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ABSTRACT

The qP and qS-wave eikonal equations derived from the VTI wave equation show that in the pseudo-
acoustic approximation, their dispersion relations degenerate into a single one. Therefore, when using
this dispersion relation for wave simulation, for instance by means of finite-difference approxima-
tions, both events are generated. To avoid the occurrence of the pseudo-S wave, the qP-wave disper-
sion relation alone needs to be approximated. This can be done with or without the pseudo-acoustic
approximation. A Padé approximation of the square root led to the best approximation. An implemen-
tation of a low-rank approximation to this equation demonstrates that this can provide high-accuracy
wavefields even in strongly anisotropic inhomogeneous media. It can be further approximated in a
separable way for an efficient implementation in the time-wavenumber domain. Our numerical ex-
periments demonstrate that this separable approximation remains valid up to very strong anisotropy.

INTRODUCTION

The pseudo-acoustic approximation (Alkhalifah, 1998, 2000) is a very cost-effective approach to anisotro-
pic RTM. The pseudo-acoustic wave equation, proposed to model the evolution of qP modes, is derived
under the assumption that shear velocity is zero along the symmetry axis.

However, finite difference implementations of pseudo-acoustic wave equation can be plagued by phys-
ical instability and undesirable S-wave modes even in the weakly anisotropic regime. Several strategies
have been proposed to overcome these problems. Stability of space-time FD implementations of the
pseudo-acoustic wave equation can be only be assured if the Thomsen parameters satisfy the constraint
ε ≥ δ, which is not always valid for shales (Thomsen, 1986). Fletcher et al. (2009) and Fowler et al. (2010)
showed that a stable approximation for qP modes in VTI media can be derived if one does not assume
the shear velocity along the symmetry axis to be zero. However, their proposed stable coupled system of
second-order differential equations still can produce undesirable S-wave modes.

The mitigation of the S-wave in FD implementations of the pseudo-acoustic approximation has been
an area of active research since the original work of Alkhalifah (1998). For example, Alkhalifah (2003)
indicated that if the source is in an isotropic region the S modes are not generated, although it still can be
produced at interfaces with sharp contrast. The work of Grechka et al. (2004) indicates that the instability
of pseudo-acoustic wave-equation is due to the coupling of the S mode to the qP mode. The S mode is not
stable when ε ≥ δ. Other removal strategies include the choice of a finite shear-wave velocity (Fletcher
et al., 2009) to achieve a zero shear-wave reflection coefficient everywhere in the model. However, this
introduces an additional parameter and is hard to generalize to orthorhombic media. The propagation filter
of Le and Levin (2014) is cumbersome, because it requires eigenvalue decomposition.
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For this reason, a very successful solution to obtain a stable qP wave equation is to factor out these
spurious modes from the pseudo-acoustic wave equation. The work of Klíe and Toro (2001) presents one
such approximation for pure qP wave-equation under the assumption of weak anisotropy. Exact factor-
ization results in a pseudo-differential operator in the mixed space-wavenumber domain (Liu et al., 2009).
Differential equations in space-time for the pure qP mode can be derived through approximations to the
exact pseudo-differential operator for qP evolution. Liu et al. (2009) proposed an algorithm to implement
the exact factorization of the pseudo-acoustic wave equation in the mixed space-wavenumber domain. Pes-
tana et al. (2012) derive an alternative approximation for the exact factorization which is valid for weak
anisotropy and can be implemented using finite difference in time and pseudo-spectral method in space.
Zhan et al. (2013) show how to generalize this implementation to TTI media. More sophisticated approxi-
mations of this factorization can be found in Du et al. (2014). Most recently, the exact factorization of the
pseudo-acoustic wave equation in the mixed space-wavenumber domain has been implemented using the
low-rank approximation (Fomel et al., 2013; Song and Alkhalifah, 2013; Wu and Alkhalifah, 2014; Sun
et al., 2016).

In last year’s report, Schleicher and Costa (2014) derived a new pure qP-mode approximation free of
physical instability and S modes and valid even for strongly anisotropic media. Based on this new equation,
we derive in this year’s report a separable approximation that allows for pseudo-spectral implementation in
the mixed space-wavenumber domain. This allows to explore its potential to provide an approximation that
factors heterogeneity and anisotropy even in strongly anisotropic media in the fashion used by Liu et al.
(2009) and Pestana et al. (2012) for weak anisotropy. We also compare the resulting wave-propagation
simulations in smoothly heterogeneous media and in a more realistic model to corresponding solutions
obtained with a low-rank approximation of the original dispersion relation.

THEORY

Elastic wave propagation in a VTI medium

For completeness, we start with a short summary of the approximate dispersion relation for qP waves. For
details, please refer to last year’s report (Schleicher and Costa, 2014). The derivation starts at the approxi-
mate elastic wave equation for VTI media with small δ, as specified by Bloot et al. (2013). Substitution of a
zero-order ray ansatz (Červený, 1985; Červený, V., 2001) into the VTI wave equation without a source term
yields the familiar ray-tracing eigenvalue problem, where the eigenvalues must all be equal to one. Bloot
et al. (2013) expressed the Christoffel matrix can be expressed explicitely to find the qP and qS eigenvalues
as

Λ1,2 =
1

2

(
(α2 + β2)‖p‖2 + 2εα2‖p̂‖2 ±

√
(α2 − β2)2‖p‖4 + 4Π

)
(1)

where the slowness vector p is defined as

p = ∇T = (p1, p2, p3) . (2)

Moreover,

α =

√
λ+ 2µ

ρ
and β =

√
µ

ρ
(3)

denote the vertical P and S wave velocities, and ε and δ are the Thomsen parameters. Also, the horizontal
slowness vector p̂ is given by

p̂ = ∇̂T = (p1, p2, 0) , (4)

and, up to first order in δ,

Π ≈ α2
[
(α2 − β2)

(
ε‖p‖2 + 2(δ − ε)p2

3

)
+ α2ε2‖p̂‖2

]
‖p̂‖2. (5)

The condition that the eigenvalues must be equal to one in order to correspond to a solution to the
eigenvalue problem translates thus into

Λ1,2 = A+ ±
√
A2
− −B = 1 (6)
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where

A± =
1

2

(
(α2 ± β2)‖p‖2 + 2εα2‖p̂‖2

)
(7)

B = 2α2(α2 − β2)(ε− δ)p2
3‖p̂‖2 . (8)

Equation (6) with a positive sign is the qP eikonal equation that describes the kinematic properties of
qP-wave propagation, and with a negative sign it is the qSV eikonal equation.

Pseudo-acoustic approximation

The pseudo-acoustic approximation (Alkhalifah, 1998, 2000) consists of setting the vertical S-wave veloc-
ity to zero in the equations governing wave propagation. With β = 0, equation (6) becomes (Schleicher
and Costa, 2014)

Λ1,2 = a±
√
a2 − b = 1 , (9)

where now

a =
α2

2

(
‖p‖2 + 2ε‖p̂‖2

)
, (10)

b = 2α4(ε− δ)p2
3‖p̂‖2 . (11)

A simple analysis of equation (9) reveals that it can be rewritten as

±
√
a2 − b = 1− a
a2 − b = 1− 2a+ a2

or 2a− b = 1 , (12)

i.e.,

α2
(
‖p‖2 + 2ε‖p̂‖2

)
− 2α4(ε− δ)p2

3‖p̂‖2 = 1 . (13)

Replacing ‖p̂‖2 → k2
r

ω2
, p2

3 →
k2
z

ω2
, α2→ v2

n

1 + 2δ
,
ε− δ

1 + 2δ
→ η, where kr and kz denote the horizontal and

vertical wavenumbers and vn is the NMO velocity, we arrive at

k2
z =

v2
n

α2

(
ω2

v2
n

− ω2 k2
r

ω2 − 2ηv2
n k

2
r

)
, (14)

which is exactly the pseudo-acoustic qP dispersion relation of Alkhalifah (2000). Since in the analysis
leading to equation (12), we have taken into account both signs in front of the square root, this equation is
actually a dispersion relation for both, qP and qSV waves.

For this reason, Schleicher and Costa (2014) concluded that a description of pure qP wave propagation
must directly use equation (9) with a positive sign. Better still, since equation (6) has the same structure,
any approximation that is made to equation (9) to allow for efficient implementation can be made in the
same way to the full equation (6) with no need for the pseudo-acoustic approximation.

Non-acoustic qP eikonal equation

For B � A2
−, we find the approximate square root (Schleicher and Costa, 2014)√

A2
− −B ≈ A− −

B

2A−
, (15)

which leads to the approximate eikonal equation

A+ +A− −
B

2A−
≈ 1 , (16)
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or, with A+ +A− = 2a (compare equations (7) and (10)),

2A−(2a− 1) = B . (17)

i.e., (
(α2 − β2)‖p‖2 + 2εα2‖p̂‖2

)(
α2(‖p‖2 + 2ε‖p̂‖2)− 1

)
= 2α2(α2 − β2)(ε− δ)p2

3‖p̂‖2 . (18)

The corresponding dispersion relation reads(
[(1 + 2η)v2

n − β2]k2
r + (α2 − β2)k2

z

) (
(1 + 2η)v2

nk
2
r + α2k2

z − ω2
)

= 2ηv2
n(α2 − β2)k2

rk
2
z . (19)

This equation has been derived in a different way by Pestana et al. (2012), based on a factorization of the
dispersion relation by Du et al. (2008).

Equation (17) allows for propagation even for η < 0. It shows only a weak dependence on β and
reduces to the equation of Klíe and Toro (2001) for β = 0. This means that this dispersion relation might
be used to improve on Klíe and Toro’s equation by using a constant ratio between the vertical P and S-wave
velocities, in this way still using the same number of parameters required in that equation.

Strong-anisotropy approximation For values of B close to A2
−, this approximation may not have suffi-

cient quality. Schleicher and Costa (2014) achieved a better approximation of the square root by means of
a fractional Padé approximation, i.e.,

A−

√
1− B

A2
−
≈ A−

1−
q1

B
A2
−

1− q2
B
A2
−

 , (20)

where q1 and q2 are the Padé coefficients. The corresponding approximate eikonal equation reads

A+ +A− −
q1

B
A−

1− q2
B
A2
−

≈ 1 (21)

or, equivalently,
(A2
− − q2B)(2a− 1) = q1A−B . (22)

Explicitly, it becomes[ (
(α2 − β2)‖p‖2 + 2εα2‖p̂‖2

)2 − 8q2α
2(α2 − β2)(ε− δ)p2

3‖p̂‖2
](
α2(‖p‖2 + 2ε‖p̂‖2)− 1

)
= 4q1

(
(α2 − β2)‖p‖2 + 2εα2‖p̂‖2

)
α2(α2 − β2)(ε− δ)p2

3‖p̂‖2 , (23)

which yields the dispersion relation[(
[(1 + 2η)v2

n − β2]k2
r + (α2 − β2)k2

z

)2 − 8q2ηv
2
n(α2 − β2)k2

rk
2
z

] (
(1 + 2η)v2

nk
2
r + α2k2

z − ω2
)

= 4q1

(
[(1 + 2η)v2

n − β2]k2
r + (α2 − β2)k2

z

)
ηv2
n(α2 − β2)k2

rk
2
z . (24)

Schleicher and Costa (2014) showed that this approximation is highly accurate even for strong anisotropy
when choosing anisotropy-dependent values for the Padé coefficients q1 and q2.

Separable approximations

The problem with the above approximations is that they are unsuitable for efficient wave-propagation
simulation in the time-wavenumber domain in heterogeneous media. The most feasible way to solve them
is using low-rank approximations, which can be very demanding on storage and computational cost for
strongly heterogeneous media. In this sense, they provide no advantage over the full qP eikonal equation
(6) involving a square root, which can also be solved using a low-rank approximation. For an efficient
implementation in the spectral domain, a separable approximation is required. The computational cost of
separable approximations does not depend on the medium heterogeneity.
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Linear approximation For this reason, Pestana et al. (2012) introduce an additional approximation to
their version of the dispersion relation. They express their approximation of the dispersion relation (here
obtained from the linear approximation of the square root) as

ω2 = (1 + 2η)v2
nk

2
r + α2k2

z −
2ηv2

nk
2
rk

2
z

k2
z + Fk2

r

, (25)

where they use the notations

F =
(1 + 2η)v2

n − β2

α2 − β2
= 1 +

2ε

f
, and f = 1− β2

α2
. (26)

The separable approximation proposed by the cited authors is to use F ≈ 1, which eliminates the S-wave
velocity from the approximation. Note however, that this is a stronger assumption than the pseudo-acoustic
approximation which sets β = 0.

Second-order approximation The corresponding version of the strong-anisotropy approximation (24)
reads

ω2 = (1 + 2η)v2
nk

2
r + α2k2

z − 2q1
2ηv2

nk
2
rk

2
z

k2
z + Fk2

r − 4q2G
, (27)

where

G =
2(ε− δ)

f

k2
rk

2
z

k2
z + Fk2

r

. (28)

For q1 = 1/2 and q2 = 0, it reduces to equation (25).
To obtain a separable approximation that remains valid for strong anisotropy, we first put k2 = k2

r + k2
z

into evidence in the denominator of equation (27) and then approximate the resulting expression up to first
order in the anisotropy parameters. In symbols,

ω2 = (1 + 2η)v2
nk

2
r + α2k2

z − 2q1
2ηv2

nk
2
rk

2
z

k2
(

1 + 2ε
f
k2r
k2 −

4q2G
k2

)
≈ (1 + 2η)v2

nk
2
r + α2k2

z − 2q1
2ηv2

nk
2
rk

2
z

k2

(
1− 2ε

f

k2
r

k2
− 4q2G

k2

)
. (29)

Next, we approximate G correspondingly, i.e.,

G =
2(ε− δ)

f

k2
rk

2
z

k2
(

1 + 2ε
f
k2r
k2

)
≈ 2(ε− δ)

f

k2
rk

2
z

k2

(
1− 2ε

f

k2
r

k2

)
. (30)

Substitution of equation (30) in equation (29) yields, up to third order in 1/k2,

ω2 ≈ (1 + 2η)v2
nk

2
r + α2k2

z − 2q1
2ηv2

nk
2
rk

2
z

k2

(
1− 2ε

f

k2
r

k2
− 8q2(ε− δ)

f

k2
rk

2
z

k4

)
. (31)

Alternatively, we can use f = 1− β2/α2 and assume that the velocity ratio is also small. This yields

ω2 = (1 + 2η)v2
nk

2
r + α2k2

z − 2q1
2ηfv2

nk
2
rk

2
z

k2
(

1− β2

α2 +
2εk2r
k2 −

4fq2G
k2

)
≈ (1 + 2η)v2

nk
2
r + α2k2

z − 2q1
2ηfv2

nk
2
rk

2
z

k2

(
1 +

β2

α2
− 2εk2

r

k2
− 4q2fG

k2

)
. (32)
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The corresponding approximation of G reads

G =
2(ε− δ)k2

rk
2
z

fk2 + 2εk2
r

=
2(ε− δ)k2

rk
2
z

k2
(

1− β2

α2 +
2εk2r
k2

)
≈ 2(ε− δ)k2

rk
2
z

k2

(
1 +

β2

α2
− 2εk2

r

k2

)
. (33)

Substitution of equation (30) in equation (29) yields, up to third order in 1/k2,

ω2 ≈ (1 + 2η)v2
nk

2
r +α2k2

z − 2q1
2ηv2

nk
2
rk

2
z

k2

[
1− β4

α4
− 2εfk2

r

k2
− 8q2f(ε− δ)k2

rk
2
z

k4

(
1− β4

α4

)]
, (34)

or, also neglecting β4/α4 in consistency with the above approximations,

ω2 ≈ (1 + 2η)v2
nk

2
r + α2k2

z − 2q1
2ηv2

nk
2
rk

2
z

k2

[
1− 2εfk2

r

k2
− 8q2f(ε− δ)k2

rk
2
z

k4

]
. (35)

In effect, equations (31) and (35) can be represented as

ω2 ≈ (1 + 2η)v2
nk

2
r + α2k2

z − 2q1
2ηv2

nk
2
rk

2
z

g k2

[
g − 2εk2

r

k2
− 8q2(ε− δ)k2

rk
2
z

k4

]
. (36)

with three possible choices for g, being

g = f or g =
1

f
or g = 1 . (37)

The latter choice of g = 1 is obtained from setting β = 0. In other words, it is the pseudo-acoustic version
of this equation. It reduces the number of parameters describing the wave propagation to the same number
used in the previous approximations.

Equation (36) can be conveniently implemented in the mixed space-wavenumber domain by calculating
the involved derivatives in the wavenumber domain and then applying space-variable scaling in the space
domain. Since the derivative calculations can be carried out with respect to local coordinates for each point
in the model space, equation (36) can be immediately used for an implementation in tilted transversely
isotropic media in a similar way to the ones indicated by Zhan et al. (2013) or Zhou et al. (2015).

For comparison, we have implemented a low-rank solution (Fomel et al., 2013) to the dispersion relation
of the original qP-wave eikonal equation (6). We computed the low-rank approximation matrix using the
algebraic reconstruction technique (ART) according to Kaczmarz (1993). The low-rank approximation
allows to approximate an arbitrary dispersion relation with any desired precision. It requires a prediction of
the rank of the approximation matrix. In the examples in this work, we used always the smallest number that
kept the residual below a specified level. Note that the required rank depends on the medium heterogeneity
and anisotropy.

NUMERICAL EXAMPLES

To better understand the S-wave modes in the pseudo-acoustic approximation and to demonstrate the qual-
ity of the approximations obtained from the above analysis, Schleicher and Costa (2014) have calculated
a number of slowness surfaces and modeled wave propagation for a set of differently anisotropic media.
Here, we demonstrate the quality of the separable approximations.

Separable approximations

We evaluate the quality of the separable approximations by means of a set of numerical experiments.
Figure 1 shows the approximation achieved by equation (31) as compared to the linear approximation
of equation (25). While the linear approximation achieves acceptable quality for moderate anisotropy, the
strong-anisotropy approximation attains visible improvements for the largest-anisotropy media in Figure 1e



170 Annual WIT report 2015

(a)

  0.2

  0.4

30

210

60

240

90

270

120

300

150

330

180 0

pP

lP

qP

(b)

  0.2

  0.4

30

210

60

240

90

270

120

300

150

330

180 0

pP

lP

qP

(c)

  0.2

  0.4

30

210

60

240

90

270

120

300

150

330

180 0

pP

lP

qP

(d)

  0.2

  0.4

30

210

60

240

90

270

120

300

150

330

180 0

pP

lP

qP

(e)

  0.2

  0.4

30

210

60

240

90

270

120

300

150

330

180 0

pP

lP

qP

(f)

  0.2

  0.4

30

210

60

240

90

270

120

300

150

330

180 0

pP

lP

qP

Figure 1: True qP slowness surface (red line) and its separable non-acoustic Padé approximation (dashed
blue line) for (a) Mesaverde Mudshale; (b) Taylor Sandstone; (c) Mesaverde Laminated Siltstone; (d) Shale
TH-51/13 (e) dry Green River Shale; (f) Biotite Crystal.

and f. Note that for this approximation, there was no apparent advantage in using the anisotropy-dependent
Padé coefficients of Schleicher and Costa (2014) over the conventional choice of q1 = 1/2 and q2 = 1/4.

Figure 2 shows the relative error of the slowness in the non-acoustic separable approximations as a
function of the propagation angle for the chosen materials. We see that the strong-anisotropy approximation
reduces the error by about least 50% even for the materials with smaller anisotropy. The largest reduction
is achieved for Taylor Sandstone (Figure 2b), while the least reduction occurs for Mesaverde Laminated
Siltstone (Figure 2c).

Figure 2 also shows the relative error of the slowness in the pseudo-acoustic versions (f = 1 in equation
(31)) of the separable approximations as a function of the propagation angle for the chosen materials. We
see that the strong-anisotropy approximation has about the same quality as before, indicating that there is
no need for the use of the S-wave velocity as an additional parameter.



Annual WIT report 2015 171

(a)

−200 −100 0 100 200

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

θ (degree)

R
e

la
ti
v
e

 e
rr

o
r 

(%
)

 

 
Pestana et al. (2012)
strong anisotropy
pseudo−acoustic strong anisotropy

(b)

−200 −100 0 100 200
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

θ (degree)

R
e

la
ti
v
e

 e
rr

o
r 

(%
)

 

 

Pestana et al. (2012)
strong anisotropy
pseudo−acoustic strong anisotropy

(c)

−200 −100 0 100 200
−3

−2

−1

0

1

2

3

θ (degree)

R
e

la
ti
v
e

 e
rr

o
r 

(%
)

 

 

Pestana et al. (2012)
strong anisotropy
pseudo−acoustic strong anisotropy

(d)

−200 −100 0 100 200

−4

−3

−2

−1

0

1

2

3

4

θ (degree)

R
e

la
ti
v
e

 e
rr

o
r 

(%
)

 

 

Pestana et al. (2012)
strong anisotropy
pseudo−acoustic strong anisotropy

(e)

−200 −100 0 100 200
−1.5

−1

−0.5

0

0.5

1

1.5

θ (degree)

R
e

la
ti
v
e

 e
rr

o
r 

(%
)

 

 
Pestana et al. (2012)
strong anisotropy
pseudo−acoustic strong anisotropy

(f)

−200 −100 0 100 200
−15

−10

−5

0

5

10

15

θ (degree)

R
e
la

ti
v
e
 e

rr
o
r 

(%
)

 

 

Pestana et al. (2012)
strong anisotropy
pseudo−acoustic strong anisotropy

Figure 2: Error of pseudo-acoustic slowness surface for linear (solid blue line) and separable full (dashed
green line) and pseudo-acoustic (dash-dotted red line) strong-velocity approximations for (a) Mesaverde
Mudshale; (b) Taylor Sandstone; (c) Mesaverde Laminated Siltstone; (d) Shale TH-51/13 (e) dry Green
River Shale; (f) Biotite Crystal.

Propagation snapshots

Encouraged by these very good approximations of the slowness surface, we implemented schemes to sim-
ulate numerical wave propagation by means of these equations. The numerical tests evaluate the separable
approximations (25) and (31), which we implemented in the mixed space-wavenumber domain, and com-
pare them to a low-rank approximation of the original equation (6).

Heterogeneous anisotropy parameters, constant tilt For the first test of the separable approximations,
we used an inhomogeneous model, in which both the velocity and the anisotropy parameters are hetero-
geneous (see parameters in Figure 3). Figure 4 compares the modeling results with the linear separable
approximation (a) to the ones with the strong-anisotropy separable approximation (b) and the low-rank
approximation (c).
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Figure 3: Model parameters of heterogeneous TTI model with constant tilt axis of 30◦. (a) Vertical
velocities. (b) Anisotropy parameters.
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Figure 4: Snapshots of qP wave in a heterogeneous TTI model with constant tilt of 30◦. (a) Linear
separable approximation. (b) Strong-anisotropy separable approximation. (c) Low-rank approximation.

Heterogeneous anisotropy parameters, varying tilt Our next test used the same model parameters as
the previous one, with the TI symmetry axis now varying from 0◦ to 60◦. Figure 5 shows the varying
tilt and compares the modeling results with the linear separable approximation (a) to the ones with the
strong-anisotropy separable approximation using g = f (b), g = 1/f (c), and g = 1 (d), and the low-rank
approximation of the square-root equation (e). We see that the second-order approximations resemble the
low-rank result more closely than the first-order approximation. Between the second-order approximations,
the differences are rather subtle. Closer inspection reveals that the pseudo-acoustic version (g = 1) comes
closest.

BP TTI Model Our final test consisted of wave simulations in the BP TTI Model (Figure 6). We sim-
ulated two shots at the surface at positions xs = 32.0 km and xs = 48.0 km and restricted the model
to the solid and dashed boxes, respectively, indicated in Figure 6. We chose these regions for their large
variations in anisotropy parameters and tilt angle. For the second shot, we selected the region with the
strongest anisotropy and most extreme tilt angles in the model. To test the approximations for even stronger
anisotropy, we then repeated the second shot in a model where we multiplied the ε values by a factor of
two. This leads to about three times larger anellipticity.

Figures 7 to 9 compare snapshots of the modeled wavefields with the separable strong-anisotropy ap-
proximation to the corresponding low-rank results. We simulated the first shot at xs = 32.0 km in the
area indicated by the solid box in Figure 6. We observe almost perfect coincidence between the two snap
shots (Figure 7). For the second shot, simulated in the area indicated by the dashed box in Figure 6,
we observe a few subtle differences between the two snapshots (Figure 8). Numerical dispersion of the
separable approximation is a little stronger than in the low-rank solution, resulting in slightly broadened
wavelets. The main differences, however, lie in the amplitude behaviour. The low-rank solution suffers
from stronger amplitude decay in the deeper part of the model than the separable approximation, indicating
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Figure 5: Snapshots of qP wave in a heterogeneous TTI model with variable tilt. Comparison of separable
to low-rank approximation. (a) Linear (b) Strong-anisotropy, g = 1/f . (c) Strong-anisotropy, g = f . (d)
Strong-anisotropy, g = 1. (e) Low-rank approximation.

that the treatment of geometrical spreading is different. Moreover, some of the reflections have visibly dif-
ferent amplitudes, probably caused by a different treatment of reflection and transmission coefficients. The
same kind of differences, though a little more pronounced, are present appear in Figure 9, which compares
the corresponding snapshots for the second shot position in the dashed box for the model with doubled ε.
Regarding the amplitude differences, it should be kept in mind that these approximations of pure qP-wave
propagation are meant to reproduce only the kinematic behaviour and cannot be expected to predict correct
elastic amplitudes.

CONCLUSIONS

In a continuation of last year’s report (Schleicher and Costa, 2014), we have studied approximations to
the qP wave dispersion relation. The full pseudo-acoustic qP dispersion relation of Alkhalifah (2000) is
actually a coupled equation that describes both qP and a qSV waves. The equation can be uncoupled if
the individual eikonal equations are considered. Since these equations contain square roots, they cannot
be directly converted into differential approximations. Even their implementation by means of a low-rank
approximation might be impaired in heterogeneous and strongly anisotropic media, as indicated by Wu and
Alkhalifah (2014). Therefore, Schleicher and Costa (2014) discussed several possible approximations of
the square root and compared their quality.

In this report, we start at the Padé approximation to derive a separable approximation that allows for
pseudo-spectral implementation in the mixed space-wavenumber domain. This allows to explore its po-
tential to provide an approximation that factors heterogeneity and anisotropy even in strongly anisotropic
media in the fashion used by Liu et al. (2009) and Pestana et al. (2012) for weak anisotropy. Our numeri-
cal experiments demonstrate that this separable approximation remains valid up to very strong anisotropy.
Even for extremely anisotropic Biotite Crystal with η = 7.1875, the slowness surface was approximated
with an error of less than 5%.

Numerical modeling in the more realistic BP TTI model showed that for moderate anisotropy, the results
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Figure 6: Model parameters of BP TTI model: (a) α; (b) ε; (c) δ; (d) tilt angle. Indicated as solid and
dashed boxes are the regions used for the two numerical simulations.
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Figure 7: Snapshots of qP wave in the BP TTI model (solid-box region in Figure 6). (a) Strong-anisotropy
separable approximation. (b) Low-rank approximation.

of the new separable approximation are virtually identical to those of a low-rank solution. Increasing the
anisotropy in this model, we mainly observed differences between the amplitudes. In this respect, it is
important to remember that these approximations are derived to mimic the kinematic behaviour of qP
waves without regard to amplitudes.

ACKNOWLEDGMENTS

This work was kindly supported by the Brazilian government agencies CAPES, FINEP, and CNPq as well
as Petrobras and the sponsors of the Wave Inversion Technology (WIT) Consortium.

REFERENCES

Alkhalifah, T. (1998). Acoustic approximations for processing in transversely isotropic media. Geophysics,
63(2):623–631.

Alkhalifah, T. (2000). An acoustic wave equation for anisotropic media. Geophysics, 65(4):1239–1250.

Alkhalifah, T. (2003). An acoustic wave equation for orthorhombic anisotropy. Geophysics, 68(4):1169–
1172.

Bloot, R., Schleicher, J., and Santos, L. T. (March, 2013). On the elastic wave equation in weakly aniso-
tropic VTI media. Geophysical Journal International, 192(3):1144–1155.
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anisotropy separable approximation. (b) Low-rank approximation.
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