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ABSTRACT

Coherence measures, the most universally used being semblance, represent a well-known tool in seis-
mic processing to determine the position of seismic events in a multitude of applications. A frequent
complaint is low resolution, i.e., high measures in the vicinity of the ideal parameter values. Mini-
mum Semblance is an alternative method to determine the coherence of seismic events, designed to
increase the resolution of the resulting semblance sections. The idea is to utilize the minimum value of
several semblance calculations within a time window. The computational cost of minimum semblance
is comparable to that of conventional semblance and significantly lower than that of weighted or AB
semblance. We apply minimum semblance to stacking-velocity analysis and compare its behaviour
to these other coherence measures. Our results show that minimum semblance increases resolution.
For field data, our approach presented comparable results to AB semblance in that the resulting NMO
correction shows similarly well flattened events. We also highlight the fact that Minimum Semblance
preserves its resolution as the time-window size is increased, in this way becoming less dependent on
the choice of the window size than conventional and weighted semblances.

INTRODUCTION

Since the famous work of Taner and Koehler (1969), semblance has been a reliable measure of coherence in
seismic processing. As a coherence measure, semblance is mostly used to detect events in noisy multiple-
coverage data. Semblance is known to depend in various degrees on operator size (aperture and window
length) and noise level (Douze and Laster, 1979). Furthermore, it supposes white-noise data contamination
and constant amplitude along reflection curve. Therefore, this function can show unpredictable behaviour
if the noise is colored. For this reason, many attempts have been made to find a more stable measure which
has less dependence on the type of noise or the choice of parameters used in the analysis. Conventional
semblance has been the best coherence measure in virtually all attempts, because it is robust and easy to
calculate in almost all situations. However, there are specific cases where other measures may be more
advantageous.

Weighted Semblance (Luo and Hale, 2012) is a direct extension of the conventional measure. It uses a
weighting function chosen to emphasize terms that are more sensitive to changes in velocity, resulting in
increased resolution of the semblance section. Counterintuitively, resolution increases when choosing an
offset-dependent weighting function that minimizes semblance. AB Semblance, introduced by Sarkar et al.
(2001, 2002) and implemented by Fomel (2009) is interpreted as a correlation measure with an amplitude
trend and is particularly attractive for data presenting polarity reversal.

Inspired by Weighted Semblance, we apply the minimization idea to conventional semblance. The
resulting Minimum Semblance increases the resolution of the latter, while preserving its advantages, in-
cluding robustness and low computational cost. The main goal of this work is to analyze and compare the
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different semblances functions in common midpoint (CMP) sections in order to determine which measure
provides the best velocity spectra. Synthetic and field data were used for this purpose.
METHOD

Conventional Semblance is a quantitative coherence measure introduced by Taner and Koehler (1969). Its
mathematical expression is given by
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where u; ; denotes the data sample at time index j and trace number 4. For example, for an NMO velocity
analysis, u; ; = u(hi, to + jAt + v2h?), where v denotes the velocity value to be tested at zero-offset
time tg and h; is the ith half-offset. The inner summation over % corresponds to N traces and the outer
summation corresponds to a time window with length 2M/ 4 1 around the central point at j = 0. To
determine the minimum semblance, we introduce a second time window with size 2K + 1 in which the
semblance values Sy, are calculated according to
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We then define Minimum Semblance as the minimum value of this measure inside the outer time window,
i.e.,
Smin = k:—InKi,I.l..,K Sk 3)
This semblance value is then attributed to the time sample at the central point of the outer time window at
k=0.
A particular case is obtained when choosing the size of the inner window to be a single sample only,

i.e., M = 0. This choice results in
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i.e., no inner window at all.

Procedure

We test minimum semblance for NMO velocity analysis in a CMP section. In this case, the coherence value
is supposed to reflect how well the hyperbolic curve corresponding to the selected value of the stacking
velocity fits the curve of the signal in the data. A good fit must produce a peak in the semblance section,
while a bad fit must produce a significantly lower coherence value.

For minimum semblance, we compute the semblance measures Sj, for an adequate time window size
K. For instance, if K = 1 then we calculate semblance values S_1, Sy and S for times ty — At, ty and
to + At, where At is the time sample. Once we have values S associated to all of these times, we select
the minimum value to define the minimum semblance. For an appropriate size of the time window, we
expect the semblance results not to be very different from each other for neighbouring traveltime samples.
If the test curves fall inside a coherent event, the smallest value Sy, is still expected to be relatively high.
On the other hand, if the test curves fall outside a coherent event, at least one of the calculates values for
S; should be rather small, even if there is some random correlation between the traces. In this way, the
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Figure 1: Noise-free synthetic CMP section.

minimization criterion is expected to lead to increased resolution as compared to conventional semblance,
which would sum over such incidental correlations.

In contrast, choosing the maximum instead of the minimum value can be expected to do not much
good for already high coherence values, but might strongly increase the coherence measure outside seismic
events because of random correlations at some t.

The modification in the calculation of minimum semblance as compared to conventional semblance is
rather small. For this reason, it has approximately the same computational cost. This is an advantage over
Weighted and AB semblance, which present significantly higher computational costs. While this might not
be relevant for a conventional velocity analysis, it can become a prohibitive factor in other applications of
semblance analysis such as, e.g., the common-reflection-surface (CRS) method, which depends on several
orders of magnitudes more semblance calculations.

NUMERICAL EXPERIMENTS

We tested the above minimum semblance numerically in applications to NMO velocity analysis. In the first
tests, we compared the behaviour of minimum semblance to conventional semblance (Taner and Koehler,
1969), weighted semblance (Luo and Hale, 2012), and AB semblance (Sarkar et al., 2001). In the second
set of tests, we investigated the behaviour of the semblance measures as a function of the widow size.

Semblance comparisons

We started by a comparison of the different variations of semblance on a synthetic CMP section. Then we
applied the semblance functions to a field data set.

Synthetic Data Figure 1 shows a synthetic CMP section containing 7 exactly hyperbolic events corre-
sponding to RMS velocities of 1.5, 2.0, 3.0, 2.5, 2.0, 2.5 and 3.0 km/s at zero-offset times ¢y of 0.5, 1.0,
1.5, 2.0, 2.5, 3.0 and 3.5 s, respectively. Time sampling is 4 ms. To these data with identical constant
amplitudes for all events, we added random white noise at 40 % of the amplitude.

On these data, we performed a stacking-velocity analysis. The resulting velocity spectra obtained with
conventional, weighted and minimum semblances are depicted in Figure 2. Note that all semblance spectra
in this work are normalized to their peak values to allow for comparison.

In this test, we calculated the minimum semblance using equation 4, i.e., without an inner window. The
outer window had the size of 5 samples, being the same size as the windows used in the conventional and
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Figure 2: Velocity spectra with (a) Conventional, (b) Minimum, (c) Weighted, (d) AB Semblance.

weighted semblances. Color scale indicates the minimum value (blue) and the maximum value (red) of
semblances. Semblance values vary between 0 and 1. Note that the minimum semblance section resolu-
tion increased compared to conventional, weighted and AB semblances. Minimum semblance provides a
smaller number of red spots where there is high coherence than in the other spectra. This fact is favorable
for picking the stacking velocity value.

Stacking velocities were extracted for the interpretable events from these velocity spectra. Figure 3a
exhibits the absolute errors for these velocity values. We notice that the stacking velocity resulting from
minimum semblance has the smallest error at six of the seven events. In some cases, it is equaled by other
measures. Conventional measure produces the smallest error at three events, and it is equaled by minimum
semblance at two events.

We can verify that all semblance measures provide mostly velocities that are acceptably close to the
exact ones. Weighted semblance () produces a strong error for the event at ¢ty = 0.5 s. AB Semblance ([ )
results in one slightly larger error for the event at o = 1.0 s, which is probably due to the conflicting dips.
All other velocities present significantly low error results, in other words, they are very close to the exact
values.

Also, Figure 3b shows the velocity and normal-traveltime errors generating by picking the semblance
maxima in the velocity spectra. Note that minimum semblance has null absolute error for traveltime posi-
tion in six of the seven events.

Field Data For a more meaningful test, we repeated the above analysis for the field-data CMP section
depicted in Figure 4. Sampling rate is again 4 ms. Figure 5 shows the velocity spectra obtained with
conventional, minimum, weighted and AB semblances. We used again no inner window for the minimum-
semblance computations. The outer window was one sample to each side, the same as for the other mea-
sures.

To study the effectiveness of the semblance functions for real data, we applied an NMO correction to the
CMP section using the picked velocities obtained by each measure. The best flattening among the functions
should indicate which one produces the velocities that best describe coherent events in this CMP data set.
Note that in this test, we picked simply the velocities with the highest semblances, without regard as to
whether they belong to primary, multiple, or accidentally correlated events. The NMO-corrected sections
with the picked stacking velocities obtained with conventional, minimum, weighted and AB semblances
are shown in Figure 6. We notice that overall, AB and minimum-semblance results provide better event
flattening than those from conventional and weighted semblances. This can be best seen for the event at
2.5 s. Between these two semblance measures that produce comparable results, minimum semblance has
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Figure 3: Parameter error from picking the semblance maxima in Figure 2 using conventional (A), mini-
mum (), weighted (x) and AB (L) semblance. (a) Absolute velocity error. (b) Absolute traveltime error.
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Figure 4: CMP section for field data.

lower computacional cost than AB semblance.

Window-size dependence

In the next series of tests, we studied the behaviour of minimum semblance as a function of the size of the
two windows it uses. We start with the dependence on the outer window. Note that while we kept the noise
the same for the comparison of the different semblance measures with a given window size, we replaced it
with another realization when changing the window size in order to obtain a statistically more meaningful
result.

Outer window We observed an increase in the resolution of minimum-semblance sections as compared
to conventional semblance regardless of the selected time-window size. Tests indicate that conventional
semblance loses resolution as the window size increases. The same does not happen with minimum sem-
blance, the results of which were much less dependent on the window size. It retains its resolution even for
rather large time windows, which makes the choice of the window size less important than for conventional
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tra of the real data obtained with (a) conventional, (b) minimum, (c) weighted and

Figure 5: Velocity spec

Figure 6: NMO correction applied to CMP section for velocities obtained by (a) conventional semblance,

(b) minimum semblance, (c) weighted semblance and (d) AB semblance.

semblance.

Figures 7, 8 and 9 show that conventional, weighted and AB semblance sections lose resolution with
increasing window size. In contrast, minimum semblance preserves its resolution behaviour for a large

range of window sizes. Note that the smallest time window used for the spectra in Figure 7 has size of 3

samples (1 to each side) and the largest time window for Figure 9 has size 21 (10 to each side).
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Figure 7: Velocity spectra for window size 3. (a) Conventional, (b) minimum, (c) weighted, (d) AB
semblance.
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Figure 8: Velocity spectra for window size 11. (a) Conventional, (b) minimum, (c) weighted, (d) AB
semblance.

High resolution of semblance sections is desirable because the picking process becomes an easier step
of seismic processing and the selected velocities can be expected to remain more precise even in the pres-
ence of high noise levels. Picking wrong velocity at this stage may result in incorrected migration and
consequently require additional effort in subsequent migration velocity analysis. Thus, if the window size
affects the resolution of the semblance spectra analyzed, there is a danger of chosing an inadequate time
window. This danger is reduced with minimum semblance.

However, an increased resolution might favor a bias in the selected velocities, if the position of the
semblance peak is incorrect. To investigate whether minimum semblance is subject to this kind of velocity
error, we extracted the velocities at the semblance peaks in the spectra of Figures 7, 8, and 9. Figures 10,
11, and 12 show that the minimum-semblance velocities are very close to the real values of velocities of the
synthetic data example. While the velocity errors increase with window size for conventional, weighted
and AB semblance, the velocities extracted from the minimum-semblance spectra remain of the same
quality. This shows again that velocity-spectra using minimum-semblance are less dependent on the size
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Figure 9: Velocity spectra for window size 21. (a) Conventional, (b) minimum, (c) weighted, (d) AB
semblance.
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Figure 10: Parameter error from picking the semblance maxima in Figure 7 using a time window of 3
samples in conventional (A), minimum (), weighted (x) and AB (L) semblance. (a) Absolute velocity
error. (b) Absolute traveltime error.

of the chosen window than using other semblances. Therefore, the optimal window size can be adequately
chosen with respect to the noise present in the data, without having to worry about bad velocity picks
because of too large or too small windows.

Inner window The last series of tests regards the size of the inner window in the minimum-semblance
calculation. Figures 13 to 16 compare the resulting minimum-semblance velocity spectra for a number of
different window sizes. Also shown for comparison are the corresponding velocity spectra for conventional
semblance and minimum semblance with no inner window. For the latter, the window size is the same as of
the outer minimum-semblance window, being 5 samples in Figure 13, 9 samples in Figure 14, 21 samples
in Figure 15, and 41 samples in Figure 16.

In the sequence of Figures 13 to 16, we see that minimum semblance without an inner window provides
the sharpest peaks, but that the peaks almost vanish for larger windows. The inner window helps to preserve
the peaks while still improving resolution over conventional semblance. A choice of an inner window half
the size of the outer window seems a good compromize between computation cost and resolution without
loss of information.

The quality of the parameter extraction as a function of the window size is evaluated in the next set of
tests. Figures 17 to 20 show the velocity and normal-traveltime errors generating by picking the semblance
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Figure 11: Parameter error from picking the semblance maxima in Figure 8 using a time window of 3
samples in conventional (A), minimum (), weighted () and AB ([]) semblance. (a) Absolute velocity
error. (b) Absolute traveltime error.

(a) : : : : : (b)o.1s
0.25¢
— D —
é 0.21 g L;/ 0.1F a
s m] £
° o
5 0151 A A 2 2
2 A0 E
3 0 = 0.05}
g o o Y &
0.05 . A O o i
85 1 15 ‘ 25 3 35 85 ¢ B g 25 g 3"

2
,®

Figure 12: Parameter error from picking the semblance maxima in Figure 9 using a time window of 3
samples in conventional (A), minimum (), weighted (*) and AB (L) semblance. (a) Absolute velocity
error. (b) Absolute traveltime error.

maxima in the above velocity spectra.

We recognize that the velocities are extracted with similar precision at a comparable error for all sem-
blance measures, with possibly a slight advantage for the minimum semblance with an inner window of
half to full size of the outer window. For short lengths of the outer window, minimum semblance without
an inner window also provided rather accurate velocity estimates. It is to be noted that the computational
cost of minimum semblance with a nonzero inner window increases over conventional semblance.

Field data We repeated these tests for the field data of Figure 4. In this case, we compared the perfor-
mance of minimum semblance with different outer window sizes from 5 to 21 samples and inner window
sizes from 3 samples to full outer window size. Figures 21 to 26 depict the resulting velocity spectra,
comparing the best results obtained with minimum semblance to those of conventional semblance. Note
that minimum semblance yields higher resolution in the corresponding spectra, and the visualization of the
velocity trend on the semblance panel is somewhat better than the conventional approach when choosing
an inner window about half the size of the outer window or slightly larger. The velocity trend is probably
best recognizable in Figure 22b, which was obtained with an outer window of 7 samples and an inner one
of 5 samples, in Figure 23b with outer window of 9 samples and inner one of 5 samples, or in Figure 24c
with outer window of 11 samples and inner one of 7 samples. For larger inner windows, the minimum-
semblance spectra start to show the same out-of-focus aspect as the conventional-semblance specta, and
for larger outer windows, the quality of the velocity spectra begin to deteriorate.
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Figure 13: Velocity spectra with minimum semblance using an outer window of 5 samples (2 to each side),
with inner window size (a) 1, (b) 3, and (c) 5 samples. (d) Conventional semblance.
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Figure 14: Velocity spectra with minimum semblance using an outer window of 9 samples (4 to each side),
with inner window size (a) 1, (b) 5, and (c) 9 samples. (d) Conventional semblance.

CONCLUSIONS

Minimum semblance introduced in this work is a similar coherence measure to conventional semblance.
Its idea is to select the minimum conventional-semblance value within a certain time window instead of
determining a kind of average over these curves as for conventional semblance. If used without an in-
ner window, minimum semblance has the same computational cost as conventional semblance. An inner
window can be used to stabilize results, but adds to the computational cost.

In our numerical tests for stacking-velocity analysis in synthetic and real CMP sections, minimum
semblance provided better resolution in the velocity spectra and allowed in many cases to pick superior
velocity values. This improved resolution, which is practically independent of the time-window size, is an
important advantage over other measures like conventional, weighted and AB semblances, which strongly
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Figure 15: Velocity spectra with minimum semblance using an outer window of 21 samples (10 to each
side), with inner window size (a) 1, (b) 11, and (c) 21 samples. (d) Conventional semblance.
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Figure 16: Velocity spectra with minimum semblance using an outer window of 41 samples (20 to each
side), with inner window size (a) 1, (b) 21, and (c) 41 samples. (d) Conventional semblance.

depend on the choice of the window size.
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Figure 22: Real data: Velocity spectra with minimum semblance using an outer window of 7 samples (3
to each side), with inner window size (a) 3, (b) 5, and (c) 7 samples. (d) Conventional semblance.
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Figure 23: Real data: Velocity spectra with minimum semblance using an outer window of 9 samples (4
to each side), with inner window size (a) 5, (b) 7, and (c) 9 samples. (d) Conventional semblance.
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Figure 24: Real data: Velocity spectra with minimum semblance using an outer window of 11 samples (5
to each side), with inner window size (a) 5, (b) 7, and (c) 9 samples. (d) Conventional semblance.
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Figure 25: Real data: Velocity spectra with minimum semblance using an outer window of 15 samples (7
to each side), with inner window size (a) 5, (b) 9, and (c) 15 samples. (d) Conventional semblance.
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Figure 26: Real data: Velocity spectra with minimum semblance using an outer window of 21 samples (10
to each side), with inner window size (a) 9, (b) 13, and (c) 19 samples. (d) Conventional semblance.



