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ABSTRACT

Seismic diffractions are mainly induced by edges, tips and small structures, so diffraction imaging can
extract valuable information to identify subsurface scattering features. We investigate the possibility
to image and characterize diffractions using pattern recognition methods. To this end, we look at
kinematical and dynamical aspects of diffraction operators under a determined velocity model and
we propose a set of attributes that better distinguish diffractions from reflections. These attributes are
used as descriptors of imaging points on a seismic section to perform automatic classification using
supervised and unsupervised algorithms. We evaluate the method using synthetic and GPR data.
For synthetic data, we show results from amplitudes picking within a range of error on velocities to
indicate the method sensivitness on velocity model. For real datasets, velocity analysis is performed.
Results indicate that the method is robust even for low signal-to-noise ratio datasets.

INTRODUCTION

The theory of seismic wave propagation in acoustic media is used to unriddle seismograms into realistic
Earth models. Traditional processing of seismic data generally uses information from the reflected wave-
field to obtain images of interfaces at the subsurface. An important aspect when interpreting subsurface im-
ages is the identification of small scale features, such as faults, channels and fractures. Instead of promoting
reflections, seismic energy interacting with these structures results in diffractions, when their dimensions
are smaller than the acoustic wavelength emitted during seismic acquisition (Trorey, 1970; Klem-Musatov,
1994). This information has been used for high-resolution imaging (Khaidukov et al., 2004; Fomel et al.,
2007) or local velocity analysis (Sava et al., 2005; Reshef and Landa, 2009).

Even though theoretical studies on diffracted waves have been developed in detail since 1962, with the
remarkable work of Keller (1962) on the geometrical theory of diffractions, diffraction imaging is being
considered by oil and gas industry only for a few years until today, mainly within regions with high density
of fractures, such as shales and carbonates. Recent works on this theme can be found on Sturzu et al.
(2014); Kowalski et al. (2014); Burnett et al. (2015); Grasmueck et al. (2015)

Diffracted seismic waves are characterised by some peculiar attributes. Trorey (1970) showed analit-
ically that for a single truncated plane reflector, the phase of the diffractions suffers a reversal of 180◦

on either side of the reflecting edge. Diffracted waves are recorded as significantly lower energy than re-
flected waves. Their amplitudes decay faster than it would be by simple geometrical spreading, what makes
diffractions to be treated as noise in traditional seismic processing. These phenomena can also be observed
on seismograms of controlled experiments of physical modeling of a simulated fault (Hilterman, 1970).

In isotropic media, diffraction traveltimes are approximated by a conventional double-square-root
(DSR) equation. The amplitudes extracted along the elementary diffractions, known as the diffraction
operator, forms a curve that was used by Tabti et al. (2004) to determine the so-called Fresnel aperture,
used to enhance Kirchhoff-type depth-migration.
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(a) Synthetic dataset. (b) Fresnel aperture.

Figure 1: Left: Synthetic dataset. Right: Top - Diffraction operator associated with a reflection (a) and a
void point (b). Vertical axis is the amplitude, and horizontal axis is the horizontal coordinate of mid point.
Middle - Diffraction traveltime is tangent to the reflection traveltime at the specular reflection event (a).
For void points , there is no tangency to any events, and the diffraction operator shows random peaks (b).
Bottom - Location in depth of the imaging point associated with a reflection (a) and a void point (b).

Tabti et al. (2004) proposed a version of Kirchhoff migration with Fresnel aperture selection, which
provides better resolution on reflection imaging. Diffraction imaging may be performed if part of the
amplitude inside reflection Fresnel aperture is removed (Bona and Pevzner, 2015). According to Tabti et al.
(2004), to every image point y it is associated a diffraction operator d(y), which is a vector of dimension n,
the number of traces in the section. Each element of d(y) is defined as dk = W (ξk, y)∂tU(ξk, t)|t=τD(ξk,y)

and ξk is the coordinate that parametrizes the k-th trace, is defined as the vector of all seismic amplitudes
to be stacked by a Kirchhoff migration for imaging point y and midpoint coordinate ξ. W (ξ, y) is a weight
function, U(ξ, t) is the seismic data measured at position ξ and time t, and τD(ξ, y) is the traveltime of
the elementary diffraction of a point scatterer in y. In isotropic media with small lateral variations on the
velocity model, for a common-offset configuration τD is computed by double-square root approximation
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where t0 is the zero-offset two-way time for image point y, ξy is the coordinate of y, h is the half-offset
and vrms is the RMS velocity. In this study, for diffration imaging in time we use the Double Square
Root equation in the limits of time migration. For diffraction imaging in depth, we use paraxial traveltime
calculation provided by Seismic Unix package (Cohen and Stockwell, 2013).

Attributing to point y the sum of elements of d(y) over the migration aperture leads to Kirchhoff mi-
gration.

A diffraction traveltime curve associated to an image point located on a reflector is tangent to the
reflection traveltime at the specular reflection event (see Fig. 1(b))(Schleicher et al., 1997). This point
becomes a tangential region when the source has limited bandwidth, which is defined by Tabti et al. (2004)
as Fresnel aperture, and by Schleicher et al. (1997) as the minimum aperture for true-amplitude depth
migration. As illustrated on Fig. 2(a), the Fresnel aperture turns the diffraction operator associated with a
reflector to have a plateau shape. In the case of a tip or edge scatterer, the associated elementary diffraction
traveltime corresponds to the diffracted seismic event. Thus, its Fresnel aperture extends theoretically to
infinity, and the diffraction operator shape will vary according to the nature of the scatterer: with a 180◦

phase shift if an edge diffraction, or an approximated gaussian shape if a point scatterer (see Fig. 2(a)).
This fact is used by Figueiredo et al. (2013) to classify imaging points. They apply a two-class k nearest

neighbours (kNN) pattern recognition technique to amplitudes along diffraction operators to distinguish
between diffractions, reflections or absence of scattering energy.
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(a) Amplitudes. (b) Histograms.

Figure 2: Left: Amplitudes collected along indicated curves on Figure 1(a). Point scatterer diffraction op-
erator (top); Edge diffraction operator (middle); Diffraction operator associated with a reflection (bottom).
Right: Diffraction operators’ associated PDFs are similar to their histograms.

We present a set of routines to perform automatic detection of diffractions on unmigrated data using
pattern recognition techniques. We propose an extension of Figueiredo et al. (2013) approach to diffraction
imaging, using a set of features to better distinguish diffraction operators. Classification is performed with
Machine Learning algorithms. For the diffraction imaging task, we have used Support Vector Machines
(SVM), after a study by Kotsiantis et al. (2006) pointing that SVM approach can present the best accuracy
for classification of a waveform dataset. The next session includes a brief Machine Learning background,
explaining how SVM works.

MACHINE LEARNING BACKGROUND

Machine learning is an intersection field between computer science and statistics, that explores the con-
struction of algorithms that can learn from and make predictions on data. Such algorithms operate by
building a model from a set of input examples in order to accomplish a given task, rather than following
strictly static program instructions to make data-driven predictions.

Input examples are numerically described by an ensemble of quantities that characterizes an object,
denominated descriptor. The object may not be entirely described by the descriptor, but descriptors for
different classes of objects should be different enough to allow the discrimination of the objects.

A descriptor is composed by experimental measures, or theoretical calculations that describe the struc-
ture of the object. The major hypothesis is that descriptors capture some important characteristic of the
object, and then a mathematical function can generate a mapping between the descriptor space and a prop-
erty space, where classes are defined. Another hypothesis is that objects with similar descriptors must have
similar properties. In many cases, the task of building descriptors is equivalent to find the best classifier for
a problem.

Learning algorithms are employed for classification or regression tasks. In classification, inputs are
divided into two or more classes, and the algorithm must produce a model that assigns unseen inputs to
one or more of these classes. The algorithms usually has two main phases: training and testing. On the
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training stage, a training set of objects is used by the learner to build a general model about the space given
that enables it to make predictions in new samples. The training set usually comes from some unknown
probability distribution, but must be considered representative of the space of occurrences. Learning can be
supervised or unsupervised. Pattern recognition methods that exploit a priori known information about the
training data set are known as supervised pattern recognition, or in the more general context of machine
learning, as supervised learning.

For instance, consider a seismic common-offset gather as input dataset for learning. The set of imaging
points of the section, denoted here by Y , is the set of objects to be classified. A descriptor γ : Y → F
maps an object y ∈ Y onto a feature f ∈ F on the feature space F . The elements in F are then mapped
onto an instance space L = {ω1, . . . , ωl}, by the classifier θ : F → L. The set of classes L might be,
for example, composed by the classes point diffraction (ω1), edge diffraction (ω2), reflection (ω3) or void
point (ω4). With a good representation of the input space in the training phase, further imaging points are
automatically classified by the algorithm.

There are some well known Machine Learning techniques for clustering and classification of data.
Further references are found for example on Theodoridis and Koutroumbas (2009).

METHOD

Building a descriptor for classification

Let the seismic section be represented by Y , a common-offset gather in our case. The objects to be classi-
fied are imaging points y ∈ Y . Figueiredo et al. (2013) used the diffraction operators presented by Tabti
et al. (2004) as descriptor. In other words, Figueiredo et al. set their descriptor as d(y) and the feature
space as Rn (recall that n is the number of traces in the input common-offset section). This implies that the
dimension of the feature space is dependent on the geometry of the common-offset gather, which is dataset
dependent. Classification is performed by kNN algoritm, where training data is composed by diffraction
operators associated with scatterer imaging points, labeled as diffractions, and diffraction operators associ-
ated with void image points, labeled as noise. In other words, their classifier θF maps vectors of Rn to ω1

(meaning diffraction) or ω2 (meaning noise). The training dataset Tf ⊂ Rn is built manually by the user,
from a synthetic dataset with the same geometry of the common-offset to be analyzed, where the exact
position and nature of the scatterers are known. They used Euclidean distance to measure the distance
between neighbours.

We propose different choices for the feature space and descriptor. Instead of using the diffraction op-
erator itself as the descriptor, we compute some quantities from the diffraction operator, which are less
dependent of the geometry of the dataset. In other words, our descriptor γ is defined as γ(y) = φ(d(y)),
where φ is a set of measures of d(y). Thus, our feature space is Rm, where m is the number of character-
istics quantities computed from d(y). Usually, m � n. This has the side effect to make the classification
problem cheaper when compared to the strategy of Figueiredo et al. (2013).

What makes diffractions different from reflections on the diffraction operator space Rn is essentially
their shapes. For each imaging point, the associated diffraction operator is seen as a random variable. In
this way, φ(d(y)) is a set of shape parameters of the probability distributions associated to the amplitudes
of diffraction operators. Figure 2(b) shows the histograms of diffraction operators associated with an edge
diffraction, a point diffraction and a reflection. The histogram is a tool to show the frequency function of
a distribution, or the number of sample values falling into a certain specified range. To build a histogram,
one must take every class interval as the basis of a rectangle with height v

ph , where v denotes the number
of sample values in the class, h is the length of the class interval and p is the number of classes. The area
of any rectangle in the histogram is equal to the corresponding class frequency v

p . For large p this may be
expected to be approximately equal to the probability that an observed value of the variable will belong to
the corresponding class interval, which is equal to the integral of the frequency function over the interval.
This means that the histograms of diffraction operators are similar to their respectives Probability Density
Functions, if diffraction operators are seen as random variables. (For references on histograms see, for
example, Cramer (1946)).

Statistical measures, such as skewness and kurtosis are commonly as used shape parameters of probabil-
ity densities (Theodoridis and Koutroumbas, 2009). In Statistics, skewness is a measure of the asymmetry
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(a) Sum (b) Standard Deviation

Figure 3: Lower moments.

of a probability density function. It is zero if the distribution is symmetric, like the normal distribution. If
the mass of the distribution is concentrated on the left side, skewness is positive, and it is negative if it is
concentrated on the right side. Kurtosis is a measure of the peakdness or flattening of a probability density
function. Normal distribution has kurtosis equal to 3. Distributions that are more outlier-prone than the
normal distribution have kurtosis greater than 3; distributions that are flatter have kurtosis less than 3. It is
possible to see in Figure 2(b) that diffraction operators associated with point diffractions are highly skewed
and present higher kurtosis, while reflections are less skewed, and present lower kurtosis. Edge diffractions
presents diffraction operators closer to gaussian distribution, due to their phase inversion, that distributes
almost equally negative and positive amplitudes.

Besides skewness and kurtosis, in Probability Theory, there is a number of statistical attributes that are
used to describe the shape of a Probability Density Function (PDF). We propose using central moments.
Central moment is the expected value of a specified integer power of the deviation of the random variable
from the mean. The third and fourth central moments are generally used for shape parameter description.
They are related to the skewness and kurtosis of a function, which may be seen as standardized central
moments. The various moments form a set of values by which the properties of a probability distribution
are usefully characterised. A distribution can be characterized by location, scale and shape parameters. The
location parameter shifts the entire distribution left or right, the scale parameter compresses or stretches the
entire distribution and the shape parameter changes the shape of the distribution in some other way. Higher-
order central moments relate only to the spread and shape of the distribution. Lower-order moments, such
as mean, are related to the location of high frequencies on a PDF.

For a discrete scalar function f(x), its k-th central moment about the mean is defined as

mk =

N∑
x=1

(x− µ)kf(x), (2)

where µ = 1
N

∑N
x=1 f(x). If we have an infinite number of central moments, we can completely describe

the function (see Cramer (1946) for details).
For each imaging point of a common-offset section, we compute a vector composed by the six first cen-

tral moments of the diffraction operator. This vector will play the role of the descriptor in the classification
problem. On Figures 3(a) and 3(b), it is shown in a gray scale the first and second central moments of
the section in Figure 1(a). Note that the first moment corresponds to the mean of the diffraction operator
amplitudes, which may generate an scaled version of Kirchhoff imaging. Figures 4(a) and 4(b) show the
scaled third and fourth central moments, where noise is significantly suppressed.

Figure 5 shows how imaging points are distributed on cuts of the feature space R6. In order to make
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(a) Skewness (b) Kurtosis

Figure 4: Higher moments.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Moment :1

M
o
m

e
n
t 
:3

Data

Training set − Noise

Training set −Edge

Support Vectors

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Moment :1

M
o
m

e
n
t 
:3

Data

Training set − Noise

Training set −Reflection

Support Vectors

Figure 5: Data descriptor: each imaging point is represented by a vector with 6 dimensions, where the ith

component is the ith central moment of the corresponding diffraction operator. Here, we show how data is
distributed on the plan composed by first (vertical axis) and third (horizontal axis) central moments. Curve
levels indicates how SVM classifies data. Boundary layer is indicated in dashed line.
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Figure 6: Distances from similar and distinct scatterers in different metrics. On the left, it is shown the
distances for six pairs of similar scatters, and on the right, nine pairs of different scatterers.

visualization feasible, we displayed only two dimensions of R6, for instance, the first and third dimensions,
corresponding to the first and third central moments respectively. All imaging points of the common-offset
section presented on Figure 1(a) are displayed in green. We have manually selected some imaging points
corresponding to reflections, edge diffractions and void points, and displayed them in black, blue and red,
respectively. For classification purposes, we have labeled reflections and void points as noise, and edge
diffractions as diffractions. On Figure 5 right, it is shown how SVM performed classification. The support
vectors are shown in black circles, and curve levels indicate how the Gaussian Radial Basis Function
behaves on the nonlinear separable training set. Boundary layer is indicated in black.

Note that for this example, edge diffraction imaging points are grouped in a different region from reflec-
tion imaging points on the feature space, using Euclidean distance. This fact indicates that the descriptor
γ is suitable for the purpose of identifying diffractions. A good descriptor should follow the golden rule:
distances between feature vectors from similar scatterers should be small, and distances between scatterers
of different type should be big. Guided by this principle, let us analyse the descriptors we have so far.

Consider two image points yA and yB , associated to scatterers located apart in the seismic section, and
two other image point yA′ , yB′ in the same horizontal coordinate of yA and yB , respectively, but vertically
shifted to be over reflectors. A good descriptor should map yA and yB close together in the feature space,
since both of them belong to the diffractor class. The same should hold for the mapping of yA′ and yB′ ,
as they belong to the non-diffractor class. But most important of all, yA and yB must be mapped as far as
possible from yA′ and yB′ , since they belong to different classes.

However this is not what happens when the diffraction operator itself is used as descriptor. Since the
horizontal coordinates of yA and yA′ are the same, high amplitudes on the diffraction operator associated
with yA will be placed on the same location of the high amplitudes of the diffraction operator associated
with yA′ . This means that ‖d(yA) − d(yA′)‖ is small, where ‖ · ‖ states for the Euclidean distance. The
same rationale holds for scatterers positioned far away from each other. Since the amplitude peak of d(yA)
and d(yB) are in different positions, ‖d(yA)− d(yB)‖ is big, giving no clue that both image points are of
the same type.

On the other hand, the descriptor based on central moments is sensible to the shape of the distribution
of amplitudes, but not to their spatial location. This means that, since d(yA) has a completely different
shape from d(yA′), ‖γ(yA) − γ(yA′)‖ is big. Furthermore, ‖γ(yA) − γ(yB)‖ is small, since both image
points have the same amplitude pattern over the diffraction operator.

Figure 6 shows the Euclidean distances for some pairs of sample scatterers on both feature spaces. We
have chosen nine specific imaging points from the synthetic dataset presented on Figure 1(a), namely the tip
diffractions located on coordinates (1000, 300), (2500, 300) and (2500, 800), the edge diffractions located
on (500, 1100), (500, 1200) and 500, 1600) and the reflections located on (1000, 1100), (2500, 1200) and
(2500, 1600). We formed randomly six pairs of similar scatterers, denoted by sK, K = A,B,C, ..., where
sK is a pair of imaging points associated both to a scatterer from the same nature (a reflection, an edge
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diffraction or a tip diffraction), and nine pairs of different scatterers, denoted by dK, K = A,B,C...,
where dK is a pair of imaging points associated to different scatterers each. Note that similar scatterers are
closer in γ, and different scatterers are more distant in γ, showing that the descriptor γ formed by moments
is more representative in this sense than d, the diffraction operator itself used as the descriptor.

In supervised classifiers, the training set is a subset of feature space. This means that to use the whole
diffraction operator as input, for each common-offset section analyzed by the algorithm, the training set
must be generated according to the section geometry. This is a big disadvantage in the sense of classification
task, since it would be more interesting if one could use the same training set for several data sets to be
classified, regardless of their number particular number of traces. Associated with the fact that diffraction
operator can achieve very big dimensions, it makes the task of building a good training set more challenging
in approach of Figueiredo et al. (2013).

Workflow

Our workflow consists mainly on four steps. Pre-processing includes seismic treatments, which may vary
depending on the nature of the dataset; velocity model building and ray tracing; and amplitudes picking
along traveltimes trajectories, to build a cube of amplitudes. The next step consists of filtering of the
cube sections, in order to remove undesirable peaks. Depending on your imaging purpose, filtering can be
performed in many ways. With the dataset properly prepared, the next step is the feature space building,
that consists on extracting statistical attributes from the cube of amplitudes, and building a vector space
where each dimension represents an attribute. Finally, classification is performed, and the last step consists
on selecting the best product for interpretation.

Pre-processing

Pre-processing of data must be taken with special care when dealing with seismic diffractions, due to their
small amplitudes. Since signal strength of a diffracted wave has rapid decayment with the distance from the
tangential portion with the reflected wave, it is common practice to apply a special type of gain, obtained by
dividing traces by their envelopes, using a regularization parameter (Landa et al., 1987; Figueiredo et al.,
2013). This is the same as obtaining the cosine of the phase of the signal.

The next step consists on building a velocity model to compute traveltimes. This can be done by
several methods (see Jones, 2010), in time or depth domain. It is typically an iterative process and requires
many runs of computationally intensive prestack depth migration. To produce accurate images of small
structures using the method proposed here, it is necessary to build a sufficiently good velocity model, in
order to correctly predict the kinematics of the diffractions.

Our method is presented for a single common-offset section, although the idea can be applied for other
geometries, with appropriate adjustments. Each imaging point is seen as a point scatterer. Once traveltime
table is available, amplitudes along diffraction curves for all imaging points are collected, leading to the
construction of a cube of amplitudes, with dimensions NX × NZ × NTR, where NX and NZ are
horizontal and vertical dimensions of velocity model, respectively, and NTR is the number of traces of
input data.

For each vertical profile on a common-offset section, collecting amplitudes along the diffraction curve
d(y), and displaying it on the corresponding depth, generates a gather where diffraction operators are
analyzed. It might be seen as a slice of the cube of amplitudes normal to NX direction. Tabti et al.
(2004) presented some examples of those sections. Correlating with NMO corrected CMP gathers idea, we
propose to call these sections as Diffraction Corrected Common-Offset gathers, or DC-CO gathers.

Filtering Note that when a diffraction hyperbola crosses reflection events or other scatterer events in the
DC-CO gather, the corresponding diffraction operator has peaks of amplitudes which are not related to the
imaging point. These peaks are removed by applying dip-filtering on Diffraction Corrected panel. Tabti
et al. (2004) proposes the application of low-pass filtering, which can remove undesirable peaks. On the
other hand, it might not be suitable for our purposes since low pass filtering may also destruct the original
pattern of a diffraction operator shape, leading to further misclassification of the imaging point.



272 Annual WIT report 2015

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

 D
e
p
th

 (
m

) 
0 500 1000 1500 2000 2500 3000 3500 4000 4500

 Horizontal coordinate (m) 

Raw diffraction-operator panel

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

 D
e
p
th

 (
m

) 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
 Horizontal coordinate (m) 

Filtered diffraction-operator panel

Figure 7: Diffraction Corrected CO gather before (left) and after (right) dip-filtering.

Validation

From a common-offset section, the method consists on building a binary map of subsurface indicating
where small scatterers are located. Validation of the method should be performed by “demigration” style,
using our results to model a seismic acquisition using the binary map as a reference of scatterers position,
using the same velocity model used to calculate the diffraction operators as background. The velocity
model can be updated in an iterative fashion until the difference between the original section and the
modeled one is reasonable enough.

We used the algorithm provided by Cohen and Stockwell (2013) package to estimate the migration
residual statics using the technique presented by Tjan et al. (1994), to check if detected scatterers appear
at correct times on the input session. The program takes a migrated seismic section and a set of travel
time tables for a specific background velocity model and generates synthetic seismic data in the form of
common shot gathers. A demigration algorithm with reliable amplitudes is still needed to implement the
iterative version of the method.

RESULTS

For numerical experiments, we use a simple synthetic data generated by Kirchhoff modelling, simulating
a zero-offset section with 500 source-receiver pairs spaced by 10 m covering an extension of 5000 m,
presented in Figure 1(a). We normalize the data set trace-by-trace using its envelope in order to increase
magnitude of diffraction events.

For each point on the common-offset section, we extract the diffraction operator and calculate its first
six central moments to compose the input data for the classification phase.

The algorithm was also applied to a GPR data set, that consists on a radargram acquired with the
purpose of checking the existence and distribution of tie bars between concrete slabs of a rigid pavement
structure along a section of BR-101/NE highway, in the Brazilian state of Pernambuco (Silva et al., 2013)
(see Fig. 8). Classification results of SVM classification on GPR dataset is shown in Figure 9, where it
is possible to see that evident diffractions from the tie bars were correctly positioned, and less evident
diffractions formed by the contact between gravel and soil are detected by the algorithm.

CONCLUSIONS

We presented a new set of descriptors for imaging points on a seismic section and a method for clas-
sification of scatterers using Support Vector Classifiers. It consists in an application of well-stablished
Machine Learning techniques to distinguish diffraction events from reflection events and noise areas by
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Figure 8: Radargram showing diffractions from metal bars buried on the subsurface.

their kinematical and dynamical patterns. We discussed a new approach for arrangement of input data on
pattern recognition methods for diffraction detection using central moments that optimizes computation
and generates new images for interpretation. Application on a GPR dataset presented successful results.

As a mather of fact, the economy on computational time in the classification step in our procedure
comparing to Figueiredo et al. (2013) approach is irrelevant, since the computation of central moments is
significantly time consuming. The biggest differential of the two approaches is the fact that for supervised
learning, the proposed descriptor allows the user to build one single training set for several datasets to be
classified. Another advantage is that unsupervised learning already gives good results with the proposed
descriptor.

Our preliminary results indicate that pattern recognition methods are a wide field of research that opens
new possibilities to create suitable tools for detection of diffractions. Further studies include development
of combining machine learning techniques, diffraction imaging, local velocity analysis and completness of
the validation workflow, consisting on modeling the classified image in order to measure effectiveness of
the method.

Another idea to be further expanded is the use of fuzzy classification systems instead of binary classi-
fication. The transition between a real diffraction and a reflection event is smooth, so binary classification
might provide random outcomes on regions where the size of the scatterer is about the size of the wave-
length. There are already implemented versions of fuzzy SVM and k-means that can be used to this end.
Weights from fuzzy classification might be used for weightning stacking procedures in order to obtain
modified versions of reflection or diffraction images.
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