMPLES

Figure 1 shows the input and the result of our proposed approach for a simple synthetic diffraction dataset,
which contains eight diffractions in a vertically inhomogeneous medium and Gaussian noise with a S/N
of 5. In the upper line, the results of the zero-offset CRS stack are displayed: the semblance section, the
emergence angle α and the wavefront curvature RNIP. Figures 1(d) and 1(e) show the apex coordinates
calculated via equations (2). The resulting event tags are displayed in Figure 1(f). The result shows that all
eight diffractions could be identified by assigning them a unique tag. The only problems occurred on the
right branch of the two diffractions on the upper left side of the section, which could not be distinguished
due to their vicinity.

Figure 2 shows the result of the event tagging for an excerpt of a field dataset from the Eastern Mediter-
ranean, which contains a significant amount of diffracted energy. The diffraction coherence estimated after
an attribute-driven diffraction separation (Dell and Gajewski, 2011) is displayed in Figure 2(a) and the
resulting event tags in Figure 2(b). Due to the imperfect diffraction separation apparent in the coherence
section, not all diffractions could be identified completely. However, the result shows that the majority of
the coherently imaged diffractions could be individually identified with unique tags.

Figure 3 shows two crosslines of a simple synthetic 3D diffraction dataset similar to the one presented
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Figure 3: Two crosslines of the globally identified diffractions for a synthetic 3D diffraction dataset. The
left sides (a,c) show the coherence obtained from the 3D CRS stack and the right sides (b,d) show the
automatically assigned event tags.

in 2D. The left sides of Figure 3 show the semblance sections obtained from the CRS stack and the right
sides show the corresponding event tags. The results reveal that all five diffractions could be identified and
were assigned a unique tag. Even the two diffractions lying close to each other in Figure 3(b) could be
distinguished due to the larger number of wavefront attributes available in 3D, which better constrain the
problem.

CONCLUSIONS

We have presented a fully unsupervised scheme, which permits the detection diffractions based on their
local coherence and analyzes the local similarity of their wavefront attributes to globally identify and tag
common contributions. Results for 2D and 3D synthetic diffraction data and for a complex 2D field dataset
suggest that the assumption of local attribute similarity is valid and that diffractions can be identified suc-
cessfully even in complex settings due to the stability of the wavefront attributes. The global identification
of diffractions paves the way for a better constrained wavefront tomography for diffractions and passive
seismic data and for the assessment of uncertainties of velocity and localization.
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