
142

5D INTERPOLATION AND REGULARIZATION WITH
WAVEFRONT ATTRIBUTES

Y. Xie and D. Gajewski

email: yujiang.xie@studium.uni-hamburg.de
keywords: 5D interpolation, wavefront attributes, differential evolution (DE)

ABSTRACT

RTM and FWI usually require regularly spaced data. However, as some natural and anthropogenic
reasons, real 3D seismic data, sometimes, are irregularly and sparsely sampled, which will restrict
the usage of the RTM and FWI in actual applications. As an interpolation technique to regularize
and enhance the quality of data with low signal-to-noise (S/N), the partial 3D common-reflection-
surface (CRS) method was proposed. However, two potential problems still need to be addressed
while extending this technique into a 5D interpolation and regularization. The fundamental one is that
the CRS wavefront attributes would be better determined simultaneously by a global search strategy.
The second one is that an azimuth-based regularization would be considered in different azimuth
direction, which will benefit for a further anisotropic traveltime operator. With the 3D SEG/EAGE
C3WA data as an example, our results indicated that the partial 3D CRS can perform well in the 5D
interpolation and regularization if the above two problems are addressed.

INTRODUCTION

3D prestack data are generally recorded in 5D data space. As some natural and anthropogenic factors, the
3D prestack data are often irregularly and sparsely sampled during data acquisition, which would affect the
quality of many wave-equation migration and inversion methods, such as reverse time migration (RTM)
(e.g., Baysal et al., 1983), full wavefield inversion (FWI) (see e.g., Virieux and Operto, 2009). In order to
resolve this problem, one simply method is to introduce an interpolation approach. As a traveltime-based
interpolation technique to regularize and enhance the quality of data with low signal-to-noise (S/N), the
partial common-reflection-surface (CRS) method was proposed by Baykulov and Gajewski (2009), which
can use geological information from neighboring CMP gathers, thus significantly increase the S/N after
the interpolation. In the 3D case, the partial 3D CRS (Baykulov and Gajewski, 2010) was proposed. It is
actually a 5D interpolation technique in the time domain. However, two potential problems are still needed
to be resolved in this technique. The fundamental one is that the CRS wavefront attributes would be better
determined by a global search strategy. The second one is that, in each 3D CMP gather, an azimuth-
based regularization will be considered. The azimuth-based regularization will benefit for an anisotropic
traveltime operator. In order to perform a global CRS search, the differential evolution (DE) algorithm
(Storn and Price, 1997) is applied. As examples, the 3D SEG/EAGE C3WA data are applied.

THEORY

The partial 3D CRS traveltime operator can be derived from the classical hyperbolic 3D CRS traveltime
approximation (e.g., Müller, 2003):

t2hyp = (t0 + wTz md)
2 + mT

d Nmd + hTMh, (1)
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where wz includes the near-surface velocity (v0), the dip (α) and azimuth (λ) of the reference ray. The
midpoint parameter satisfies: md = m−m0, where m0 is a considered CMP position, and m is a neighbor-
ing midpoint of the considered CMP. Parameter h is half offset. The 2 × 2 symmetrical matrices M and N
are related to the curvatures of the normal-incidence-point (NIP) wavefront and the normal (N) wavefront,
respectively. The superscript T denotes the transpose of a matrix.

To constructe the partial 3D CRS operator, the ZO traveltime t0,p of the partial 3D CRS operator is
required. For one sample A on an arbitrary trace with half offset h = (offx, offy), the t0,p can be found or
fitted by

t222(offx, offy) = t211 + hTMh. (2)

We assume the ZO traveltime t0,p = t11 if the calculated t22 satisfies: (t − t22)2 ≤ fmin2, where t11
is the trial ZO traveltime along the ZO trace, and t22 is the hyperbolic traveltime calculated by Equation 2.
The coefficient fmin can be automatically computed by the wavefront attributes of two neighboring ZO
samples around the fitted t0,p. A refinement of the t0,p with sample A is unnecessary if the ZO attributes
obtained from t0,p is worse or if the wavefront attributes at t0,p have a strong local variation. The wavefront
attributes at t0,p can be read from the attribute files after the t0,p is determined. Hence we construct the
partial 3D CRS opeator by

t2hyp,p = (t0,p + wTz md)
2 + mT

d Nmd + hTMh. (3)

Equation 3 is a 5D interpolation operator in the 5D data space: one temporal dimension and four spatial
dimensions. With the 5D interpolation operator, one can interpolate a simple at A (m0,x, m0,y , offx,
offy, t), where md = (m0,x, m0,y).

METHOD

Differential Evolution

We perform a global CRS wavefront attribute search with the DE algorithm, which is a variant of evolu-
tionary algorithms solved an optimization problem by the evolutionary ideas of natural selection. The DE
algorithm has been used in many fields and has already shown good convergence properties (Price et al.,
2006). The general DE mutation operator is given by

Ni,j = Pr1,j + F (Pr2,j − Pr3,j), (4)

where r1, r2 and r3 are three random agents picked from the generation. They must be distinct from each
other as well as distinct from the considered agent. Generally, the differential weight F is set between [0
2]. For each agent i, the mutant operator is

[Ui,j =

{
Ni,j pj < CR or j = L,
Pi,j Otherwise.

]
(5)

whereCR is the crossover probability set between [0 1], pj ∈ [0 1], and L is an integer randomly generated
between [0 7]. In this work, the parameters F and CR are estimated from the data. Alternatively, a
good choice of the F and CR for various optimization problems was suggested by Pedersen (2010). The
accuracy of the wavefront attributes generated by the DE algorithm is checked by the semblance (e.g.,
Neidell and Taner, 1971). In each generation, the agents are updated with a higher semblance and the set
of wavefront attributes with the best semblance is kept for the next generation.

Azimuth-based regularization

Azimuth-based regularization can be considered in a 3D CMP gather. The trace location to be regularized
in each considered CMP gather is given by h = (offx, offy). For each azimuth direction iaz ∗ δλ in the
CMP gather, seeing Figure 1, we have offy = tan(0 + iaz ∗ δλ) ∗ offx, where δλ is azimuth interval,
and iaz indicates different azimuth direction. The offx is given by offx = k ∗ δhx, where δhx is the
half-offset increment in the x direction, and integer k = 0, 1, 2, ..., intmax(hx)/δhx. The intmax() retures
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the integer part of the maximum hx. With the relationship of offx and offy, a full, wide or narrow
azimuth regularization within [0 2π] can be chosen freely in the considered 3D CMP gather (see Figure 1).
The δλ and δhx should be predetermined by users in different data. With the 3D SEG/EAGE C3WA data
as an example, the azimuth range regularized here only set between [π/4, π/2] in each 3D CMP gather (see
Figure 1c), where we use δλ = 15 ∗ π/180 and δhx = 40 m. The streamer-line direction is referenced as
azimuth = π/2 since the 3D SEG/EAGE C3WA data has long offset in hy direction.
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Figure 1: Determination of t0,p with a traveltime fitting operator (a) and different azimuth regularization
strategies. (b) Fixed azimuth regularization (e.g., azimuth = 0). (c) Narrow azimuth regularization. (d)
Regularizing a trace at position A(offx, offy) with azimuth of iaz ∗ δλ. (e) Wide- or full-azimuth
regularization.

EXAMPLES AND RESULTS

Examples shown in this work use the 3D SEG/EAGE C3WA open data. Figure 2a shows its velocity model.
More details about the SEG/EAGE salt data can be found in the SEG Wiki open data. A preprocessing for
the SEG/EAGE data is shown by Xu et al. (2004). To demonstrate the performance of the CRS-based
interpolation method, some traces in the data are randomly killed and a random Gaussian noise with S/N =
10 was added to the seismograms. Figure 2b show a CMP gather (CDP 182113) with gaps. For the sake of
simplicity, in this CMP gather, only traces with a fixed azimuth = π/2 are shown. We can see that the S/N
of the gather is increased significantly after the interpolation. The conclusions from other azimuths are the
same and not shown here, e.g., azimuth = 5π/12, π/3, π/4, all of which illustrate that a high-quality data
can be achieved if the partial 3D CRS is applied with the globally determined wavefront attributes.
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Figure 2: Velocity of the 3D SEG/EAGE model (a) (Xie and Gajewski, 2016), and one CMP gather before
(b) and after (c) the partial 3D CRS method, where the CRS wavefront attributes are determined globally
with the DE algorithm.

To better reveal the salt body after the interpolation, two common-offset sections of the interpolation
volume are shown. Figure 3 shows inline 220 of the first common-offset volume, i.e., h = (0, 0). Figure 4
illustrates inline 220 of the second common-offset volume, i.e., h = (0, 1000). Both the zero- and far-offset
inline sections indicate that the data quality is improved after the partial 3D CRS method, especially un-
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der the salt body and the large gap area (Figure 4a), where the gaps are filled with information from its
neighboring traces of current CMP and its neighboring CMPs. The wavefront attributes used here are de-
termined from the DE algorithm. The interpolation results with wavefront attributes from the conventional
pragmatic approach are not shown here due to their poor image quality, which will be given in our other
work.
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Figure 3: Inline 220 of zero offset volume. (a) Raw gapped section. (b) Section with partial 3D CRS
method. Here all traces have the same half offset h = (0, 100), and each CMP has only one trace.
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Figure 4: Inline 220 of a far common-offset volume. (a) Raw gapped section, particularly see the right
side gap. (b) Section with partial 3D CRS method. Here all traces have the same half offset h = (0, 1000),
and each CMP has only one trace.

CONCLUSIONS

We extend the partial 3D CRS method into a 5D interpolation and regularization technique, where the CRS
wavefront attributes would be better determined by a global search strategy, e.g., the evolutionary-based DE
algorithm. An azimuth-based regularization within each 3D CMP gather is also presented here. Selection
of different azimuth regularization strategies in the CMP gather is data dependent. Limited by the offset
range of the 3D SEG/EAGE C3WA data, only the classical hyperbolic 3D CRS method is shown in this
work. For a data with very large offsets, the 3D non-hyperbolic CRS or 3D finite-offset CRS could be
applied straightforward, and the anisotropic traveltime operators can also be utilized if the data input has
anisotropic properties.
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