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ABSTRACT

Fourier finite-difference migration (FFD) is an hybrid method that tries to improve on the inherent dip-
limitation of one-way wave-equation based migration. One shortcoming of the conventional real Padé
approximation used in the operator is the incorrect treatment of evanescent modes. This limitation
can be strongly improved with the complex Padé approximation of the square-root. The dip limitation
of the FFD operator depends on the variation of the velocity field and has been treated in real-Padé
FFD by optimisation of the velocity-dependent parameter σ. In this work, we extend this parameter
optimisation to complex-Padé FFD. We discuss the achieved quality of the approximate dispersion
relation for different σ functions under consideration of the number of terms in the Padé approximation
and the branch-cut rotation angle. The highest dip angles can actually be reached with a one-term
Padé expansion. The associated σ function that leads to the highest imageable dip angles can be well-
adjusted by a 4th-order polynomial. The implementation is validated on the Marmousi model dataset.

INTRODUCTION

Fourier finite-difference (FFD) migration (Ristow and Rühl, 1994) was designed as a correction to split-
step migration (Stoffa et al., 1990) to improve the migrated images of strongly-dipping reflectors in media
with strong velocity variations. It is an improved approximation of the square-root operator involved in
one-way wave-equation migration by means of a Padé series, adding a finite-difference correction term to
the split-step approximation. While one-way wave-equation methods have gone out of fashion with the
advent of more powerful computers that allow for the standard use of two-way methods, such tools are still
of interest for modern methods like Marchenko imaging (Wapenaar et al., 2014).

In the original work of Ristow and Rühl (1994), the authors used the real Padé series. This implies in
a real approximation of the square root even for evanescent waves, where the dispersion relation should
become complex. As a consequence, evanescent waves, which should propagate horizontally with damp-
ing in the vertical direction, are propagated into the medium without amplitude decay, causing acausal
precursors to the wavefield. These, in turn, may lead to artifacts or even spurious reflectors in the migrated
image.

For this reason, Amazonas et al. (2007) replaced the real Padé approximation by the complex one of
Milinazzo et al. (1997). They showed that in this way, the evanescent waves are better treated. While
still presenting nonzero real parts of the vertical wave-vector components, i.e., still propagating into the
medium, they are now damped vertically. In this way, the migrated images contain less artifacts, becoming
of comparable quality as the images obtained with the much more expensive FFD plus interpolation of
Biondi (2002).

Ristow and Rühl (1994) demonstrate that the theoretically derived expression for the parameter σ as a
function of the ratio between reference and model velocities does not provide the best steep-angle images
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in real-Padé FFD migration. They showed for a single term of the Padé series that an optimised function
σ further increases the imageable dips. Amazonas et al. (2007) did not carry out such an optimisation for
complex-Padé FFD migration (CPFFD). They only indicated that a heuristically chosen function improved
the dip behavior of CPFFD for a three-term Padé approximation.

In this work, we discuss the behavior of CPFFD migration in dependence on the selected function for
σ, as well as on the branch-cut rotation angle and the number of terms used in the Padé approximation. We
exhibit an optimised σ function for the best possible choices of the rotation angle and show that for certain
ratios between the reference and model velocities, the best dip-angle behavior is achieved with a single
Padé term, while for other values of that ration, two terms are advantageous. We validate the observations
on a synthetic data set from the Marmousi model.

DOWNWARD-CONTINUATION MIGRATION

The one-way acoustic wave equation for downward continuation the kx − ω domain reads (Claerbout,
1985)

∂P (kx, z, ω)

∂z
= − ıω
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√
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(
vkx
ω

)2

P (kx, z, ω) . (1)

In other words, the vertical wavenumber kz can be expressed by the following dispersion relation, which
is often called the Single Square Root (SSR) equation,

kz = SSR(kx, ω) = −
√
ω2
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. (2)

For a laterally varying medium velocity v, equation (1) is a pseudo-differential equation, where kx repre-
sents the symbol of the horizontal derivative. Therefore, to numerically evaluate the operator, the square-
root has to be approximated. This leads to dip-limited migration methods (Claerbout, 1985).

Phase-shift migration

When propagation velocity is assumed to be a function only of depth, wavefield can be downward-
continued efficiently in the frequency-wavenumber ω − k domain by simple multiplication with the SSR
downward-continuation operator,

P (kx, z +∆z, ω) = P (kx, z = 0, ω)e

−
ıω

v

√√√√√1−

vkx
ω

∆z
. (3)

The downward-continuation operator expressed in equation (3) describes a dip-dependent kx/ω phase shift
of the wavefield; thus, it often is called the phase-shift operator (Gazdag, 1978). When the medium’s ve-
locity is not strictly a function of depth, application of equation (3) with some average or reference velocity
can still approximately work if the lateral variations are very small. In order to handle slightly larger lat-
eral velocity variations, Gazdag and Sguazzero (1984) introduced the phase-shift plus interpolation (PSPI)
method. Instead of only one velocity at each depth step, it uses several reference velocities to propagate
several reference wavefields. The approximate final wavefield is obtained by linearly interpolating the
reference wavefields based on the relationship of the local velocity to the reference velocities.

Split-step migration

A more elegant approach to the lateral velocity variations was provided by split-step migration (Stoffa
et al., 1990). They noted that when propagating a reference wavefield with a reference velocity, even
vertical propagation is incorrect. Therefore, they corrected the SSR operator in the space domain for this
error, i.e.,

kz = SSR(kx, ω) ≈

(√
ω2

v2
ref

− kx

)
+

(
ω

v(x, z)
− ω

vref

)
= PS + SS , (4)
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where the correction term SS is the difference between the true square root SSR and its phase-shift ap-
proximation PS for kx = 0. For migration, the operator implementing the PS term in expression (4) is
applied in the ω-k domain according to equation (3), whereas the SS term represents a spatially varying
time shift that easily can be applied in the ω-x domain.

Fourier finite-difference migration

To find a better approximation for the difference between the true and reference square roots Ristow and
Rühl (1994) approximated both of them by means of a first-order continued-fraction expression,

√
1− Z ≈ 1− Z

2− Z
2

, (5)

where Z = (vkx/ω)2. Actually, this approximation can also be interpreted as the first term of a Padé
series,

√
1− Z ≈ 1−

N∑
n=1

anZ

1− bnZ
, (6)

with the Padé coefficients (Bamberger et al., 1988)

an =
2

2N + 1
sin2(

nπ

2N + 1
) and bn = cos2 nπ

2N + 1
. (7)

By expanding the continued-fraction terms (5) of both square roots into Taylor series, joining them, and
regrouping the terms back into the form of a continued fraction, Ristow and Rühl (1994) derived the FFD
approximation

kz = SSR(kx, ω) ≈ PS + SS + p(1− p) a1Z

1− b1σ(p)Z
, (8)

where p = v(x, z)/vref and where a1 and b1 are the Padé coefficients of equation (7) with n = N = 1,
i.e., a1 = 1/2 and b1 = 1/4. Moreover, σ(p) = 1 + p + p2. The FFD correction term is then applied in
the ω-x domain by means of a finite-difference operator very similar to the one used in FD migration. As
shown by Ristow and Rühl (1994), conventional FFD schemes become instable if p > 1. Biondi (2002)
was able to overcome that problem by an intelligent symmetrical decomposition of the operator.

Complex-Padé Fourier finite-difference migration

The real-valued coefficients given in equation (7), while useful for certain problems, result in a square-root
approximation which maps the real axis onto itself. However, if Z < −1, the left side is a purely imaginary
number but the right side remains a real-valued quantity. In other words the approximation breaks down.
In the context of wave propagation, this leads to inappropriate treatment of evanescent modes and poor
approximation for high propagation angles. This difficulty can be overcome by using complex coefficients.
Milinazzo et al. (1997) propose a complex representation of the Padé expansion in equation (6). They
chose the branch cut to lie in the negative half-plane, rotated from the negative axis by an angle α. Figure 1
shows the rotation of the branch cut in the complex plane.

Using the complex expressions of Milinazzo et al. (1997), Amazonas et al. (2007) follow the real-valued
derivation of Ristow and Rühl (1994) to derive the complex-Padé FFD algorithm. Their final expression is

kz = SSR(kx, ω) ≈ PS + C0SS + p(1− p)
N∑
n=1

AnZ

1−Bnσ(p)Z
, (9)

where

An ≡
ane
− ıα2

[1 + bn(e−ıα − 1)]
2 , Bn ≡

bne
−ıα

1 + bn(e−ıα − 1)
.
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Figure 1: Branch cut rotation angle in the complex plane.

The number C0 should, according to Milinazzo et al. (1997) and Amazonas et al. (2007), be correctly
represented as

C0 ≡ eı
α
2

[
1 +

N∑
n=1

an(e−ıα − 1)

[1 + bn(e−ıα − 1)]

]
.

However, this turns out to be a sophisticated approximation to one that gets the better the more terms N
are used. Therefore, it can be directly replaced by C0 = 1.

As numerically demonstrated by Amazonas et al. (2007), this complex-Padé approximation results in a
better representation of the evanescent part of the mode spectrum than its real counterpart.

NUMERICAL EVALUATIONS

There are three important parameters to choose when implementing a CPFFD migration. These are the
branch-cut rotation angle α, the number N of terms in the Padé series, and the function σ(p). Below we
discuss the influence of these parameters on the dispersion relation.

Methodology

Amazonas et al. (2007) have provided a preliminary analysis of the branch-cut rotation angle. Figure 2
reproduces the approximation of the dispersion relation for a rather small value of p = 0.5 for three
different rotation angles α of 5◦, 45◦ and 90◦, respectively. From this analysis, Amazonas et al. (2007)
concluded that the best rotation angle was 45◦, and they recommended σ = 1 + p3 over the theoretical
function σ = 1+p+p2 to reach higher dip angles. However, as we will se below, there are better functions
σ, and for those, the choice of the rotation angle must be revisited.

Error analysis

To find the optimal choice for the CPFFD parameters, we follow the fairly simple idea of Ristow and Rühl
(1994). Basically, we systematically study the relative error behavior of the dispersion relation for a series
of values of σ for each chosen but fixed value of p. Since the tolerable positioning error of migration is
often associated with one percent error of the dispersion relation (Ristow and Rühl, 1994), we look for a
combination of parameters that will maximise the dip angle where this error of one percent occurs. In this
way, we determine the quality of a certain approximation by means of the intersection of the relative error
function with the one percent error line.

The relative error is defined by

E(X) = E(sin θ) = 100
ε√

1−
(
kx
k

)2 , (10)
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Figure 2: Complex Padé approximations to the dispersion relation with different branch-cut rotation an-
gles. (a) α = 5◦; (b) α = 45◦; (c) α = 90◦.

where ε is the absolute error, i.e., the difference between the square root and its approximation. The
maximum dip angle of a migration operator is then defined as that angle that gives a relative error of
one percent, E(sin θ) = 0.01. Figure 3 shows such an analysis for the case of σ = 1 + p3 in a 3-term
approximation for α = 90◦. For this case, we obtain sin θ = 0.6285, which corresponds to a maximum
dip angle of θ = 38.94◦.

Defining the parameters of the Padé expansion

We decided to evaluate the number of terms in the Padé expansion, that means, to check if N = 3 terms is
really the best option to approximate the downward-continuation operator. For this analysis, we determine
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Figure 3: Relative error as a function of propagation angle.
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Figure 4: Maximum dip angle with N = 1 for best possible values of σ and different values of α.

for each value of p the value of σ that maximises the dip angle θ in dependence on the number N of
terms used and on the rotation angle α. Figure 4 plots the so-obtained maximum dip angle for N = 1 for
four different rotation angles. Note that each of the curves in this figure was determined with the specific
function σ(p) which maximises the dip for that rotation angle. We can immediately see that the maximum
dip angle decreases with increasing rotation angle, indicating that 45◦ is probably not the best choice for
the rotation angle for N = 1 as concluded for N = 3 by Amazonas et al. (2007). The variation for small
angles close to 5◦ are rather small. Since a too small angle reintroduces propagating evanescent waves, we
believe that 5◦ is the best possible choice for N = 1.

Figure 5 shows the same analysis for with N = 2 and 3 terms in the Padé expansion, respectively. Now
we can conclude that for rotation angles higher than 45◦ we get weak dip angles, even with the optimal
values of σ. For N = 2, our best result is obtained with α = 25◦ but we can see a weird “hole” in the
middle, where the maximum dip angle suddenly decreases. Further tests with other angles between 25◦

and 29◦ (see Figure 6) showed that the first angle where this “hole” disappears, is 27◦, which thus is the
optimal value of α for N = 2.

In the second part of Figure 5 we include a comparison to the dip angles reached by the heuristic
function σ = 1 + p3 of Amazonas et al. (2007). We see that there are still better values of σ than those,
which allow to reach even higher dip angles. The choice of the rotation angles is less critical for N = 3.
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Figure 5: Maximum dip angle with N = 2 and N = 3.
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Figure 6: Defining the optimal value of α to be used with 2 terms.

All values between 5◦ and 45◦ lead to approximately the same dip-angle behavior, except for p values
between 0.8 and 1. We already recognise from these figures that except for a small range of not very
realistic values of p between 0.18 and 0.35, the CPFFD approximation reaches a higher dip angle with one
or two terms than with three. That is actually good news because less terms in the Padé expansion mean
lower computational cost.

For a corroboration of these findings, we now look at the comparison of the maximum dip angle as
a function of N for fixed rotation angles. Figure 7 shows the maximum dip angle for α = 5◦ for one
and two Padé terms. We recognise that while two terms attain higher dip angles for p values below 0.45,
the one-term approximation is actually better for higher p. Since that range of p is the more important
one, this figure suggests that working with a single Padé term might actually produce the best migrated
images. For higher rotation angles, the 1-term approximation reaches only lower angles, while the 2-term
approximation does not change significantly (see Figure 8). Therefore, the highest dip angles can actually
be imaged by the 1-term 5◦ approximation, at least in the p range of 0.45 to 1.0, reaching dip angles of
more than 65◦.
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Figure 7: Maximum dip angle for α = 5◦.
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Figure 8: Maximum dip angle for α = 15◦, α = 25◦, α = 30◦, and α = 35◦.

Comparison to earlier results

The next analysis is to compare our results with the maximum dip angles attained by the approximations
of Ristow and Rühl (1994) and Amazonas et al. (2007).

The left part of Figure 9 shows the maximum dip angles obtained with our optimised σ for a branch
rotation angle of 5 degrees and only one term in the Padé expansion. Using the same parameters, we can
see that the angles obtained using σ = 1 + p + p2 give better results compared with the σ = 1 + p3 used
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Figure 9: Optimised σ compared with the theoretical and heuristic σ functions. Left: N = 1, α = 5◦.
Right: N = 2, α = 27◦.

by Amazonas et al. (2007), but none achieves the quality of the optimised σ.
The corresponding comparison for two Padé terms and a rotation angle of 27 degrees is depicted in the

right part of Figure 9. In this case σ = 1 + p3 achieves better dip angles than σ = 1 + p+ p2.
Comparing the parts of Figure 9, we also recognise that even for the best rotation angle of 27◦, the

2-term approximation achieves higher dip angles only for p up to 0.7. For higher p values, the best 1-term
approximation is still superior. This is confirmed in Figure 10, which compares the two results for the
optimal σ functions with the best results from the literature for real (Ristow and Rühl, 1994) and complex-
Padé (Amazonas et al., 2007) FFD.

The first observation is that the curve for N = 3, σ = 1 + p3 and α = 45◦ cannot compete with the
optimised σ results. Interestingly, the maximum dip angles obtained by the optimised σ curve of Ristow and
Rühl (1994) for real-Padé FFD are virtually identical to those obtained for the N = 1, α = 5◦ case. This
indicates that the brunch-cut rotation reduces the ability of FFD migration to image steep dips, but small
rotation angles can still preserve the angles achieved in the real case. Note that even small rotation angles
introduce damping of the evanescent modes and should be preferred over a completely real procedure.

Figure 10 also point out our second option to handle very strong lateral velocity variations, that is, using
α = 27◦ and N = 2. These parameter values allow to reach maximum dip angles of more than 70◦ for p
values below 0.7. The only problem of this parameter choice is the dip angle loss for p values closer to 1.0.

Optimised σ functions

The analysis for the optimal values of σ as a function of p can be summarised with the help of Figure 11.
It depicts a color-coded image of the maximum dip angle as a function of p and σ. The curve of optimal
values for σ for each value of p is clearly visible as only for a small range of σ values for each p, high
maximum dip angles over 60 degree (red parts of the image) are reached. We recognise from this figure
that for smaller values of p, a good choice of σ is rather important, while at values larger than 0.8, the
region of high angles broadens, indicating that a perfect choice of the optimised σ is less crucial here. We
notice that the range of optimum σ values is between 1.3 and 3.5.

The σ function

Our next goal is to see the σ function, its behavior and decide a good option to approximate or adjust the
numerical values without the need for a table of values.
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Figure 10: Angles obtained with the optimised σ compared with Real FFD and the results of Amazonas
et al. (2007).

Figure 12 shows the optimal σ values versus all the possible values of p. The function is smooth,
thus being easily adjustable with a polynomial function using least-squares. Figure 12 also depicts the
so-adjusted 4th-order polynomial, given by σ = 1.3255 + 0.54p+ 4.1453p2 − 6.5786p3 + 4.2425p4. The
adjusted polynomial presents good fit to the optimised values, with the only visible deviation in the region
of p > 0.8, where perfect adjustment is not needed as explained above.

MIGRATION RESULTS

Marmousi model

We have used an implementation of the wide-angle complex FFD approximations of Amazonas et al.
(2007) to perform prestack depth migration in 2D.

To evaluate the performance of the different parameterisations in a inhomogeneous medium, we com-
pare their results in the true Marmousi velocity model (Versteeg, 1994), i.e., without any smoothing (Fig-
ure 13(a)). The imaging condition is the cross-correlation of the downward-continuation up going wave-
field and down going wavefield from the source at zero time lag. The source wavelet was computed using
a Ricker wavelet with 25-Hz peak frequency and a depth extrapolation depth size of 6 m.

Figure 13(b) and 13(c) compare the CPFFD migrations of the Marmousi dataset with the true Marmousi
velocity model (Figure 13(a)) with the two parameter sets, the original parameters (N = 3, α = 45◦,
σ = 1 + p3) as presented by Amazonas et al. (2007) and our optimised parameters, respectively.

There are some subtle but visible differences between the images. Both of them are quite similar even
in the central and deepest parts were the geology is fairly complex. While both images appear to resolve the
faults, the steeper parts are better imaged in Figure 13(c) with the optimised parameter. On the other hand,
there appear a few more artifacts in this figure, probably indicating that the damping of the evanescent
modes is incomplete because of the small rotation angle.

However, it should not go unnoticed that the computation time required to produce the image depicted
in Figure 13(b) is about twice the time we spent to produce the image shown in Figure 13(c). This confirms
that our optimisation is about 50% faster with approximately the same results.
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CONCLUSIONS

In this work, we have investigated the optimisation of some parameters used in the complex-Padé FFD
algorithm in order to extend the range of imageable reflector dips. Our original aim was to optimise σ in
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Figure 13: (a) Marmousi velocity model. Prestack depth migration of Marmousi data set using (b) complex
wide-angle FFD produced by Amazonas et al. (2007) and (c) optimised complex wide-angle FFD. The
latter image was computed with approximately the half of the time expended for the first one.

the complex Padé expansions. For this purpose, we determined, for each velocity ratio, the value of σ that
made a one-percent error of the dispersion relation occur at the maximum possible dip angle. Using these
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optimised σ functions, we noticed the need to reevaluate the branch-cut rotation angle α and the number
of terms in the complex Padé expansion, because the algorithm behaves differently for better σ than for the
theoretical expression or a heuristic function.

Our main result is that the best maximum dip angles of more than 65 degrees can be reached with a
one-term Padé approximation with a small branch-cut rotation angle of 5 degrees. These angles are about
the same as those reached with real-Padé FFD using the optimised σ but the advantage is that the complex
algorithm presents an improved treatment of evanescent modes. Surprisingly, using two terms in the Padé
expansion leads to higher maximum dip angles only for velocity ratios below 0.7. The use of three terms
turns out not to be advisable as it increases computation cost without improvement in the maximum dip
angle.

The optimal σ function for the one-term, 5◦, approximation turned out to be a smooth curve that could
be nicely adjusted with a 4th-order polynomial. First results of CPFFD migration with the optimised
parameters applied to synthetic data from the Marmousi model showed similar quality to those obtained
using the more expensive parametrisation from the literature. Future investigations will have to show
whether independent optimisation of the parameters for the higher-order Padé terms can lead to further
improvements.
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