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ABSTRACT

The classical common-midpoint stack, which sums along offsets, suffers in challenging environments
where the acquisition is sparse. In the past, several multiparameter techniques were introduced that
incorporate many neighboring common-midpoints in the stacking process. This increases data redun-
dancy and reduces noise. Multiparameter methods that can be parametrized by the same wavefront
attributes are the common-reflection-surface (CRS), implicit CRS, non-hyperbolic CRS and multi-
focusing. CRS-type operators use a velocity shift mechanism to account for heterogeneity. Mul-
tifocusing on the other hand uses a different mechanism: a shift of reference time. We formulate
multifocusing such, that it uses the same mechanism as the CRS-type operators and compare them
on a marine data set. In turn, we investigate the behavior of time-shifted versions of the CRS-type
approximations. In order to provide fair comparison, we use a global optimization technique, differ-
ential evolution, which allows to accurately estimate a solution without initial bias. Our results show,
that the velocity shift mechanism performs, in general, better than the one incorporating time shift.
The non-hyperbolic operators are also less sensitive to the choice of aperture and perform better in the
case of diffractions than conventional CRS, since diffractions are of higher order. Since the computa-
tional cost of non-hyperbolic CRS is almost the same as the one of conventional hyperbolic CRS but
generally leads to a superior fit, we recommend its use in future.

INTRODUCTION

The common-midpoint (CMP) stack by Mayne (1962) has been successfully used for half a century and is
still a common strategy. This method is very robust in most cases but does not perform well in noisy data.
Alternative methods which use more traces to utilize data redundancy and reduce noise have been proposed
over the last two decades. Some of those can be parametrized with the same attributes. In this work we fo-
cus on four multiparameter stacking approaches: multifocusing (MF, Gelchinsky et al., 1999; Landa et al.,
2010), the common-reflection-surface (CRS) stack (Jäger et al., 2001), non-hyperbolic CRS (nCRS, Fomel
and Kazinnik, 2013) and implicit CRS (iCRS, Schwarz et al., 2014). These stacking approaches can all be
expressed in terms of three wavefront attributes (Hubral, 1983) but differ in their mathematical expression.
Comparisons between these methods have been done in the past (e.g., Dell et al., 2013; Schwarz et al.,
2015). However, some promising stacking methods were not included in these previous studies. Dell et al.
(2013) compared the CRS variants using a normal-moveout (NMO) velocity guide function to estimate the
attributes. In their study conflicting dips, which often are mainly caused by diffractions, are not carefully
accounted for. It was shown that double-square-root operators perform better for diffraction events. Due
to their comparably low amplitudes diffractions are often masked by stronger primary reflections. The full
potential of higher-order CRS-type approximations can therefore not be revealed, when conflicting dips are
not properly treated. In addition, although a quantitative comparability is generally difficult to achieve, a
comparison of the computational efficiency, thus far, has not been addressed in this context.
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Schwarz et al. (2015) introduced a new parametrization for CRS-type stacking operators in terms of
time and velocity shifts. multifocusing, in contrast to all other approaches, utilizes a different mechanism,
a time shift, to perturb the moveout, whereas the other methods shift the velocity in order to account for
overburden heterogeneity. Schwarz et al. (2015) also introduced a recipe to translate time shifts into veloc-
ity shifts and vice versa, which allows the comparison of all the operators in the same domain. However, in
this study the authors used a synthetic model and estimated attributes based on an initial solution obtained
by the so called pragmatic approach (Jäger et al., 2001) which can be inaccurate for complex geology
(Walda and Gajewski, 2015).
Since in all previous studies, hyperbolic and higher-order CRS expressions including multifocusing were
formulated in terms of the two aforementioned mechanisms, they were not compared on common ground,
i.e., the gained results are hard to appreciate. In this work, we present an unbiased comparison of the
double-square-root operators and conventional hyperbolic CRS for both possible mechanisms consistently,
using a global optimization scheme and sophisticated conflicting dip processing on a strongly scattering
industrial field data set.

MULTIPARAMETER STACKING

The CMP method stacks data along a traveltime curve in offset direction

S(t0,m0) =

∫∫
P (t(t0, h),m0, h)dh . (1)

This method uses only data redundancy in offset direction which becomes problematic if only few traces
are available. Challenging data, where CMP processing does not produce desired results, benefit from
stacking techniques where the summation is carried out in offset and midpoint direction

S(t0,m0) =

∫∫
P (t(t0,∆m,h),m, h)dmdh . (2)

In Equation 2, the quantity ∆m = m0 −m is the midpoint displacement. Since neighboring midpoints m
are stacked into the midpoint m0 as well, a higher amount off traces are summed which results in a better
signal-to-noise ratio. However, the traveltime description depends on more parameters compared to clas-
sical CMP stacking. Hubral (1983) introduced wavefront attributes that can be used as a parametrization
to describe the required traveltime surface t(t0,∆m,h) shown in Figure 1. Traveltime operators that use
these attributes can be classified as common-reflection-surface (CRS) type operators. They differ in their
mathematical structure which stem from the underlying assumptions. While CRS itself is a hyperbolic
single-square-root traveltime expression, the other three introduced in the following sections are double-
square-root operators.

Multifocusing

Planar multifocusing introduced by Gelchinsky et al. (1999) and revisited by Landa et al. (2010) attempts
to express the traveltime in terms of the traveltime of a central ray and two corrections at the source and
receiver position from a paraxial ray. To achieve this, a parameter to focus the NIP and N wave for a
planar reflector is required which reads

R± =
1± γ

1
RN
± γ

RNIP

, (3)

γ =
∆xs −∆xg

∆xs + ∆xg + 2 sinα
RNIP

∆xs∆xg
, (4)

where ∆xs = ∆m− h and ∆xg = ∆m+ h. The quantity γ is called focusing parameter, which together
with the equation

t(∆m,h) = t0 +
1

v0

√
(R+)2 + 2R+∆xs sinα+ (∆xs)2

+
1

v0

√
(R−)2 + 2R−∆xg sinα+ (∆xg)2 −

R+ +R−

v0
, (5)
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Figure 1: Two hypothetical experiments: The normal-incidence-point wave is shown in the middle with
its radius of curvatureRNIP . The normal wave with the radius of curvatureRN , is caused by an exploding
reflector experiment (right). Both have the angle of emergence α (left).

leads to the multifocusing operator. However, multifocusing as presented here and in literature uses a time
shift to account for heterogeneity. Therefore, previous comparisons of multifocusing with other CRS type
operators as in (Tygel et al., 1999; Landa et al., 2010; Fomel and Kazinnik, 2013) are not on common
ground.

Common-reflection-surface

The CRS stack is a multiparameter stacking technique (Müller, 1999; Mann et al., 1999; Jäger et al., 2001;
Mann, 2002) that considers neighboring midpoints as well as the offset (see Figure 2) while the CMP
method uses only offsets. It describes an event in the vicinity of the zero-offset sample by a second-order
traveltime approximation. Since more traces are stacked, the signal-to-noise ratio is improved significantly.

The CRS operator is formulated in terms of three wavefront attributes, which are related to two hypo-
thetical one-way experiments as illustrated in Figure 1. The resulting two waves are described by the angle
of emergence α of the zero-offset ray and the corresponding radii of curvature: RN for the normal (N)
wave and RNIP for the normal-incidence-point (NIP) wave (Hubral, 1983). The N wave is generated by
a fictitious exploding reflector experiment around the normal-incidence-point. The NIP wave is generated
by a fictitious point source placed at the normal-incidence-point.

Using the notation by Fomel and Kazinnik (2013), the CRS formula in its hyperbolic expression can be
written as

t(t0,∆m,h) =
√
F (∆m, t0) + b2h2 , (6)

F (t0,∆m) = (t0 + a1∆m)2 + a2∆m2 . (7)

The coefficients a1, a2 and b2 can be related to the wavefront attributes α, RNIP and RN as

a1 =
2 sinα

v0

a2 =
2t0 cos2 α

v0RN

b2 =
2t0 cos2 α

v0RNIP
. (8)

The quantity v0 is the near surface velocity.

Non-hyperbolic common-reflection-surface

Fomel and Kazinnik (2013) introduced another extension of the conventional CRS approach. In contrast to
iCRS the non-hyperbolic common-reflection-surface (nCRS) method assumes a hyperbolic reflector since
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Figure 2: The CRS method stacks along the fat black traveltime surface and assign the value to the black
dot.

there is no closed form solution for a circular reflector. This requires additional iterations to estimate the
reflection point angle θ for the iCRS operator. The nCRS does not need this iterations and therefore saves
computation time.

The nCRS operators reads

t(t0,∆m,h) =

√
F (t0,∆m) + ch2 +

√
F (t0,∆m− h)F (t0,∆m+ h)

2
, (9)

where F is defined according to Equation 7 and c = 2b2+a21−a2 accounts for the asymmetry of the source-
receiver traveltime contributions. From an implementation point of view, it requires very few additional
computations compared to CRS (see Equation 6) which makes it very easy and efficient to implement in
existing CRS codes. Furthermore, calculating the second square root is not as problematic since most
quantities can be calculated before.

Implicit common-reflection-surface

The implicit common-reflection-surface (iCRS) stack is a further development of the common-reflection-
surface (CRS) stack. In contrast to the conventional CRS technique, iCRS assumes a circular reflector in
the subsurface.

The iCRS operator is another multiparameter stacking technique derived by Schwarz et al. (2014). It
assumes a locally circular reflector as shown in Figure 3. It depends on three parameters of the circle (xc,
H and R) as well as the background velocity of the medium V and reads

ts(∆m,h) =
1

V

√
(∆m− h−∆xc −R sin θ)2 + (H −R cos θ)2 ,

tg(∆m,h) =
1

V

√
(∆m+ h−∆xc −R sin θ)2 + (H −R cos θ)2 ,

t(∆m,h) = ts(∆m,h) + tg(∆m,h) , (10)

where θ is the reflection point angle on the circle and ∆xc the displacement of the circle relative to the
central midpoint location m0. The reflection angle θ on the circle has to be calculated additionally. It
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Figure 3: Geometrical deviation of the iCRS operator.

depends on the traveltimes ts and tg

tan θ = tan θ0 +
h

H

ts − tg
ts + tg

(11)

and can be solved in an iterative fashion with a first guess provided by a zero-offset ray. In this case, the
dependence on ts and tg vanishes

tan θ0 =
∆m−∆xc

H
. (12)

Schwarz et al. (2014) showed that a single iteration is already sufficient to achieve an accurate fit in hetero-
geneous media. The parameters of the circle can be related to the CRS wavefront attributes by

VNMO =

√
2v0RNIP
t0 cos2 α

V =
VNMO√

1 +
V 2
NMO

v20
sin2 α

∆xc =
−RNIP sinα

cos2 α
(

1 +
V 2
NMO

v20
sin2 α

)
H =

v0RNIP

VNMO cos2 α
(

1 +
V 2
NMO

v20
sin2 α

)
R =

v0RN
VNMO cos2 α − VNMOt0

2√
1 +

V 2
NMO

v20
sin2 α

. (13)

Therefore, the iCRS traveltime surface can be written in terms of the CRS wavefront attributes α,RNIP
and RN .

TIME SHIFT AND VELOCITY SHIFT

All presented approximations describe paraxial traveltimes and are functions of the same wavefront at-
tributes

t = t(α,RNIP , RN ). (14)
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Figure 4: Illustration of the two possible mechanisms to perturb the moveout to account for overburden
heterogeneity. The solid line represent the actual unperturbed (black) and perturbed (red) moveout. For the
velocity shift, the slope of the moveouts asymptote (meshed) is changed. In case of the time shift, the time
of origin of the asymptote is changing.

In the recent work of Schwarz et al. (2015), the authors showed that the multifocusing moveout, despite
being parametrized in terms of the same kinematic wavefront attributes, behaves differently from all other
approaches when heterogeneity is present. In this study they found, that a time shift is responsible for
perturbing the moveout, whereas for the moveout of CRS-type operators, a velocity shift accounts for
velocity changes in the overburden. In Figure 4 the conceptual difference between either shifting the time
or the velocity is illustrated. Schwarz et al. (2015) introduced a simple recipe to transform time shifts to
velocity shifts and vice versa,

1

v2shift
=

(
sinα

v0

)2

+
t0

tshift

(
1

v20
−
(

sinα

v0

)2
)

, (15)

where v0 is the near surface velocity, t0 the zero-offset reference traveltime and tshift = 2RNIP /v0 the
shifted zero-offset traveltime. Equation 15 connects both parametrizations. The time shift mechanism
can be illustrated in the framework of geometrical optics and since the dip is naturally accounted for,
Equation 15 can be considered as a generalized osculating equation (see De Bazelaire, 1988). This allows to
freely choose the desired mechanism to account for heterogeneity. However, this also means each operator
introduced in literature has two versions. Four CRS type operators are available in literature, namely
multifocusing (MF, Gelchinsky et al., 1999; Landa et al., 2010), CRS (Jäger et al., 2001), non-hyperbolic
CRS (nCRS) introduced by Fomel and Kazinnik (2013) and implicit CRS (iCRS, Schwarz et al., 2014).
This means there is a choice of eight CRS type traveltime expressions that can be used in Equation 2. In
order to evaluate differences in the practical application we apply all operators under the same conditions
to marine industrial field data. This means we use the global optimization technique differential evolution
to estimate the CRS wavefront attributes with the same aperture for all approximations. Furthermore, we
do not use a velocity guide function to better evaluate the performance differences of the operators. A
guide function would otherwise introduce a favorable or unfavorable bias, since velocities might differ,
depending on the operator. Since the strongest differences are expected for diffractions, we also account
for conflicting dips by dividing the α search space into small cluster. This allows to recognize different
events in separate α cluster (Walda and Gajewski, 2015).

MARINE DATA EXAMPLE

In order to find the most suited operator, especially for diffraction imaging, their performance under the
very same conditions, as described above, are compared. The sole difference is the operator used for
traveltime fitting to calculate the semblance.
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Figure 5: Stacked section in the north east of the profile. The arrow indicates the location of the sample
where the objective function is investigated.

A method to gain more insight on the behavior of the operators and how they shape the objective
function is to calculate the objective function for a specific test case. For that purpose, for a test sample
shown by the arrow in Figure 5, the α-RNIP planes for a constant RN of every operator is plotted in
Figure 6. The midpoint aperture is 800 m and the target-offset ratio approximately 2:1. The color-coded
semblance is clipped to show the diffractions, since the reflection has a much higher semblance. Since this
is far beyond the hyperbolic limit, the CRS operator cannot fit the diffractions anymore and they are hardly
recognizable. Furthermore, the estimated attributes differ as well as the general shape of the objective
function. This is not so much the case for the higher-order operators multifocusing, iCRS and nCRS. They
do not differ at the event location, only further away in the noisy part of the objective function.

A comparison of the fitted semblance value allows to evaluate how successful the operators fitted the
data. Since every operator has its velocity and time shifted version, it is necessary to investigate which
representation is better suited for stacking. Figure 7 shows the semblance of velocity-shifted nCRS as
a reference and the difference plots of three exemplarily chosen operators. In the difference plots, a red
color represents higher semblance values for the velocity-shifted version whereas blue colors show higher
semblance for the time-shifted operator. Independent of the actual traveltime expression, the velocity-
shifted versions show a higher coherence almost everywhere and a better fit for the same events.

Figure 8 shows the semblance obtained by nCRS and the respective difference plots of nCRS and the
other operators in their velocity-shifted version. Red colors represent a better fit for nCRS, blue colors for
CRS, iCRS or multifocusing. The difference plots of nCRS minus iCRS and nCRS minus multifocusing
show no significant differences. In terms of accuracy they perform similarly on the marine field data.
However, they show differences compared to the hyperbolic CRS represented by the difference plot of
nCRS minus CRS. Differences for reflections are not visible, which is not surprising, because all considered
expressions coincide up to second order. In case of diffractions, mainly red colors appear which means
a better fit for nCRS. This is no surprise because diffractions are higher order phenomena. Since the
differences of nCRS to iCRS and multifocusing are almost nonexistent, the differences are the same for all
non-hyperbolic operators compared to hyperbolic CRS. The fit of diffractions is better for non-hyperbolic
operators. This also shows in the estimated attributes, exemplarily shown for the moveout velocity in Figure
9. A reference velocity field, estimated using nCRS and difference plots of nCRS minus CRS, iCRS and
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(a) CRS (b) Multifocusing

(c) nCRS (d) iCRS

Figure 6: Objective functions of (a) CRS, (b) multifocusing, (c) nCRS and (d) iCRS for the sample shown
by an arrow in Figure 5. The offset-target ratio is 2.0 which exceeds the hyperbolic limit significantly.
Therefore, the objective function of the conventional CRS operator differs severely from the non-hyperbolic
variants. The difference between the individual non-hyperbolic expressions however, is negligible.

multifocusing are shown. Red colors show a higher moveout velocity of nCRS while blue colors indicate
higher moveout velocities for the other operators. The biggest differences are visible for nCRS minus CRS.
In case of diffractions, CRS shows higher moveout velocities close to the apex while at the diffraction tail,
the approximation of nCRS leads to higher moveout velocities, which seems more accurate because the
semblance of nCRS is higher. nCRS and multifocusing show very similar moveout velocities apart from
areas of very low coherence. Interestingly, even though the differences in the coherence between nCRS
and iCRS are almost nonexistent, the moveout velocities show small differences. For dipping events, the
moveout velocity of iCRS is higher than for nCRS. Unfortunately it is hard to tell, which is more accurate.
Therefore, the obtained velocities should be used carefully.

The observation, that non-hyperbolic operators perform better in case of diffractions than hyperbolic
CRS when diffractions are concerned, is further supported by a diffraction separation shown in Figure 10.
An excerpt of a diffraction separation using nCRS and CRS is compared. The excerpt area is highlighted
by the red box. In case of nCRS, more diffractions become visible and are imaged more continuously. The
arrows highlight diffractions where this can be observed in particular.
Figure 11 shows a comparison of the computational cost of the compared operators. The additional com-
putational overhead of the velocity-shifted nCRS is very small (about 5 %) while the better accuracy for
diffractions and lower sensitivity with respect to the aperture are strong benefits. Depending on the task,
nCRS, in our complex field data example, provides the best trade-off between accuracy, stability and com-
putational effort.
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(c) Multifocusing
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Figure 7: Semblance section obtained by (a) the velocity-shifted nCRS operator and difference plots of
velocity-shifted operators to their time shifted counterparts for (b) CRS, (c) multifocusing and (d) nCRS. A
red color indicates a higher semblance for the velocity-shifted operator, while blue colors indicate a better
semblance of time shifted operators.

DISCUSSION

We have compared multiparameter operators that can be parametrized by the same wavefront attributes.
Since the major difference of the quality of the fit is due to the single-square-root and double-square-root
expression rather than the used operator, we think we should focus the research into another direction
instead of developing new approximations. The results show, that there is practically no difference in
the actual application between multifocusing, nCRS and iCRS. This requires to formulate multifocusing
such that it uses the same mechanism to account for heterogeneity as CRS-type operators. The recipe to
transform multifocusing to a velocity-shifted formulation and the CRS variants to a time-shifted version,
in our opinion, leads to an unification where the differentiation is rather due to the single-square-root and
double-square-root. In future it might be better to refer to those as approximation of the CRS family.

Since CRS and nCRS are also available in 3D in literature, there are strong arguments to use nCRS
in future, since its a double-square-root approximation and outperforms the single-square-root in terms of
accuracy and uses less computational time than the other double-square-root expressions.

CONCLUSIONS

We investigated available multiparameter stacking operators from literature, that can be parametrized by
the CRS wavefront attributes. Our results show, that in general a non-hyperbolic operator should be used
rather than the hyperbolic CRS. They generally provide a better fit and depend less on the choice of the
stacking aperture. The question which specific operator should be used in terms of accuracy cannot be
answered since multifocusing, iCRS and nCRS perform similarly in that respect. However, in our global
optimization scheme nCRS uses less computation time since the semblance evaluation is not as expensive
as in iCRS and multifocusing. Those require additional computations such as the focusing parameter or
calculation of the reflection angle on the sphere.
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(c) Multifocusing
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Figure 8: Semblance section obtained by (a) the velocity-shifted nCRS operator and difference plots of
velocity-shifted nCRS to the other velocity-shifted CRS-type operators: (b) CRS, (c) multifocusing and (d)
iCRS. A red color indicates a higher semblance for the velocity-shifted nCRS operator, while blue colors
indicate a better semblance the other velocity-shifted operator.

Every operator can be formulated in terms of a velocity or a time shift. The comparison shows that velocity-
shifted versions perform better computationally and lead to a more accurate fit. Since multifocusing up to
this point appeared in the time shifted version in literature, it is recommended to transform it into its
velocity-shifted version to obtain a better performance. However, velocity-shifted nCRS provides the best
trade-off between accuracy and computational cost.
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Figure 10: Stacked section of the fault system. The red box shows the excerpt shown on the right, where a
diffraction separation is performed using attributes obtained by the CRS and nCRS operators. Red arrows
indicate improvements achieved by nCRS compared to CRS. multifocusing and iCRS are not shown since
they performed similar to nCRS.
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(a) Velocity-shifted (b) Time-shifted

Figure 11: Comparison of the computation time for each operator in their velocity (a) and time-shifted
version (b). The hyperbolic CRS in the velocity-shifted version is the reference (100 %). The yellow
color represents the calculation time of CRS while the red color is the additional computational cost of the
corresponding operator.


