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ABSTRACT

Amplitude Variation with Offset (AVO) inversion provides estimates of the P-wave velocity, S-wave
velocity and density of a stratified medium. Global optimisation is desirable for the inversion to
account for the multi-parametric behaviour of the AVO inversion which is strongly affected by the
initial estimates of the model rock properties. We investigate the dependency between P-wave, S-wave
velocity and density in the recovered parameters using empirical relations as constraints. In inversion
schemes, forward modelling is often the most time-consuming process. To reduce the computation
time, we have implemented a genetic algorithm using a table-based ray-theory algorithm to allow for
a significant amount of vertically inhomogeneous models in the global search. Our results show that
the genetic algorithm is capable of recovering the physical model parameters with good agreement for
examples using the empirical constraints. However, it sometimes converged to solutions which were
far from the correct answer. Still, those solutions represented good models to explain the observed
dataset, exemplifying the non-uniqueness of the problem. The forward modelling algorithm has shown
excellent performance to be used in global optimisation schemes, because it allows the use of a vast
number of members in the population of the genetic algorithm.

INTRODUCTION

The methodology of Amplitude Variation with Offset (AVO) inversion has been widely used in the industry
as a direct way to determine hydrocarbon indicators. AVO inversion allows for a quantitative interpretation
of the amplitude of seismic data in order to estimate the rock properties. For the forward modelling part of
AVO inversion schemes, one classically calculates the reflection coefficients for plane waves as a function
of incident angle (offset) using the formulas of Knott (1899) and Zoeppritz (1919). For the reverse model,
Rosa (1976) derived and verified the ill-posed nature of the inversion of Zoeppritz equations for rock
properties, meaning that multiple combinations of input can produce almost the same output. Besides, due
to its multi-parametric formulation, the solution space is very complex with many local minima, which
makes it difficult to find correct solutions.

For those reasons, Stoffa and Sen (1991), Mallick (1995) and others suggest employing global optimi-
sation schemes to treat the AVO inversion problem. However, the process of global optimisations requires
many forward models which considerably increases the computation time. Many of the works published
in the literature use forward modelling algorithms based on the wave equation, which demand great com-
putational power.

This study is based on the premise that unconsolidated sediments with small rock-property changes
between layers can be modelled with ray theory without suffering from an unacceptable loss of resolution.
For computational ease, we have developed a very fast forward modelling algorithm based on ray theory.
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This algorithm makes use of precomputed tables storing the ray quantities in order to speed up the compu-
tation of synthetic seismograms for global optimisation. Our resulting genetic algorithm is based on this
table-based ray theory. It relies on findings of Stoffa and Sen (1991) and Sen and Stoffa (1992) and uses
the empirical relationships of Gardner et al. (1974) and Castagna et al. (1985) as constraints to verify the
dependency among the parameters.

SYNTHETIC COMMON-MIDPOINT SEISMOGRAM: FORWARD MODELLING

The forward modelling procedure implemented in this work is a so-called table-based ray tracing algo-
rithm. It assumes an Earth model composed of n horizontal isotropic layers. The parametric equations to
compute the two-way traveltimes and source-receiver offsets as a function of a constant ray parameter are
given by (Slotnick, 1959)
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where hi and vi are, respectively, the layer thickness and velocity of the ith layer. Moreover, p denotes the
ray parameter defined by

p =
sin(θi)

vi
. (3)

Here θi is the angle between the seismic ray and the vertical in the ith layer. Using a sonic log or other
vertical velocity information, we use equations 1 and 2 to build three different two-dimensional tables
(offset, traveltime and reflection coefficient) before starting the inversion procedure.

To initiate the process, we calculate the 2D traveltime table. for this purpose, we transform the P-wave
velocity, supposed to be given as a function of depth, to the time domain. The same applies to the S-wave
velocity and density functions. We then determine the ray parameter in accordance with the incident angle
in the first medium varying from 0◦ to 89◦ in steps of 1◦. This results in 90 columns in the resulting
traveltime table. The rows are associated with the to times in increments of the time sample interval.

Once the traveltime table has been computed, the corresponding 2D tables for offset and traveltime can
easily be determined using equations 1 and 2 respectively. Since the velocity function is sampled in equal
increments of the sample rate, in the same way, the 2D tables are, the computation of the incident angle for
each cell in the 2D table is possible with the help of equation 3.

With the incidence angle known, the next step is to compute the 2D table of reflection coefficients RP
at each interface. For this purpose, we utilise Shuey’s approximation (Shuey, 1985), given by

RP (θ) = A+B sin2(φ) + C sin2(φ) tan2(φ) , (4)

where θ is the incidence angle at the interface under consideration, and φ is the average of the incidence
and transmission angles. Also, the coefficients A, B and C are defined as
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In these expressions,4VP = VP2 − VP1,4VS = VS2 − VS1,4ρ = ρ2 − ρ1 are the differences between
the P and S-wave velocity and density values, respectively, across the interface and VP , VS and ρ are their
arithmetic averages.

In order to build a synthetic common-midpoint (CMP) section, we define which are the offsets to model
and start a row-by-row search inside the offset table looking for the requested offsets. Once the cell is found
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Figure 1: Flowchart of the genetic algorithm.

for the specified offset, we go into the same cell position inside the traveltime and reflectivity tables to place
the reflection coefficient from that position at the correct time arrival inside the trace.

Because the algorithm is very simple, it provides the potential of being adapted in the future to study
more complex effects such as the stretch from normal moveout (NMO) correction, NMO without stretch
(ray-trace NMO correction), array effects affecting the amplitude of the wave received by the streamer,
extraction of AVO attributes, polar anisotropic media, etc.
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Table 1: Model parameters to test the inversion scheme.

Layers Thickness
(m)

Vp
(m/s)

Vs
(m/s)

Density
(g/c3)

1 1000 2000 551.72 2.07
2 50 2800 1241.38 2.25
3 50 2300 810.34 2.14
4 500 3000 1413.80 2.29

GLOBAL OPTIMISATION APPROACH: GENETIC ALGORITHM

The genetic algorithm (see a generic flowchart in Figure 1) is a technique used to perform global opti-
misations based on the idea of simulating a natural selection process (Holland, 1975). For this purpose,
the algorithm starts at an initial pseudo-random population of a potential solution to the problem. Us-
ing the forward-modelling equations and, possibly, additional constraints, the genetic algorithm constantly
modifies this initial population in order to reach local minima positions. Since the procedure starts at
a pseudo-random population of a potential solution, it is expected that after some iterations the genetic
algorithm guides the population to the best-fit positions.

After each minimisation step of the iteration, the algorithm needs to generate a new population to initiate
the next step. For this purpose, it selects a percentage of the present population for the reproduction scheme
in order to carry over information that has been successful in the sense of the problem. The principles of
crossover and mutation describe the two classic techniques to produce a new initial population. Crossover
is used to exchange genetic information between the members of the final populations of the previous step,
and mutation serves to randomly change the genetic information in order to achieve a better exploration
of the solution space. The selection of the surviving members of the population requires measuring their
fitness, i.e., the quality each potential solution achieves in explaining the data to be optimised. In our
implementation, we use the objective function of Porsani et al. (2000) given by

h =
2yTx

yT y + xTx
, (6)

where, x and y are the observed and modelled data in the time domain and xT , yT are their transposes. In
order to constrain the inverse problem, we use the dependency of the S-wave velocity and density on the
P-wave velocity as described by the Gardner (Gardner et al., 1974) and Castagna (Castagna et al., 1985)
relations. In this way, we determine S-wave velocity and density as functions of the P-wave velocity.

RESULTS

We used a synthetic model to study the performance of the global optimisation method for AVO inversion
and its relationships with the prior information, i.e., the Gardner et al. (1974) and Castagna et al. (1985)
constraints, and also to analyse the performance of the investigated forward modelling algorithm. Table 1
contains the physical parameters of our simple synthetic model. We chose the thicknesses of the two inner
layers to be small enough to allow for interaction between the wavelets.

We modelled a synthetic data set with the table-based ray-theory algorithm using the parameters from
Table 1, a zero-phase Ricker wavelet with a central frequency of 40 Hz, and a time sample rate of 2 ms.
These parameters were also used in the modelling for the inversion. In order to perform the global optimi-
sation, we generated an initial population of 1000 models. For each of these models in the population, we
modelled a synthetic CMP gather. All CMP gathers modelled during each iteration of the genetic algorithm
are NMO corrected.

The genetic algorithm used a selection rate of 50%, i.e., the best 500 models after a minimisation
step were used to generate the modified population of again 1000 models for the next iteration. The
mutation, update, and crossover probabilities were parameters used in the genetic algorithm are given by
Pmutation = 0.1, Pupdate = 0.47, and Pcrossover = 0.90, respectively. The maximum number of allowed
iterations was 200.
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Figure 2: Evolution of the genetic algorithm solutions for the P-wave velocity parameter in the fourth layer
when running with the Gardner et al. (1974) and Castagna et al. (1985) constraints.

Table 2: Recovered model parameters of the fourth layer using the genetic al-
gorithm with the Gardner and Castagna constraints.

Parameters Synthetic Model
Recovered Model

(without constraints)

Parameters Relative Error (%)

P-wave
(m/s)

2000 2002 -0.10
2800 2699 3.61
2300 2394 -4.09
3000 2658 11.40

S-wave
(m/s)

551.72 778 -41.01
1241.38 1327 -6.90
810.34 1106 -36.49
1413 1358 3.95

Density
(g/c3)

2.07 1.535 25.83
2.25 1.739 22.71
2.14 1.541 28.01
2.29 1.934 15.31

Correlation Coef. 1 0.999847412
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Figure 3: Evolution of the genetic algorithm solutions for the P-wave velocity parameter in the fourth layer
when running without the Gardner et al. (1974) and Castagna et al. (1985) constraints.

To study the quality of the inversion, we concentrate on the parameters of the fourth layer of the model
in Table 1. Figure 2 shows the evolution of the genetic algorithm solutions for the inverted P-wave velocity
parameter in the fourth layer when running with the Gardner et al. (1974) and Castagna et al. (1985)
constraints. In Table 2, we have compiled the corresponding recovered parameter values for the model that
provided the best result of the objective function.

As we can see in Figure 2, when using the constraints, the algorithm is guiding, already after a few
iterations, all the members of the population close to the correct position in the solution space. Table 2
demonstrates that the recovered parameters are very close to those of the true model, and the correlation
coefficient between the original data and the data from the recovered model is very high. This confirms
that the genetic algorithm was able to find an excellent model.

We then repeated the experiment without making use of the relationships of Gardner et al. (1974) and
Castagna et al. (1985) that describe the S-wave velocity and density as a function of the P-wave veloc-
ity. Figure 3 shows the corresponding evolution of the population of the genetic algorithm without these
constraints, and Table 3 compiles the recovered model parameters.

We can see in Figure 3 that without the additional constraints to restrict the solutions, the algorithm
is leading a significant part of the population to particular solutions that are not very close to the correct
one. Nonetheless, these solutions are good answers to the objective function of the inverse problem. As
we can see from Table 3, the parameters of the best inverted model in this case are rather far away from
the true parameters. Nonetheless, comparing the correlation coefficients, we recognise that this model is
still almost as good in fitting the data as the best inverted model that uses the constraints. Even with more
than 20% of relative error in the average, the best model recovered without the constraints still produces
a very similar CMP gather to that from the true model. This highlights the fundamental issue of the AVO
inversion problem, which is its non-uniqueness. As a consequence, the underlying inverse problem without
constraints is ill-posed, as verified by Rosa (1976).

Let us emphasise the very fast nature of our implementation of this genetic algorithm. In the process of



Annual WIT report 2016 77

Table 3: Recovered model parameters of the fourth layer using the genetic al-
gorithm without the Gardner and Castagna constraints.

Parameters Synthetic Model
Recovered Model
(with constraints)

Parameters Relative Error (%)

P-wave
(m/s)

2000 2000 0.00
2800 2788 0.43
2300 2280 0.87
3000 2971 0.97

S-wave
(m/s)

551.72 552.71 -0.07
1241.38 1231 0.84
810.34 793 2.14
1413 1389 1.75

Density
(g/c3)

2.07 2.069 0.01
2.25 2.247 0.13
2.14 2.134 0.24
2.29 2.284 0.25

Correlation Coef. 1 0.999887645

globally optimising the objective function with and without the constraints on the parameters, the algorithm
generated 301.000 forward synthetics in 25 minutes. This points towards its potential to remain feasible
after generalisation to more general situations.

CONCLUSIONS

We have presented a table-based ray-tracing forward-modelling algorithm that is very fast in calculating the
traveltime and reflection coefficient vs. offset information for many vertically inhomogeneous models. By
providing good performance with restricted computer power, this algorithm has shown excellent potential
to be used in a genetic global optimisation scheme for AVO inversion. In the inversion procedure, parameter
constraints were helpful to reach the correct global minimum. When applied without constraints, the
algorithm converged incorrect results that satisfy the objective function with quite a low residual. This is a
consequence of the non-uniqueness of the AVO problem, which makes the inversion ill-posed.

In future research, we hope to formulate the genetic algorithm inside the Bayesian framework to provide
solid statistical information about the distribution of the solutions during the iterations. It is expected to be
able to visualise distinguishable concentrations of particular solutions which could be useful to determine
possible scenarios for the recovered parameters, in this way allowing to account for the non-uniqueness of
the problem.
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