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ABSTRACT

Traveltime moveout is a key ingredient of traditional and modern stacking schemes and, in addition to
the constructive summation of redundant data components, has versatile application such as trace in-
terpolation, regularization, or velocity model building. It has been shown that higher-order traveltime
operators provide a better fit for curved target structures and complex overburdens. In addition, mul-
tidimensional stacking schemes have been shown to optimally utilize multi-channel data redundancy.
Derivations of higher-order multidimensional moveout approximations require a simplified model to
fit seismic data from a heterogenous overburden, i.e., an auxiliary medium and an analytical descrip-
tion of the reflector. The existing mechanisms to account for the overburden heterogeneity, either by
a shift in velocity (effective medium), or by a shift of the reference time (optical medium), could not
yet be extended to the 3D case. To fill that gap, we suggest an auxiliary anisotropic medium, which in
the 3D case allows to simulate wavefronts of complex shape. We show that this anisotropic auxiliary
medium naturally incorporates properties of effective and optical auxiliary media. The auxiliary ani-
sotropic medium and a locally analytical description of the reflector shape constitute the 3D simplified
model, which enables the derivation of 3D extensions of the existing 2D multidimensional moveout
approximations.

INTRODUCTION

The concept of an auxiliary medium is widely used for the derivation of moveout approximations, which
still form an important ingredient of most processing workflows. It suggests that in the presence of hetero-
geneity the actual subsurface model is replaced by an auxiliary medium of constant velocity. The advantage
of this replacement lies in the fact that in the auxiliary medium the rays are straight and the wavefront ele-
ments are circular, which significantly simplifies the ray propagation and provides an appealing geometrical
interpretation of the reflection process. The auxiliary medium also allows the use of analytical operators in
processing and imaging, which is a practical value.

Two types of auxiliary media are known in the 2D case. The heterogeneous medium is either replaced
by an effective medium – a homogeneous medium of "average" velocity, or by an optical medium – a
homogeneous medium of near-surface velocity. The effective and optical media are used in the derivation
of reflection moveout approximations in common-midpoint (CMP) gathers: the classical normal moveout
(NMO) hyperbola (e.g., Mayne, 1962) and the shifted hyperbola introduced by de Bazelaire (1988). While
the classical NMO is based on the velocity-shift mechanism (effective medium) to account for heterogene-
ity of the subsurface, the shifted hyperbola utilizes a time shift, typical for the optical representations.
Schwarz and Gajewski (2017) investigated the mechanisms by which multidimensional stacking operators
account for heterogeneity of the overburden and showed that the described duality can be extended to these
approaches. They found that the common-reflection-surface (CRS, Jäger et al., 2001), non-hyperbolic CRS
(Fomel and Kazinnik, 2013) and implicit CRS (Schwarz et al., 2014) utilize the velocity-shift mechanism,
while multifocusing (Gelchinsky et al., 1999) is based on the time-shift method. In addition, Schwarz and
Gajewski (2017) proposed a recipe to transform time shifts into velocity shifts and vice versa.
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However, this well-established theory of auxiliary media breaks down when the 3D case is considered.
In the 3D case, wavefronts have two principal curvatures and, hence, can not be accurately approximated by
purely spherical wavefronts. In order to overcome this problem, we propose a new auxiliary medium which
accounts for heterogeneity of the subsurface by a special type of anisotropy that allows for a convenient
derivation of 3D multidimensional moveout approximations.

AUXILIARY MEDIA

The geometrical approach is commonly used for the derivation of multidimensional stacking operators.
The derivation is usually based on a simplified model of the subsurface: an analytical reflector in an aux-
iliary constant-velocity medium. The simplified model is related to "reality" (a curved reflector below a
heterogeneous overburden) through the two hypothetical (NIP and normal) experiments (Hubral, 1983).
The NIP experiment enables to define the properties of auxiliary media. In the NIP experiment, a fictitious
source S is placed at the reflection point of the central ray. The source S generates the wavefront that
arrives at the central point x0 at the time t0/2, with the emergence angle α and with the radius of curvature
RNIP (see Figure 1). The near-surface velocity at the point x0 is assumed to be v0. The goal is to find
an image source S∗ determined by the parameters α̃, R̃NIP in the auxiliary medium of constant velocity
ṽ that generates an identical wavefront (or an identical moveout ∆t̃NIP = t̃NIP(x) − t̃0). To achieve this
goal, we have to equate the first and second-order spatial derivatives of the traveltime of the NIP wave in
the auxiliary medium and in the heterogeneous medium
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and consider the following obvious relationship

t̃0 =
2R̃NIP

ṽ
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The system of equations (1,2) can be solved with respect to t̃0, ṽ, α̃ and R̃NIP under one of the following
conditions:

• α̃ = α. Solution of the system leads to the optical medium (see Figure 1a and Table 1). In this case,
the wavefronts are locally identical, the moveouts coincide up to the time shift δt = t̃0 − t0.

• t̃0 = t0. Solution of the system leads to the effective medium (see Figure 1c and Table 1). In this
case, the wavefronts do not coincide, but the moveouts are locally identical.

However, we may also want to fulfill both conditions

• α̃ = α, t̃0 = t0. In this case, the solution of the system is possible only under the assumption of
an anisotropic auxiliary medium. In the anisotropic auxiliary medium the velocity varies with the
direction (see Figure 1b and Table 1). The advantage of this approach is that both the wavefronts and
the moveouts are locally identical.

In the normal wave experiment, a fictitious exploding reflector element around the NIP is considered
(see Figure 2). Similarly to the NIP experiment, equalization of the spatial derivatives of the traveltime of
the normal wave enables to link the radius of curvature of the normal wave in the auxiliary medium R̃N and
in the heterogeneous medium RN (see Table 1). In the auxiliary media, the normal wavefront is generated
by the circular reflector with the origin at the center of curvature of the normal wavefront R̃N and the radius
R̃:

R̃ = R̃N − R̃NIP. (3)

The thus obtained simplified models are used for the derivation of higher-order 2D multidimensional move-
out approximations, e.g., multifocusing (optical medium) and implicit CRS (effective medium).
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Table 1: Properties of auxiliary media
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Figure 1: NIP experiment in the inhomogeneuos medium (blue rays and wavefronts) and its interpratation
by optical (a), anisotropic (b) and effective (c) auxiliary media. Note that in the effective medium (c) the
actual and image sources do not generally coincide.

THE ANISOTROPIC AUXILIARY MEDIUM

In the 2D case, the circular wavefront approximation is valid, because an arbitrary wavefront is locally
defined by one curvature. However, in the 3D case, an arbitrary wavefront has two principal curvatures
(see Figure 3a) and can not be accurately approximated by a spherical wavefront. Hence, isotropic (optical
or effective) auxiliary media can not "focus" the arbitrary wavefront (see Figure 3b). In contrast, the
anisotropic auxiliary medium, which in the 3D case is defined as (Abakumov, 2016)
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focuses the wavefront with the arbitrary curvature matrix K′NIP at the depth R̃NIP (see Figure 3c). In the
3D case, the condition (3) transforms to
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Figure 2: Normal experiment in the inhomogeneuos medium (blue rays and wavefronts) and its interprata-
tion by optical (a), anisotropic (b) and effective (c) auxiliary media.
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Figure 3: NIP experiment in the 3D case. The fictitious source S in a heterogeneous medium generates
the wavefront with the curvature matrix K′NIP (a). In the case of an auxiliary isotropic medium (b), the
NIP wavefront can not be "focused" at one point. Consideration of the auxiliary anisotropic medium (c)
overcomes this problem. Notice that the wavefront is drawn in the system L′ - the special ray-centered
coordinate system whose x′ and y′-axes coincide with the principal directions of curvature of the NIP
wavefront.

DERIVING 3D MOVEOUT APPROXIMATIONS

In the 3D case, the traces of the CMP bin are used to be stacked along the hyperbolic trajectories

t2 = t20 +
4|h|2

v2NMO(ξ)
, (7)

with the NMO velocity depending on the direction of the profile ξ (e.g., Levin, 1971). Similarly, the 3D
shifted hyperbola moveout approximation (Abakumov et al., 2017)(

t+ t̃0(ξ)− t0
)2

= t̃20(ξ) +
4|h|2
v20

(8)

includes the focusing time t̃0(ξ) which varies with the profile direction. The directional dependence of the
stacking parameters indicate that the individual effective or optical medium is considered for each angle ξ.
In contrast to that, the CMP moveout in the anisotropic auxiliary medium

t2 = t20 + 4hTWh, W =
t0

2v0
RKNIPRT, (9)

is uniquely defined by the parameters of the auxiliary anisotropic medium. Note that equation (9) is for-
mally identical to the 3D elliptical NMO equation (see Grechka and Tsvankin, 1998) and also coincides
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with the CRS operator in the CMP gather. Equations (4)-(6) form the 3D simplified model, which al-
lows the model-based derivation of higher-order 3D multidimensional moveout approximations, such as
3D nonhyperbolic CRS (Fomel and Kazinnik, 2013), and 3D implicit CRS (Abakumov, 2016).

CONCLUSIONS

We have presented a new type of auxiliary medium which utilizes anisotropy to account for 3D heterogene-
ity of the subsurface. Unlike conventional isotropic auxiliary media, the anisotropic auxiliary medium can
be naturally extended to the 3D case. The findings of this study systematize the existing stacking operators
and provide the model for the geometrical derivation of multidimensional stacking operators. The auxiliary
anisotropic medium can also be applied to other important problems, e.g., the interpretation and derivation
of 3D time migration operators.
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