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ABSTRACT

Multiparameter methods have developed into standard tools in seismic data processing. However,
most operators are restricted to application to isotropic media. Whereas application of an isotropic
operator will still lead to satisfactory stack results, further processing steps that interpret and evaluate
isotropic stacking parameters will lead to erroneous results if anisotropy is present but not accounted
for. In this paper, we derive relationships between the stacking parameters and anisotropic wavefield
attributes that allow us to apply the common-reflection-surface (CRS) type operator to 3D media with
arbitrary anisotropy for the zero-offset and finite-offset configurations. The operator itself is still
parameterised purely in terms of wavefield attributes that are measured in the acquisition surface, i.e.,
no model assumptions are made. Numerical results confirm that the accuracy of the new operator is
of the same order as that of its isotropic counterpart.

INTRODUCTION

Stacking methods have been applied in seismic data processing for more than 50 years for several reasons.
First, stacking results in a simulated zero-offset section, i.e., a section where source and receiver coordinates
coincide. Such a stacked section displays an enhanced signal-to-noise ratio compared to the original data.
Furthermore, additional information is obtained in terms of stacking parameters.

In the classic common midpoint (CMP) method, stacking is carried out over offsets (Mayne, 1962).
The stacking parameter, assumed to coincide with the normal moveout (NMO) velocity, is determined by
semblance analysis (Taner and Koehler, 1969). Since the CMP concept was introduced several extensions
have been suggested to stack not only over offsets but also over midpoints. Carrying out a stack in both
midpoint and offset directions increases the number of traces and thus enhances the signal-to-noise ratio
even further. Also, the stacking surface is described by additional parameters or wavefield attributes and
therefore yields even more information.

The most prominent examples for these multiparameter stacking operators are the common reflection
surface (CRS) method (Müller, 1999), multifocusing (Gelchinsky et al., 1999), and more recently non-
hyperbolic CRS (Fomel and Kazinnik, 2013) and implicit CRS (Schwarz et al., 2014). Whereas the indi-
vidual operators use slightly different parameterisations, they all have in common that the parameters have
a physical interpretation in terms of wavefront curvatures and angles.

The parameters can be used for a variety of applications such as attribute-based time migration (Spinner,
2007), multiple suppression (Dümmong and Gajewski, 2008), prestack data enhancement and regularisa-
tion (Baykulov and Gajewski, 2009), NIP-wave tomography (Duveneck, 2004), diffraction imaging (Dell
and Gajewski, 2011), and diffraction tomography (Bauer et al., 2016), to name but a few.

The interpretation of the stacking parameters in terms of wavefield attributes in the afore-mentioned
operators is so far only valid in isotropic media. Therefore, attempts have been made to derive multipa-
rameter expressions that consider anisotropy. Vanelle et al. (2012) have extended the implicit operator to
account for anisotropy. Since it is a 2D formulation, their approach is restricted to a symmetry plane, but
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it allows otherwise for arbitrary anisotropy. In addition to the angles and wavefront curvatures used in the
isotropic variant, velocity derivatives occur in the anisotropic case, which means that model assumptions
must be made in order to apply this operator. The anisotropic CRS approximation suggested by Xu and
Stovas (2015) also depends on model assumptions.

In this manuscript, we derive relationships between the stacking parameters and the anisotropic wave-
field attributes from geometrical considerations by following an approach similar to that by Shah (1973)
and Hubral and Krey (1980). The parameters that describe the stacking surface are, as in the isotropic case,
wavefront curvatures and angles measured in the registration surface. Since no assumptions on the model
enter the derivation, it can be considered as an entirely data-driven approach.

We will show that the anisotropic CRS operator in two dimensions can be expressed in terms of four
independent attributes. The shape of the operator, however, is the same as its isotropic counterpart, which
allows only the determination of three parameters. In the anisotropic case, these three parameters are
combinations of the anisotropic attributes. This means that for the stacking neglecting the presence of
anisotropy will not compromise the result.

This changes as soon as the stacking parameters enter data processing for tasks that involve not only
the computation of traveltimes but other application of the wavefront attributes. Since the physical inter-
pretation of the parameters is different in the presence of anisotropy, application of the parameters under
the assumption of isotropy can lead to false results. For example, applications based on ray tracing that
use the incidence or emergence angle to the registration surface need to distinguish between ray (group)
and phase angle. Ignoring this difference, e.g., for performing NIP-wave tomography (Duveneck, 2004)
or diffraction tomography (Bauer et al., 2016), would lead to an erroneous velocity model. During this
step, model assumptions are made, however, the determination of the stacking parameters remains entirely
model independent.

Since in many cases it is assumed that the topmost layer under the registration surface is isotropic, the
new anisotropic CRS operator may not appear to have immediate practical relevance. It is, however, an
important step to enhance our understanding of the physics of the wavefield attributes that are nowadays
an integral and established part of seismic data processing.

In this paper, we begin with the derivation of the anisotropic CRS operator for the zero-offset situation
for monotypic waves in 2D. The derivation follows the same approach that Shah (1973) and Hubral and
Krey (1980) have applied in the isotropic case. In the second part of the method section, we extend the
operator to the general finite-offset case that is also pertinent for converted waves. The third part considers
the 3D case for arbitrary anisotropy and wave type. We then demonstrate the accuracy of the new operator
with simple numerical examples where an analytic solution for the wavefield parameters is available. The
following discussion and conclusions bring our work to a close.

METHOD

The Common Reflection Surface (CRS) operator was introduced by Müller (1999). It describes a hyper-
bolic traveltime surface in midpoint and half-offset coordinates that is parameterised in terms of kinematic
wavefield properties, namely angles and wavefront curvatures, under the assumption of isotropy. In this
section, we derive a corresponding anisotropic operator. Our derivation follows the geometrical approach
by Shah (1973) and Hubral and Krey (1980), however, we take into account that the medium under consid-
eration may be anisotropic. This will lead us to a new CRS operator for monotypic waves in the zero-offset
situation, beginning with the 2D case. In a second step, we introduce a corresponding finite-offset CRS op-
erator by extending the results derived for the zero-offset case in conjunction with a traveltime expression
introduced by Vanelle and Gajewski (2002). The resulting finite-offset operator is applicable to converted
waves as well. In the third step, we generalise our results by means of ray theoretical considerations follow-
ing Červený (2001) and Schleicher et al. (2001) to obtain a 3D finite-offset operator for arbitrary anisotropy
and wave type.

Anisotropic CRS for 2D zero offset

Assuming that the traveltime is a ’good’ function, it can be expanded into a Taylor series. We carry out
the expansion in midpoint (xm) and half-offset (h) coordinates until second order for an expansion point at
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xm = x0 and h = 0, i.e., for zero offset,

t = t0 +
∂t

∂xm
∆xm +

∂t

∂h
h+

1

2

∂2t

∂x2m
∆x2m +

1

2

∂2t

∂h2
h2 +

∂2t

∂xm∂h
∆xm h , (1)

where ∆xm = xm−x0. Restricting the derivation (for now) to monotypic waves and keeping reciprocity in
mind, the following derivatives must vanish due to the symmetry with regards to interchanging the source
and receiver position:

∂t

∂h
= 0 and

∂2t

∂xm∂h
= 0 . (2)

In conclusion, the traveltime expression reduces to

t = t0 +
∂t

∂xm
∆xm +

1

2

∂2t

∂x2m
∆x2m +

1

2

∂2t

∂h2
h2 . (3)

This is a parabolic expression. It is, however, known that reflection traveltimes are better approximated
by hyperbolic than parabolic operators (e.g., Ursin, 1982; Gjøystdal et al., 1984). To obtain a hyperbolic
expression like the original isotropic CRS operator, we square Equation 3 and omit terms of order higher
than two, which leads to

t2 =

(
t0 +

∂t

∂xm
∆xm

)2

+ t0
∂2t

∂x2m
∆x2m + t0

∂2t

∂h2
h2 . (4)

Our aim is now to express the remaining derivatives in terms of physically-intuitive wavefield attributes
like in Müller’s (1999) result for the isotropic case.

In the following, ray velocities are denoted by v, phase velocities by V , and slowness vectors by p. A
subscript 0 denotes a quantity taken at the expansion point, x0, and subscript m indicates a quantity taken
at a position xm. Note that v0 and V0 are not vertical velocities but velocities taken in the expansion point
x0 associated with the ray and slowness direction at x0, respectively. Furthermore, angles ϑ are ray (group)
angles and Θ are phase angles. Angles ψ = ϑ−Θ lie between phase and ray direction.

Figure 1a displays a sketch of two zero-offset rays and their associated wavefronts arriving at locations
xm and x0 in the registration surface. In addition to the ray angles ϑm and ϑ0, the figure shows the radius
of curvature of the incident wavefront at x0, denoted RN . The horizontal slownesses corresponding to the
rays are pm = sin Θm/Vm and p0 = sin Θ0/V0. The ray and slowness at xm are depicted in Figure 1b,
where those at x0 were omitted for simplicity.

For our derivation, we assume that all distances are infinitesimal. Under this assumption, the medium
is still anisotropic but homogeneous within the considered vicinity. In particular, this means that the ray
(group) and phase directions do not change along the ray. Furthermore, the operator derived in this section
is a 2D expression. Therefore, waves are assumed to propagate in the x − z-plane. The 3D situation will
be discussed further below.

In order to relate the derivatives in the Taylor expansion 4 to the quantities we just introduced, we use
the law of sines for the triangle in Figure 1c. The angles and the lengths of their opposing sides define the
geometry we need for the sought-for relation. They are

a.) the angle 90◦ − ϑm and the distance between the two rays, approximated by the arclength
RN∆Θm = RN (Θm −Θ0) (note that the distance between the rays is calculated by the phase an-
gles, not the ray angles, because unlike the slowness vectors the rays are not perpendicular to the
wavefront),

b.) the angle Θ0 + ∆Θm/2 and the distance vm∆tm = vm
(
t(xm)− t(x0)

)
,

a.) the angle 90◦+ ψm + ∆Θm/2 and the distance ∆xm = xm − x0.

Using these, the law of sines provides the following relationships,

sin(90◦+ ψm + ∆Θm/2)

∆xm
=

sin(Θ0 + ∆Θm/2)

vm ∆tm
=

sin(90◦− ϑm)

RN ∆Θm
, (5)
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Figure 1: (a) Two zero-offset rays and their associated wavefronts arriving at locations xm and x0 in the
registration surface. Owing to the anisotropy the rays are not perpendicular to the wavefronts. The angles
ϑm and ϑ0 are ray angles. The radius of curvature of the incident wavefront at x0 is RN . (b) Zero-offset
rays (black), slownesses (gray), and wavefronts. The angle Θm is the phase angle. The angle ψm lies
between the ray and the slowness vector. Since we assume that the medium is locally homogeneous, all
angles and velocities remain constant along the rays. The dashed line approximates the wavefront emerging
at x0. (c) Triangle with distances and angles used for the law of sines (see text). The angle ∆Θ/2 lies
between the arc and the dashed line in (b).
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or, applying sin(90◦ ± α) = cosα,

cos(ψm + ∆Θm/2)

∆xm
=

sin(Θ0 + ∆Θm/2)

vm ∆tm
=

cosϑm
RN ∆Θm

. (6)

With
∆tm
∆xm

=
sin(Θ0 + ∆Θm/2)

vm cos(ψm + ∆Θm/2)
(7)

we obtain
∂tm
∂xm

∣∣∣∣
x0

= lim
xm→x0

∆tm
∆xm

=
sin Θ0

v0 cosψ0
. (8)

Substituting the relationship between phase and group velocity, V = v cosψ (e.g., Tsvankin, 2001, see also
Figure 1b), we find that this derivative is, as expected, the horizontal slowness p0 at x0,

p0 =
∂tm
∂xm

∣∣∣∣
x0

=
sin Θ0

V0
. (9)

Taking into account that the situation depicted in Figure 1 that led us to this result is a one-way process,
whereas the Taylor expansion in Equation 4 is a two-way process, we find the first-order derivative in
Equation 4 to be

∂t

∂xm

∣∣∣∣
x0,h=0

= 2
∂tm
∂xm

∣∣∣∣
x0

= 2
sin Θ0

V0
. (10)

For the determination of the second-order derivative of the traveltime with respect to xm, we differen-
tiate the general expression for the horizontal slowness, p = sin Θ/V , i.e.,

∂2tm
∂x2m

∣∣∣∣
x0

=
∂pm
∂xm

∣∣∣∣
x0

=

[
1

V 2
m

(
Vm

∂ sin Θm

∂xm
− sin Θm

∂Vm
∂xm

)]
x0

=

[
1

V 2
m

(
Vm cos Θm

∂Θm

∂xm
− sin Θm

∂Vm
∂Θm

∂Θm

∂xm

)]
x0

.

(11)

This expression contains two unknown partial derivatives. One of them can be resolved by the relation-
ship between the phase velocity and the vertical component vz of the group velocity. With (e.g., Tsvankin,
2001)

vz = v cosϑ = V cos Θ− ∂V

∂Θ
sin Θ (12)

we find that
∂V

∂Θ
=
V cos Θ− v cosϑ

sin Θ
. (13)

For the remaining unknown partial derivative in Equation 11, we can again apply the law of sines 6,
where

∆Θm

∆xm
=

cosϑm
RN cos(ψm + ∆Θm/2)

(14)

leads to
∂Θm

∂xm

∣∣∣∣
x0

= lim
xm→x0

∆Θm

∆xm
=

cosϑ0
RN cosψ0

. (15)

Substituting 13 and 15 into 11, the second-order derivative 11 becomes

∂2tm
∂x2m

∣∣∣∣
x0

=
cos2 ϑ0

v0 cos3 ψ0RN
, (16)
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Figure 2: Wavefront (gray) curvatures in the zero-offset CRS: (a) RN is the radius of curvature of the so-
called normal or N-wavefront that is generated by a fictitious exploding reflector element, denoted common
reflection surface (CRS), around the normal incidence point (NIP, see b). It corresponds to a zero-offset
experiment. Note that normal incidence refers to the slowness, not ray, direction in case of anisotropy. (b)
RNIP is the radius of curvature of the so-called NIP-wavefront that is generated by a fictitious point source
in the NIP. It corresponds to a common midpoint (CMP) experiment.

and, therefore,
∂2t

∂x2m

∣∣∣∣
x0,h=0

= 2
∂2tm
∂x2m

∣∣∣∣
x0

= 2
cos2 ϑ0

v0 cos3 ψ0RN
. (17)

Note that this second-order derivative can also be expressed by the phase angle and phase velocity; however,
the expression is more compact in terms of ray/group properties.

Before we turn to the derivation of the remaining term in the Taylor expansion 4, let us take a closer
look at the wavefront curvature radius RN in Figure 2a. It describes a fictitious wavefront that is generated
by an exploding reflector element, the so-called common reflection surface (CRS). It is commonly referred
to as the normal wavefront (Tygel et al., 1997) and measured by the zero-offset experiment described in
Figure 2a.

If we now consider a common-midpoint (CMP) experiment, we find a corresponding fictitious wave-
front, the normal-incident-point (NIP) wavefront, generated by a point source in the NIP as depicted in
Figure 2b. As for the derivation of the second-order derivative with respect to xm, i.e., for the zero-offset
experiment, we can follow the same steps for the second-order derivative with respect to h. In the latter
case, we have the CMP experiment, and all we need to do is replace RN in Equation 17 with the radius of
the NIP wavefront, RNIP , and xm with h. We obtain

∂2t

∂h2

∣∣∣∣
x0,h=0

= 2
cos2 ϑ0

v0 cos3 ψ0RNIP
. (18)

In conclusion, the anisotropic CRS operator for the zero-offset case is given by

t2 =

(
t0 + 2

sin Θ0

V0
∆xm

)2

+ 2 t0
cos2 ϑ0

v0 cos3 ψ0

(
∆x2m
RN

+
h2

RNIP

)
. (19)

In the following section, we use this result and the work by Vanelle and Gajewski (2002) to derive the
extension to the finite-offset situation.

Anisotropic CRS for 2D finite offset

In order to derive the anisotropic finite-offset operator, we use the traveltime for an arbitrary source-receiver
combination (s, g) in the vicinity of an expansion point at (s0, g0) in the hyperbolic expression suggested
by Vanelle and Gajewski (2002),

t2(s, g) = (t0 + pg ∆g − ps ∆s)2 + t0 (G∆g2 − S∆s2 − 2N ∆s∆g) , (20)
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where ∆s = s−s0 and ∆g = g−g0 are the distances of the source and receiver positions to the expansion
point, respectively, and t0 is the traveltime in the expansion point, i.e., t0 = t(s0, g0). The coefficients in
Equation 20 are the first- and second-order derivatives of the traveltime with respect to source and receiver
coordinates. Namely, the first-order derivatives,

ps = − ∂t
∂s

∣∣∣∣
s0,g0

and pg =
∂t

∂g

∣∣∣∣
s0,g0

, (21)

are the horizontal slownesses at the source and receiver, respectively. The second-order derivatives are
given by

S = − ∂
2t

∂s2

∣∣∣∣
s0,g0

, G =
∂2t

∂g2

∣∣∣∣
s0,g0

, and N = − ∂2t

∂s ∂g

∣∣∣∣
s0,g0

. (22)

In midpoint and half-offset coordinates (xm, h), with xm = (g + s)/2, h = (g − s)/2, and ∆h = h− h0,
∆xm = xm − x0, Equation 20 reads

t2(xm, h) =
(
t0 + (pg − ps) ∆xm + (pg + ps) ∆h

)2
+ t0

(
(G− S − 2N) ∆x2m + (G− S + 2N) ∆h2 + 2 (G+ S) ∆xm ∆h

)
.

(23)

Again, in the zero-offset situation for monotypic waves, all traveltime expressions given above must be
symmetric with respect to interchanging the source and receiver, i.e., changing the sign of h. Therefore,
the following relations apply:

pg = −ps and G = −S . (24)

Furthermore, we have h0 = 0 and, therefore, ∆h = h. In conclusion, Equation 23 simplifies. It can be
expressed either in terms of (ps, S,N) or (pg, G,N), i.e.,

t2(xm, h) = (t0 − 2 ps ∆xm)2 + 2 t0
(
(−S −N) ∆x2m + (−S +N)h2

)
(25)

and
t2(xm, h) = (t0 + 2 pg ∆xm)2 + 2 t0

(
(G−N) ∆x2m + (G+N)h2

)
. (26)

We now consider the zero-offset CRS operator, Equation 19. Comparing the coefficients in Equa-
tions 26 and 25 with those in 19, we find that the parameters are related by

cos2 ϑ0
v0 cos3 ψ0RN

= G−N = −S −N ,

cos2 ϑ0
v0 cos3 ψ0RNIP

= G+N = −S +N ,

sin Θ0

V0
= pg = −ps .

(27)

In a formally identical fashion to the zero-offset parameters in Equation 27, we introduce according
finite-offset parameters

cos2 ϑg
vg cos3 ψg RCOg

= G−N ,
cos2 ϑs

vs cos3 ψsRCOs
= −S −N ,

cos2 ϑg
vg cos3 ψg RCMP

g

= G+N ,
cos2 ϑs

vs cos3 ψsRCMP
s

= −S +N , (28)

sin Θg

Vg
= pg ,

sin Θs

Vs
= −ps .
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These parameters are, like those in the zero-offset case, angles and curvatures of fictitious wavefronts
(see Figure 3). In contrast to the zero-offset case, the phase directions are no longer normal to the interface,
and therefore a normal incidence point does not exist. Furthermore, the zero-offset parameters describe a
one-way process. In the finite-offset case, where the down-going and up-going rays no longer coincide, a
two-way process has to be considered. Our choice of parameters accounts for this fact. In conclusion, our
operator reads

t2(xm, h) =

[
t0 +

(
sin Θg

Vg
+

sin Θs

Vs

)
∆xm +

(
sin Θg

Vg
− sin Θs

Vs

)
∆h

]2
+ t0

[
cos2 ϑg

vg cos3 ψg RCOg
+

cos2 ϑs
vs cos3 ψsRCOs

]
∆x2m

+ t0

[
cos2 ϑg

vg cos3 ψg RCMP
g

+
cos2 ϑs

vs cos3 ψsRCMP
s

]
∆h2

+ 2 t0

[
cos2 ϑg

vg cos3 ψg RCMP
g

− cos2 ϑs
vs cos3 ψsRCMP

s

]
∆xm ∆h . (29)

Note that the mixed term could also be expressed by the RCOs,g because

cos2 ϑg
vg cos3 ψg RCMP

g

− cos2 ϑs
vs cos3 ψsRCMP

s

=
cos2 ϑg

vg cos3 ψg RCOg
− cos2 ϑs
vs cos3 ψsRCOs

. (30)

However, it is known from the isotropic zero-offset case that the parameter RN behaves less stable than
RNIP . This behaviour also applies to the RCOs,g because these correspond to RN in the zero-offset case.
Therefore, we prefer to express the mixed term in Equation 29 by the RCMP

s,g . In practice, midpoint
apertures, i.e., distances ∆xm, are chosen small. Therefore, the potential instability of RCOs,g has limited
impact on the stack since it occurs only in the second order term for ∆x2m.

For applications like NIP-wave and diffraction tomography (Duveneck, 2004; Bauer et al., 2016), RCOs,g
are not required. If all parameters in 29 are determined, the equality 30 could be used as a means for quality
control for the parameters RCOs,g .

A finite offset operator with according parameters for the isotropic case was introduced by Zhang et al.
(2001). The wavefront curvature parameters RCMP

s,g and RCOs,g in 28 were adopted from that work, where
their names refer to the CMP and common-offset (CO) experiments. The operator by Zhang et al. (2001)
is expressed by the two curvatures KCMP

s,g = 1/RCMP
s,g and a third wavefront curvature, KCS that is

measured at the receiver in a common-source (CS) experiment. This parameterisation leads to a slightly
less appealing look of their operator because the individual terms lose the symmetry in the parameters that
our expression displays. Furthermore, use of the RCOs,g as opposed to KCS avoids potential issues arising
from the reflection point dispersal associated with a common-shot experiment. Owing to these reasons, we
prefer to express the anisotropic operator as given by 29.

In the following, we extend the anisotropic finite-offset CRS operator 29 to the general three-
dimensional case.

Anisotropic CRS for 3D finite offset

Whereas in two dimensions a derivation of the anisotropic operator from the laws of geometry was easily
feasible, it is not as simple to visualise in the 3D case. We can, however, derive the 3D operator by
combining our results from the 2D situation with the ray method.

In this section, we need to distinguish between vectors with two or three components as well as between
2×2 and 3×3 matrices. Therefore, we denote two-component vectors and 2×2 matrices with a bold font,
e.g., vector a and matrix A. Three-component vectors and 3×3 matrices are also printed in bold, but carry
a hat in addition, e.g., b̂ and matrix B̂. Scalars are printed in regular font.

In general, the operator will retain the same form as in two dimensions. We need to replace the scalars
describing coordinates and slownesses with vectors, and the scalar wavefront curvatures become matrices,
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Figure 3: Wavefront (gray) curvatures in the finite-offset CRS: (a) RCMP
s and RCMP

g are the radii of
curvature of two fictitious wavefronts that are measured at the source and receiver, respectively, for a CMP
experiment. (b) RCOs and RCOg are the radii of curvature of two fictitious wavefronts that are measured at
the source and receiver, respectively, for a finite-offset experiment.

resulting in

t2(xm,h) =
[
t0 + (pg − ps) ∆x>

m + (pg + ps) ∆h>]2
+ t0 ∆xm

[
MCO

g −MCO
s

]
∆x>

m

+ t0 ∆h
[
MCMP

g −MCMP
s

]
∆h>

+ 2 t0 ∆xm

[
MCMP

g + MCMP
s

]
∆h> , (31)

where the 2×2 matrices M are second-order derivatives of the traveltimes in the acquisition surface at
the source and receiver position for the respective measurement configurations. As in 2D, the following
relationship holds,

MCMP
g + MCMP

s = MCO
g + MCO

s . (32)

The first-order derivatives follow immediately as the horizontal slowness components, i.e.,

ps
> = − sin Θs

Vs

(
cos Φs
sin Φs

)
and pg

> =
sin Θg

Vg

(
cos Φg
sin Φg

)
, (33)

where the angles Φs and Φg describe the azimuth of the slowness vectors. For the second-order derivatives,
we find in the literature (e.g., Höcht, 2002; Müller, 2007) for the 3D isotropic zero-offset attributes that

M =
1

u
H K H> , (34)

which can be used to express both MN and MNIP . As the same form applies to all matrices M, we will
from now on omit the indices for the type of experiment and position.

In Equation 34, K is a symmetric wavefront curvature matrix in ray-centred coordinates (according to
Müller, 2007) or wavefront-orthonormal coordinates (according to Höcht, 2002). In ray-centred coordi-
nates (rcc), the unit vector of the third axis, êrcc3 , is given by the ray direction, i.e.,

êrcc3 =
v̂

|v̂| , (35)

whereas in wavefront-orthonormal coordinates (woc)

êwoc
3 =

p̂

|p̂| , (36)
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i.e., the unit vector of the third axis, êwoc
3 , points in the direction of the slowness. Matrix H is the upper

left 2×2 submatrix of the transformation matrix from either of these coordinates to the acquisition system.
The quantity u is a near-surface velocity that is not further specified.

In isotropic media we need not distinguish between phase and ray (group) velocity because v = V ≡ u.
Furthermore, wavefront-orthonormal and ray-centred coordinates coincide. This is, however, not the case
in anisotropic media, where the according transformation cannot be achieved by a simple 2×2 matrix. A
quick look at the 2D situation illustrates this: In the previous section, we have shown that

M =
K cos2 ϑ

v cos3 ψ
=
K cos2 ϑ

V cos2 ψ
, (37)

whereR was substituted with 1/K. If H described the transformation between acquisition and ray-centred
coordinates, Equation 34 would lead to

M =
K cos2 ϑ

v
(38)

with u = v or

M =
K cos2 ϑ

V
=
K cos2 ϑ

v cosψ
(39)

with u = V . Similarly, if H described the transformation between acquisition and wavefront-orthonormal
coordinates, we would obtain

M =
K cos2 Θ

v
(40)

with u = v or

M =
K cos2 Θ

V
= M =

K cos2 Θ

v cosψ
(41)

with u = V . Whereas these solutions coincide in the special case of isotropy where ψ = 0, neither one
yields the correct result 37 in the anisotropic situation.

In order to find a correct representation for anisotropic media, we refer to Červený (2001) for the
following considerations.

The relationship between a matrix Mwoc and the symmetric wavefront curvature matrix K is given by

K = V Mwoc , (42)

where V denotes (as before) the phase velocity and Mwoc is the upper left 2×2 submatrix of the 3×3
matrix M̂

woc
that is defined as the Hessian of the traveltime in wavefront-orthonormal coordinates xwoci ,

M̂woc
ij =

∂2t

∂xwoci ∂xwocj

, (43)

or

M̂
woc

=

 Mwoc Mwoc
13

Mwoc
23

Mwoc
13 Mwoc

23 Mwoc
33

 . (44)

Expressed by the curvature matrix K and the ray velocity vector in wavefront-orthonormal coordinates,
vwoc, for the locally homogeneous medium we consider matrix M̂

woc
becomes

M̂
woc

=
1

V 3

 V 2K
−V vwocJ Mwoc

1J

−V vwocJ Mwoc
2J

−V vwocJ Mwoc
1J −V vwocJ Mwoc

2J −V 2vwocI vwocJ Mwoc
IJ

 , (45)

where summation convention is applied with indices I and J taking values 1 and 2. The latter relationship
can be derived from the definition of the slowness vector p̂ as the gradient of the traveltime t and the fact
that the scalar product of the group velocity and slowness vectors equals one in any coordinate system, i.e.,

p̂ · v̂ = ~∇t · v̂ = 1 , (46)
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or, component-wise,
∂t

∂x
vx +

∂t

∂y
vy +

∂t

∂z
vz = 1 . (47)

The gradient of this expression is zero. Assuming a locally homogeneous medium and considering
wavefront-orthonormal coordinates, where vwocz = V , we find that

Mwoc
xx vwocx +Mwoc

xy vwocy +Mwoc
xz vwocz = 0 ,

Mwoc
yx vwocx +Mwoc

yy vwocy +Mwoc
yz vwocz = 0 ,

Mwoc
zx vwocx +Mwoc

zy vwocy +Mwoc
zz vwocz = 0 , (48)

which provides Equation 45.
With the transformation matrix Ĥ from wavefront-orthonormal coordinates to the acquisition system,

Ĥij =
∂xi
∂xwocj

=
∂xwocj

∂xi
, (49)

we can now determine the 3×3 Hessian matrix of the traveltimes, M̂, in the acquisition system with ê3
oriented in z-direction by

M̂ = Ĥ M̂
woc

Ĥ
>

. (50)

Applied to each experiment (CMP, CO) at the source and receiver coordinates, the upper left 2×2 subma-
trices of the according matrices M̂ are the sought-after matrices M in the operator 31.

For illustration, we show that this procedure leads to the correct result in the 2D case. With the trans-
formation matrix

H =

(
cos Θ sin Θ
− sin Θ cos Θ

)
(51)

and the ray velocity vector in the acquisition and wavefront-orthonormal coordinates,

v = v (sinϑ, cosϑ)

vwoc = v (sin(ϑ−Θ), cos(ϑ−Θ))

= v (sinψ, cosψ) (52)

the matrix Mwoc becomes

Mwoc =
K

v cos3 ψ

(
cos2 ψ − sinψ cosψ

− sinψ cosψ sin2 ψ

)
, (53)

where V = v cosψ was substituted. After carrying out the coordinate transformation, we find that

M =
K

v cos3 ψ

(
cos2 Θ cos2 ψ + sin2 Θ sin2 ψ − 2 sin Θ sinψ cos Θ cosψ

)
=

K

v cos3 ψ
(cos Θ cosψ − sin Θ sinψ)

2

=
K cos2(Θ + ψ)

v cos3 ψ

=
K cos2 ϑ

v cos3 ψ
. (54)

This is the correct result that we also obtained from the 2D derivation.
Now that we have established the theory, we demonstrate our results with numerical examples in the

following section.
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Figure 4: Relative traveltime errors of the anisotropic zero-offset CRS operator for a circular reflector with
a radius of 1 km in a homogeneous medium with elliptical anisotropy. The CMP under consideration is
located at x0 = 0.2 km.

NUMERICAL EXAMPLES

In this section, we demonstrate the accuracy of the 2D zero-offset operator. Since the performance of
the isotropic counterpart in 2D and 3D is well established and the shape of the operator is the same, we
have decided to restrict the examination to examples with a curved reflector and a point diffractor in a
homogeneous anisotropic medium with elliptical symmetry. The reason why we chose a medium with
elliptical symmetry is that this is the only anisotropic medium in which we can compute all parameters,
i.e., all velocities and angles as well as the wavefront curvatures, analytically.

It is known from the isotropic CRS that its accuracy decreases with increasing reflector curvature (e.g.,
Vanelle et al., 2010). It performs worst for diffractions because diffraction traveltimes are better described
by a double square root expression than by a hyperbola. We found the same general behaviour also for
the anisotropic CRS. Since it can be shown that the operator 29 coincides with the exact traveltime for
the case of an inclined or horizontal planar reflector in a homogeneous background medium with elliptical
anisotropy, we present only results for a circular reflector and for a point diffractor.

The centre of the circular reflector with a radius of 1 km is located at (0;2) km. The point diffractor
is located at (0;1) km. The background medium has a vertical velocity of 2 km and we have considered
values for ε = δ = 0 (i.e., isotropy), ε = δ = 0.1 (weak anisotropy), and ε = δ = 0.4. Reference
traveltimes were generated using the NORSAR ray modelling software for the reflections and analytically
for the diffractions. The expansion point was taken at x0 = 0.2 km in all cases.

Figure 4 shows the relative errors of the reflection traveltime for midpoint deviations of up to 0.8 km
and an offset-to-target ratio of two. Keeping in mind that in stacking, midpoint deviations as well as offset-
to-target ratios are in practice smaller than the shown range, we find the resulting accuracy satisfying. The
isotropic as well as the anisotropic case display the same magnitude of accuracy.

In the diffraction case displayed in Figure 5, we observe that, as expected, the accuracy is slightly lower
than for the reflection. The overall accuracy confirms that the operator leads to reasonable results.

DISCUSSION

In the previous sections, we have derived the anisotropic extension of the CRS operator and verified it with
examples. In this section, we briefly address several points that arose during our investigation.



118 Annual WIT report 2016

0
0.2

0.4
0.6

0.8
1 0

0.2
0.4

0.6
0.8

1

-2

0

2

4

6

8

∆
t
(%

)

Relative traveltime errors for a point diffractor

ǫ = δ = 0.0
ǫ = δ = 0.1
ǫ = δ = 0.4

xm (km)

h (km)

∆
t
(%

)

Figure 5: Relative traveltime errors of the anisotropic zero-offset CRS operator for a point diffractor in a
homogeneous medium with elliptical anisotropy. The CMP under consideration is located at x0 = 0.2 km.

Instead of three parameters, namely two wavefront curvature radii and an angle, and the near-surface
velocity in the 2D isotropic zero-offset case, our anisotropic zero-offset operator requires four parameters
and a velocity. Although the operator in Equation 19 is expressed in terms of two radii of wavefront
curvature, RN and RNIP , three angles Θ0, ϑ0, ψ0, and two velocities v0, V0, only three of the latter five
quantities are independent. With the relationships

V0 = v0 cosψ0 = v0 cos (ϑ0 −Θ0) (55)

it is possible to express the operator in terms of only three of the above-mentioned five quantities, namely,
one velocity and two angles, which can be chosen at will. We have expressed the first-order derivatives in
Equation 19 by the phase angle and phase velocity because these describe the slowness. For the second-
order terms, we use the ray velocity and angle as well as angle ψ0 because these provide the most compact
expression.

As already suggested in the introduction, the determination of all parameters in the anisotropic case by
stacking is not generally possible unless model assumptions are made. For the stack itself, this is not an is-
sue because the shape of the operator is the same as in the isotropic case. If we wish to apply the parameters,
e.g., for NIP-wave (Duveneck, 2004) or diffraction tomography (Bauer et al., 2016), model assumptions
must be made in any event. These assumptions can then be used to calculate the anisotropic parameters
from the three parameters obtained during the stack. Furthermore, in many practical applications, e.g., in a
marine acquisition, the near-surface region is or is assumed to be isotropic.

Most established anisotropic traveltime formulations (e.g., Tsvankin and Thomsen, 1994) consider non-
hyperbolic moveout. This is necessary as soon as medium to far offsets need to be taken into account. In
contrast, our operator was derived for application within the hyperbolic limit, i.e., under the short-spread
assumption. Within this assumption, the operator provides good results. Outside this limit, the accuracy
generally decreases with increasing offset and midpoint displacement. However, this is also the case if
the medium is isotropic as soon as heterogeneities are present. The examples in Figures 4 and 5 in the
previous section demonstrate this. In conclusion, as long as the apertures are chosen in accordance with
the assumption of short spread, a hyperbolic operator will provide good results.
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CONCLUSIONS

We have derived a CRS-type multiparameter operator for anisotropic media in three dimensions. The
operator is valid for finite offset configuration with zero offset as a special case. It does not make any
model assumptions. Numerical examples demonstrate that the accuracy of the operator is of the same
order as for isotropic media.

Like its isotropic counterpart, the anisotropic operator is parameterised in terms of angles and wave-
front curvatures. To account for the anisotropy, the distinction between ray (group) and phase angles and
velocities must be considered. In the zero-offset case, the anisotropic operator requires an additional angle
that describes the deviation between group and phase direction. For finite offsets, two additional angles are
required.

If no model assumptions are made, only three of the four parameters in the 2D zero-offset case can be
determined by stacking and semblance analysis because the shape of the operator remains the same as for
isotropy. This is an advantage because it means that the stack result does not depend on the presence or
absence of anisotropy. If, on the other hand, model assumptions are made, the model provides the necessary
relations between the wavefield parameters. In that case, all parameters can be determined by stacking.

In many applications, model assumptions enter only after the stacking. In these further processing
steps, neglecting potential anisotropy can lead to errors, e.g, if velocity tomography is performed based on
isotropic wavefield parameters if the medium is anisotropic. With our new parameterisation, anisotropic
wavefield parameters can be applied as soon as an anisotropic model is considered.

Furthermore, we like to think that this new formulation enhances our understanding of surface-
measured wavefield properties in arbitrary three-dimensional anisotropic media.
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