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ABSTRACT

Time-to-depth imaging of time-migrated data is widely used to provide first depth images in a fast and
efficient way. As appealing time-to-depth conversion technique is based on so-called modeling rays.
One of the techniques to carry out depth and advance time-to-depth conversion by means of so-called
modeling rays. This approach avoids the construction of image rays, thus avoiding its disadvantages,
which include problems of caustics, interpolation and regularization that are characteristic of image
ray-tracing techniques. Besides a review of the concept and tracing of modeling rays, we propose a
new algorithm for time-to-depth conversion that is simpler and more efficient than the ones available
in the literature. Applications to synthetic and real data provide encouraging results.

INTRODUCTION

In the seventies, Hubral (1977) introduced the image-ray concept, that provided a well-needed geophysical
meaning to the time-migration (Kirchhoff) procedure overall used in practice. More specifically it provided
the understanding of why the stacking along a diffraction curve (or surface) followed by assigning the result
on its apex was the right thing to do. Since that time, the image-ray concept is widely used, not only for
time migration, but also for other applications. A good example of that is provided by ray tomography.
In the same way as normal rays makes the connection between a zero-offset (ZO) (stacked) volume to
a corresponding depth model (see, e.g. Duveneck, 2004), image rays provide an analogous task having
time-migrated volumes as input (Dell et al., 2014).

Image rays play also a significant role in (non-tomographic) time-to-depth conversion. That means
transforming selected time-migrated reflections or a full time-migrated volume into their corresponding
depth-domain counterparts, namely depth images of selected reflectors (see, e.g., Ursin, 1982; Tygel et al.,
2011, 2012) or a full depth volume(see, e.g., Cameron et al., 2007, 2008; Iversen and Tygel, 2008).

All the above papers are based on algorithms that, starting from stacked or time-migrated volumes and
their respective velocities, are able to trace normal or image rays into depth, as well as simultaneously
obtain interval velocity along these rays. In the process, the classic paraxial ray theory (see, e.g., Červený,
2001) for the kinematic and dynamic ray tracing. In this context, it is worth mentioning the important
result obtained in Cameron et al. (2007, 2008), by which the (depth) interval velocity along an image
ray relates to the time-migration velocity along the time-migrated trace specified by that image ray. That
relationship is expressed by a so-called velocity-spreading factor, that varies along the image ray. Although
that result is very relevant from the theoretical point view, so far no satisfactory method exists for a reliable
estimation of the velocity spreading factor in practice. That partly explains why the methodologies in
Cameron et al. (2007, 2008) and Iversen and Tygel (2008) present unpleasant instabilities characteristic of
ill-posed problems.

A different approach has been proposed in da Silva et al. (2009). That is based on the introduction of
so-called modeling rays, which are traced in the time domain. Modeling rays can be understood of duals
of image rays, which are traced in depth domain. In the same way that the samples of a single trace in the
time-migrated volume gives rise to a single image ray in depth, points along a single vertical in depth gives
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rise to a single modeling ray in the time-migrated volume. In the approach used by da Silva et al. (2009),
the time-to-depth conversion is carried out by assigning at samples of a vertical line in depth velocity
values that relate to time samples along the modeling ray that corresponds to that vertical in depth. Tracing
of modeling rays utilizes the so-called wavefront construction theory (Vinje et al., 1993), together with a
finite-difference algorithm adapted from Sava and Fomel (2001). The formulation in da Silva et al. (2009)
is quite appealing and should have received more attention in the literature. Even though that formulation
does not take into account the velocity spreading factor (which amounts as being assumed equal to unity),
its practical results are still very valuable.

In this work, we revisit the time-to-depth conversion of da Silva et al. (2009) and advance it in some
aspects. From the theoretical side, the modeling-ray equations, originally presented in 2D, have been
extended to 3D and generalized so that the velocity-spreading factor, linking the time migration and depth
interval velocities, is taken into account. On the practical side, still considering that factor as unity and also
in the 2D situation, a simpler and more stable (regularization free) algorithm has been introduced for the
modeling ray tracing. The reliable estimation of that factor, is a topic of ongoing research. In spite of that
limitation, applications to synthetic and real data provide encouraging results.

FORMULATION

We formulate the time-to-depth conversion of a time-migrated volume under the use of modeling rays. Our
reference is da Silva et al. (2009). We start with the introduction of appropriate coordinate systems and
proceed with the definition of image and modeling rays. Based on such considerations, the description of
the time-to-depth conversion algorithm will be provided in the next section.

Coordinate systems: We consider two Cartesian coordinate systems, one for the depth domain and an-
other for the time-migrated domain. More specifically, we have:

(a) Points in the depth domain are given by coordinates (x, y, z), where x e y are lateral coordinates and
z is depth. In that domain, the image rays are to be traced;

(b) Points in the time-migrated domain are given by coordinates (ξ, η, τ), where ξ (inline) and η
(crossline) specify the time-migrated trace and τ the (two-way) migrated time. In that domain,
the modeling rays are to be traced.

Image rays: In this work, we suppose that wave propagation is conveniently modeled by the acoustic
wave equation. Assuming for simplicity a constant density and a variable velocity, v = v(x, y, z), the
equation for pressure, P (x, y, z, τ), is given by

∂2P

∂x2
+
∂2P

∂y2
+
∂2P

∂z2
− 1

v2

∂2P

∂τ2
= 0 , (1)

together with boundary and initial conditions. As well known (see, e.g., Červený, 2001), convenient, so-
called ray solutions of Equation wave can be obtained under in the form

P (x, y, z, τ) = Re{A(x, y, z)F (τ − T(x, y, z))} , (2)

where A(x, y, z) represents an amplitude (complex) factor, T(x, y, z) is an (real) traveltime (of phase)
and F (τ) is an analytic (complex) pulse shape, the latter being directly obtained from the (real) observed
source pulse. In the modeling, the function F (τ), is assumed to be known. For our purposes, we are only
interested in the traveltime function, T(x, y, z), from which the ray trajectories are determined. Observe
that, for constant τ , the equation

T(x, y, z) = τ , (3)

represents the wavefront of the ray solution (3) at the time τ . The equations for the phase, T(x, y, z),
and amplitude, A(x, y, z), are obtained through the substitution of the ray expression (3) into the wave
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equation (1). As well known (see, e.g., Červený, 2001), the traveltime, calT (x, y, z), satisfies the so-called
eikonal equation

T2
x + T2

y + T2
z =

1

v2
, (4)

where Tx = ∂T/∂x, Ty = ∂T/∂y e Tz = ∂T/∂z, together with boundary and initial conditions. Still
following Červený (2001), the eikonal equation can be solved by means of the introduction of rays. These
are temporal curves x(τ) = (x(τ), y(τ), z(τ)), that satisfy the ray-tracing system given by

dx

dτ
= v2Tx,

dy

dτ
= v2Ty,

dz

dτ
= v2Tz ,

dTx
dτ

= − 1

v2
vx,

dTy
dτ

= − 1

v2
vy,

dTz
dτ

= − 1

v2
vz ,

(5)

where vx = ∂v/∂x, vy = ∂v/∂y and vz = ∂v/∂z, all quantities being evaluated at (x(τ), y(τ), z(τ)).
For the image ray, we have an advantageous characteristic: The slowness vector is normal at its initial

pint at the measurement surface, is normal to that surface. Assuming, for simplicity, that the measurement
surface is a horizontal plane, z = 0, that the ray initial point has coodinates x = ξ, y = η e z = 0, and that
the velocity at that initial point is v0, we obtain the initial conditions

x(0) = x0, y(0) = y0, z(0) = 0 ,

τx(0) = 0, τy(0) = 0, τz(0) = 1/v0 .
(6)

Modeling rays: Introduced by da Silva et al. (2009), the modeling rays, which propagate in the time-
migrated domain, have a strong analogy (referred here as duality) with the image rays, which propagate in
depth domain. As opposed to, e.g., Cameron et al. (2007), Iversen and Tygel (2008) and Gelius and Tygel
(2015), that propose time-to-depth conversion of time-migrated volumes algorithms based on image rays,
we follow the counterpart approach of da Silva et al. (2009) that is based on modeling rays.

As shown in Appendix A, modeling rays are determined by a so-called modeling eikonal equation. In
Appendix B, we derive the (most simple) modeling wave equation for which ray theory yields that eikonal.

In this work, initial, proof-of-concept, implementations and tests of the proposed time-to-depth algo-
rithm are considered under In this situation, our modeling wave equation is given by (see Appendix B)

∂2P̄

∂ξ2
+
∂2P̄

∂η2
+

1

v2
Dix

∂2P̄

∂τ2
− ∂2P̄

∂z2
= 0 . (7)

Here, P̄ = P̄ (ξ, η, τ, z) = P (x(ξ, η), y(ξ, η), z, τ) represents pressure and vDix(ξ, η, τ) the time interval
velocity (Dix velocity), both computed in time-migrated domain coordinates. More specifically,

v2
Dix(ξ, η, τ) = det VDix , (8)

where VDix is the interval time velocity, 2× 2 symmetric matrix, obtained by the Dix transformation (see,
e.g., Cameron et al., 2007; Gelius and Tygel, 2015),

det
(
V2
Dix

)
= det

(
∂

∂τ
[τV2

M (ξ, η, τ)]

)
, (9)

applied to the time-migration velocity matrix, VM . Observe that the modeling wave, which propagates
in the time domain, has as propagation variable the depth coordinate, z. As a counterpart, the image
wave, which propagates in the depth domain, has as propagation variable, the temporal coordinate, τ . In
agreement with the above observation, the eikonal that govern modeling rays is determined by substituting
into the modeling wave equation (7), the ray solution (compare with Equation (2))

P̄ (ξ, η, τ, z) = Re{B(ξ, η, τ)F (z − Z(ξ, η, τ))} . (10)
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Here, B(ξ, η, τ) represents an amplitude, Z(ξ, η, τ) a depth phase and F (z) is an analytic depth pulse.
Observe that, for each depth value, z, the equation

Z(ξ, η, τ) = z , (11)

represents a wavefront at the depth instant, z. Still under the assumption of a locally laterally homogeneous
media, the depth phase, Z(ξ, η, τ), must satisfy the modeling eikonal (compare with the image-ray eikonal
of Equation (4))

Z2
ξ + Z2

η +
1

v2
Dix

Z2
τ = 1 . (12)

where Zξ = ∂Z/∂ξ, Zη = ∂Z/∂η e Zτ = ∂Z/∂τ . The above eikonal permits one to determine the
modeling ray, ξ(z) = (ξ(z), η(z), τ(z)), by means of the ray-tracing system

dξ

dz
= Zξ,

dη

dz
= Zη,

dτ

dz
=

1

v2
Zτ ,

dZξ
dz

=
Z2
τ

v3
vξ,

dZη
dz

=
Z2
τ

v3
vη,

dZτ
dz

=
Z2
τ

v3
vτ .

(13)

together with the initial conditions

ξ(0) = ξ0, η(0) = η0, τ(0) = 0 ,

Zξ(0) = 0, Zη(0) = 0, Zτ (0) = v0 .
(14)

Slowness vectors: An important role in ray theory is played by slowness vectors. At each point of
propagation, the slowness vector points normal to the ray wavefront. Introducing the notations p(x) =
p(x)(x, y, z) e p(ξ) = p(ξ)(ξ, η, τ) for the slowness vectors of the image and modeling rays, respectively,
we find the relations

p(x) = ∇xτ = (τx, τy, τz) ,

p(ξ) = ∇ξZ = (Zξ, Zη, Zτ ) .
(15)

Observe that the slowness vector of the image ray, p(x), has, as expected, the dimensions of inverse ve-
locity. However, the slowness vector of the modeling ray, p(ξ), has the first two coordinates, Zξ e Zη ,
non dimensional and the third one, Zτ , with dimension of velocity inverse. Is spite of this “dimensionality
abuse", we found it convenient to maintain the terminology os slowness also for that case. In view of the
above definitions, we can express the initial conditions for the ray tracing of image rays (Equation (6)) and
modeling rays (Equation 14), in the form

x(0) = (x0, y0, 0), p(x)(0) = (0, 0, 1/v0) ,

ξ(0) = (ξ0, η0, 0), p(ξ)(0) = (0, 0, v0) .
(16)

We assum that for both image and modeling rays, the slownness vectors are normal to the measurement
surface z = τ = 0.

CONVERSION ALGORITHM

In view of the above formulation, we are now ready to describe the proposed time-to-depth conversion algo-
rithm. We consider the time-migrated volume, which consists of amplitudes u(ξ, η, τ) and time-migration
velocities, vM (ξ, η, τ), where (ξ, η) denotes the trace and τ the (two-way) migration time. We also con-
sider that the migration velocity has been already transformed to interval time (Dix) velocity, vDix(ξ, η, τ),
as computed by Equation (8). We finally suppose that the coordinates (x, y, z) specify the depth-domain
points where the conversion will take place.
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For a grid depth points (xi, yj , zk), the envisaged algorithm consis in assigning an amplitude,
u(xi, yj , zk), and a velocity, v(xi, yj , zk) to each grid point. We consider that the amplitude and inter-
val time (Dix) velocity (obtained from the time-migration velocity field) are given on a user-selected grid
of points, u(ξp, ηq, τr).

The assignment of amplitudes and velocities in the depth domain will be carried out along each trace,
(xi, yj), at the acquisition plane, z = 0, at samples, zk, along the depth vertical coordinate, z, by means of
the following procedure:

(1) Trace modeling ray, (ξ(z), η(z), τ(z)), in the time-migrated domain, starting from the point,
ξ(0) = xi, η(0) = yi and τ(0) = 0;

(2) At the point, (ξ(zk), η(zk), τ(zk)), on the modeling ray, compute the amplitude and time interval
(Dix) velocity, obtained by interpolating the corresponding values at neighboring points at the given
grid in the time-migrated domain.

(3) The obtained values of amplitude and velocity will be assigned at the depth point
(ξ(zk), η(zk), τ(zk)).

RESULTS

Our time-to-depth conversion was implemented using the software Matlab® and tested in a preliminary
way in 2D synthetic and real data. The main objective of the synthetic experiments was to validate the
developed theory, by comparing the time-to-depth results with the original geological models. After val-
idation, the algorithm was tested for a real dataset followed by a discussed of the obtained results. In all
following figures, the time axis represent one-way time. Velocities are given in km/s.

Synthetic examples: For the synthetic examples below, we make the following considerations:

(a) For any depth point, D = (x, y, z), we assume that the depth velocity equals the interval time (Dix)
velocity at the corresponding point, (ξ, η, τ), in the time-migrated domain that is determined by the
image ray traced from D to the acquisition surface. More specifically, (ξ, η) represents the point
where the image ray from D hits the acquisition surface, with τ being the (two-way) traveltime
along that ray.

(b) Once the Dix velocity field is obtained, the proposed time-to-depth algorithm is used to map these
velocities along the modeling rays for all points of the time-migrated domain.

Remark: The construction indicated above may seem artificial since it differs from the real situation. In
practice, the time-migration velocity field is the given input data, which is transformed into is corresponding
interval time (Dix) velocity field. The obtained interval time velocity field represents the input for the
proposed conversion algorithm. Even with this limitation, the synthetic examples work well as “proof of
concept" for our scheme. In the real-data example, the correct application of the algorithm is undertaken.

(1) First synthetic example: The depth-velocity field is laterally invariant, being given by

v(z) = 1500 + 0.5z , (17)

as shown in Figure 1 (Top-Left) in km/s. The corresponding interval time (Dix) velocity field is
represented in Figure 1 (Top-Right). The result of the time-to-depth conversion can be seen in
Figure 1 (Bottom-Left). The comparison between the original model and the depth-converted is
shown in Figure 1 (Bottom-Right). Note that, in this case, the relative error was of the order of 0.1%,
which can be considered as a numerical error.

(2) Second synthetic example: Our model now has a velocity with lateral and depth variations, being
defined by

v(x, z) = 1500 + 0.5z + 0.3x , (18)
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Figure 1: First synthetic model: (Top-Left) Geological model with laterally and depth varying velocity
according to Equation (17) in km/s. (Top-Right) Time velocity field mapped along image rays for the
model. (Bottom-Left) Depth velocity field, re-mapped along modeling rays. (Bottom-Right) Percentage
relative error, between the results presented in Figure (Top-Left) and Figure (Bottom-Left).

represented in Figure 2 (Top-Left) in km/s. The corresponding interval time (Dix) velocity field
is represented in Figure 2 (Top-Right). The resulting time-to-depth conversion can be seen in Fig-
ure 2 (Bottom-Left). Comparison with the original model is shown in Figure 2 (Bottom-Right). Once
again, the relative error was very small, of the order of 0.2%, which can be considered as a numerical
error.

(3) Third synthetic example: Our last synthetic example is more complex, with lateral and depth ve-
locity variation according to the expression

v(x, z) = 1000
{

2− exp[(−1.5/10002)(x2 + (z − 2000)2)]
}
, (19)

represented in Figure 3 (Top-Left) in km/s. The same previously described procedures have bee
applied giving rise to the Figures 3 (Top-Right) and 3 (Bottom-Left). Note that, in this example, the
relative error shown in the lower part of Figure 3 (Bottom-Right) is of the order of 3%, hence larger
than the previous cases. Away from these regions, the error can still be considered as a numerical
error.

To illustrate the above observations, Figures 4 (Top-Left) and (Top-Right) show the image and mod-
eling wavefronts overlaid to the respective velocity fields in depth and interval time. Note that in
the regions where the wavefronts have significant curvature, the corresponding image rays widens of
compress, as especially seen in the lower-most part of Figure 4 (Bottom-Left). This behavior may
affect the velocity information stored at the chosen grid for construction of Figure 3 (Top-Right).
The same phenomenon can be observed for the modeling wavefronts, with the difference that, where
the image rays compress, the modeling rays widens Figures 4 (Bottom-Left) and (Bottom-Right).
As shown in Figures 4 (Bottom-Left and Bottom-Right) there is a concentration of image rays and
widening of modeling rays in the lower-most part of these figures. This explains the large 3% error
shown in Figure 3 (Bottom- Right).

(4) Real data example: Our time-to-depth algorithm is now applied to a real marine data set of the
Jequitinhonha basin, Brazil. The time-migrated image, as well as the time-migration velocity field
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Figure 2: Second synthetic model: (Top-Left) Geological model with laterally and depth varying velocity
according to Equation (18) in km/s. (Top-Right) Time velocity field mapped along image rays for the
model. (Bottom-Left) Depth velocity field, re-mapped along modeling rays. (Bottom-Right) Percentage
relative error, between the results presented in Figure (Top-Left) and Figure (Bottom-Left).
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Figure 3: Third synthetic model: (Top-Left) Geological model with laterally and depth varying velocity
according to Equation (19) in km/s. (Top-Right) Time velocity field mapped along image rays for the
model. (Bottom-Left) Depth velocity field, re-mapped along modeling rays. (Bottom-Right) Percentage
relative error, between the results presented in Figure (Top-Left) and Figure (Bottom-Left).

can be seen in Figures 5 and 6, respectively.

The time-migration velocities were transformed to their corresponding interval (Dix) time-velocities
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Figure 4: Third synthetic model: (Top-Left) Image wavefronts in time intervals of 0.1 s (blue lines), over-
laid to depth-velocity model. (Right-Top) Modeling wavefronts in depth intervals of 100 m (blue lines),
overlaid to interval (Dix) time-velocity model. (Left-Bottom) Tracing image rays in depth. (Right-Bottom)
Tracing modeling rays in time.
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Figure 5: Real data: Prestack time migration of a marine seismic line of the Jequitinhonha basin, Brazil.

shown in Figure 7). These velocities were, in turn, converted into depth along modeling rays. The
result is shown in Figure 8.

Depth conversion was finally applied to the time-migrated data of Figure 5, the result shown in
Figure 9. For comparison, Figure 10 shows the conventional (Kirchhoff) poststack depth migration
of the original data. We can observe that, except for the previously cited regions, the events are well
positioned laterally and in depth.
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Figure 6: Real data: Time-migration velocity field.
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Figure 7: Real data: Interval (Dix) time-velocity field derived from the time-migration velocity field of
Figure 6.

DISCUSSION

The above presented time-to-depth algorithm transfers to depth the interval (Dix) time velocity obtained
from the time-migration process. This means that we suppose that we suppose that the depth velocity at
each point of an image ray coincides with the interval time velocity that refers to the corresponding point
in the time-migrated domain. As shown in Cameron et al. (2007, 2008), and based on the paraxial ray
theory, these two velocities do not coincide, being related by a correction factor (referred to as velocity
spreading factor), which depends on attributes the dynamic ray tracing of the image rays. In view of the
good results obtained in da Silva et al. (2009), in which that correction factor is neglected (i.e., taken as
unity), and moreover that, under that in this case the conversion algorithm is far simpler, we adopted in
our implementation the above described coincidence of depth and interval time velocities. Nevertheless,
we maintain our investigations with the aim of accounting the velocity spreading factor in the conversion
algorithm, as well as estimating its influence in the conversion results.
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Figure 8: Real data: Depth-velocity field re-mapped by modeling rays Time-migration velocity field.
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Figure 9: Real data: Time-to-depth conversion (re-mapping by modeling rays) of time-migrated image
shown in Figure 5

CONCLUSIONS

In this work, we have revisited and improved the methodology of depth conversion of time-migrated vol-
umes by means of modeling rays. Such methodology does not require the construction of image rays,
thus avoiding disadvantages characteristic of the techniques that utilize those rays. In an analogous way
as in the classical ray theory, modeling rays are associated with (fictitious) modeling wave equations that
propagate in time-migrated domain. The propagation velocity of the modeling waves are related to the
interval (Dix) time-velocity, which are extracted from time-migration velocities, supposed available from
the time-migration process. Besides that, the only requirement is that the time-migration velocities smooth
enough to allow for ray-tracing. In fact, the proposed approach requires less velocity smoothness (continu-
ity up to first-derivatives) than the ones the employ image rays (continuity up to second-order derivatives).
At the present stage, the our time-to-depth conversion algorithm assumes the condition of locally lateral
homogeneity, for which the velocity at each (depth) point of an image ray coincides with the interval
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Figure 10: Real data: Conventional (Kirchhoff) poststack depth migration of original data.

time-velocity evaluated its corresponding point in the time-migrated domain. We recall that the interval
time-velocity is obtained from the time-migrated velocity by means of the so-called Dix transformation.

The contributions of the present paper are twofold. At first, a theoretical review of the 3D propagation
of modeling waves and corresponding modeling rays is provided. Secondly, still in the framework of 2D
propagation and locally lateral homogeneity, we present a new algorithm, which has better properties of
simplicity and efficiency than the one available in the literature. Application to synthetic and real data sets
have provided encouraging results.

APPENDIX A: DERIVATION OF MODELING EIKONAL EQUATION

In this appendix, we derive the modeling eikonal equation, namely the one that determines the modeling
rays. Our point of departure is Equation (11), recast in the form

Z(ξ1(x1, x2, z), ξ2(x1, x2, z), τ(x1, x2, z)) = z , (20)

where z is a constant. That equation represents the wavefront of a modeling ray at the “instant" z. Applying
to both members the partial derivatives with respect to x1, x2 e z and with the help of the chain rule of
advanced calculus, we find the system

∂Z

∂ξ1

∂ξ1
∂x1

+
∂Z

∂ξ2

∂ξ2
∂x1

+
∂Z

∂τ

∂τ

∂x1
= 0 ,

∂Z

∂ξ1

∂ξ1
∂x2

+
∂Z

∂ξ2

∂ξ2
∂x2

+
∂Z

∂τ

∂τ

∂x2
= 0 ,

∂Z

∂ξ1

∂z

∂z
+
∂Z

∂z
(
∂ξ2
∂z

+
∂Z

∂τ

∂τ

∂z
= 1 .

(21)

Introducing the gradients

∇̂xξi =

(
∂ξi
∂x1

,
∂ξi
∂x2

,
∂ξi
∂z

)T
, ∇̂xτ =

(
∂τ

∂x1
,
∂τ

∂x2
,
∂τ

∂z

)T
, ∇̂ξZ =

(
∂Z

∂ξ1
,
∂Z

∂ξ2
,
∂Z

∂τ

)T
, (22)

the system (21) can be recast in matrix form as[
∇̂xξ1 ∇̂xξ2 ∇̂xτ

]
∇̂ξZ =

[
0 0 1

]T
, (23)
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Left multiplication of equation (23) by its conjugate equation, we readily obtain

(∇̂ξZ)T Λ̂ (∇̂ξZ) = 1 , (24)

where

Λ̂ =
[
∇̂xξ1 ∇̂xξ2 ∇̂xτ

]T [
∇̂xξ1 ∇̂xξ2 ∇̂xτ

]
=

∇̂xξ1 · ∇̂xξ1 ∇̂xξ1 · ∇̂xξ2 ∇̂xξ1 · ∇̂xτ
∇̂xξ2 · ∇̂xξ1 ∇̂xξ2 · ∇̂xξ2 ∇̂xξ2 · ∇̂xτ
∇̂xτ · ∇̂xξ1 ∇̂xτ · ∇̂xξ2 ∇̂xτ · ∇̂xτ

 . (25)

The above equation constitutes the modeling eikonal. Our problem reduces, thus, to the determination of
the matrix Λ̂.

Displacement vector in ray-centered and global coordinates: As shown below, the coefficients of the
matrix Λ̂ can be determined in a convenient way upon the introduction of the so-called ray-centered local
coordinates, (q1, q2, q3), that correspond to a fixed depth point, D = (x1, x2, z), on a fixed, central ray,
chosen here to be an image ray. As explained in Červený (2001) (see, Section 4.1.4), the ray-centered
coordinate system is a moving (positive) Cartesian system along the central ray, such that, at each point
D of that ray, we have (a) the q3-axis points in the direction of the slowness vector of the central ray at
D and (b) the (mutually perpendicular) q1- and q2-axes belong to the plane normal to the q3-axis. The
position of the q1- and q2-axes on the normal plane to the q3-axis (in principle defined only up to a rotation
with respect to that axis) is determined by the initial point of the central ray. More information on the
ray-centered coordinate system can be found in Červený (2001).

For a same differential displacement vector, its expressions in global coordinates, dx̂ = (dx1, dx2, dz)
T

and ray-centered coordinates, dq̂ = (dq1, dq2, dq3)T satisfy a relation of the form

dq̂ = Ĥ dx̂ , (26)

in which

Ĥ = (Hij) =

(
∂xj
∂qi

)
, i, j = 1, 2, 3. (27)

A good insight of the meaning of the matrix Ĥ can be grasped by considering the auxiliary matrix Û =
(Uij), i, j = 1, 2, 3, defined by

Û = ĤĤT = ĤT Ĥ . (28)

By the definition (27), we find, using Einstein’s rule of multiplication

Uij =

(
∂xi
∂qk

)(
∂xj
∂qk

)
= (∇qxi) · (∇qxj) . (29)

By the fact that the global and ray-centered coordinate systems are positive Cartesian, the above expression
yields

Û = ĤĤT = ĤT Ĥ = Î , (30)

where Î is the 3 × 3 identity matrix. With the help of the above, we observe that, for any differentiable
function, f = f(q1(x1, x2, z), q2(x1, x2, z), q3(x1, x2, z)), we have the important relation

∇̂xf = Ĥ ∇̂qf , (31)

where
∇̂xf = (fx1

, fx2
, fz)

T and ∇̂qf = (fq1 , fq2 , fq3)T , (32)

are the gradients of f with respect to coordinates x̂ and q̂, respectively. From Equations (31) and (32),
it follows that, for any other differentiable function, g = g(q1(x1, x2, z), q2(x1, x2, z), q3(x1, x2, z)), we
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readily find

(∇̂xf) · (∇̂xg) = (∇̂xf)T (∇̂xg) = [Ĥ (∇̂qf)]T [Ĥ (∇̂qy)]

= (∇̂qf)T [ĤT Ĥ](∇̂qg)] = (∇̂qf)T (∇̂qg)

= (∇̂qf) · (∇̂qg) . (33)

As an important consequence of the above equation, is that it enables one to compute the scalar-product
components of the sought-for matrix Λ̂ of Equation (25) in local ray-centered instead of global coordinates.
We show next how that is done.

Displacement vector in ray-centered and time-migration coordinates: We now proceed to find anal-
ogous relationships for a same displacement vector in ray-centered coordinates, q̂ = (q1, q2, q3)T and
ξ̂ = (ξ, η, τ). In analogy with Equation (26), we write

dq̂ = Q̂ dξ̂ , (34)

in which, upon the introduction of the notations ξ = ξ1, ξ2 = η and ξ3 = τ , the matrix Q̂ can be expressed
as (compare with Equation (27)),

Q̂ = (Qij) =

(
∂ξj
∂qi

)
, i, j = 1, 2, 3. (35)

We now observe that, by the very definition of the ray-centered coordinates along the central (image) ray
computed at D, we have

Q13 = Q23 = Q31 = Q32 = 0 and Q33 = v = v(q1, q2, q3) . (36)

Substitution into Equation (35) produces the simpler expression of Q̂

Q̂ =

 Q
0
0

0 0 v

 , (37)

in which Q, represents the upper left 2× 2 submatrix of the matrix Q̂

Q =

[
Q11 Q12

Q21 Q22

]
. (38)

In addition, by the elementary rules of matrix calculus, the inverse matrix Q̂−1 is readily found to be

Q̂−1 =

 Q−1 0
0

0 0 1/v

 , (39)

with the understanding that det Q 6= 0.

Determination of the gradients: We are now ready to determine the gradient components of the sought-
for matrix Λ̂ in Equation (25). For that, we use Equations (34) and (39), namely

dξ̂ = Q̂−1dq̂ =

 Q−1 0
0

0 0 1/v

 dq̂ . (40)

If we now introduce the matrix V̂ = (Vij), defined by

V̂ = Q̂−T Q̂−1 , (41)
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we find, using Equations (29), that
Vij = (∇qξi) · (∇qξj) . (42)

In view of Equations (33) and (25), it follows that

Vij = (∇qξi) · (∇qξj) = (∇xξi) · (∇xξj) = Λij . (43)

As a consequence, we have
V̂ = Q̂−T Q̂−1 = Λ̂ , (44)

from which

Λ̂ =

 Q−1 0
0

0 0 1/v

T  Q−1 0
0

0 0 1/v

 =

 (QTQ)−1 0
0

0 0 1/v2

 . (45)

Substituting into Equation (24), we obtain the modeling eikonal equation

(∇̂ξZ)T

 (QTQ)−1 0
0

0 0 1/v2

 (∇̂ξZ) = 1 . (46)

Migration and interval (Dix) time velocities: The velocity, v = v(ξ, η, τ), in the eikonal Equation (46),
represents the depth velocity at the point P of the image ray, which is determined by the coordinates
(ξ, η, τ) in the time-migration domain. We recall that, in this domain, (ξ, η), specifies the trace and τ the
(two-way) time migration sample. As such, the velocity v(ξ, η, τ) is unknown. However, that velocity is
related with interval (Dix) time-velocity matrix, VDix, computed from the time-migration velocity matrix,
VM , the latter being directly estimated in the prestack time migration process. More specifically, we have
the important relation(see Cameron et al., 2007; Gelius and Tygel, 2015),

V2
Dix =

∂

∂τ

(τ
2

V2
M

)
= v2(QQT )−1 . (47)

Computing determinants from both sides of the above equation, and using simple properties of the deter-
minant, it follows that

det V2
Dix = (det VDix)2 = v4(det Q)−2 , (48)

leading to
v2 = v2

Dix|det Q|, com v2
Dix = |det VDix| . (49)

Substitution into the eikonal (46), and after simple manipulations, we find that

(∇̂ξZ)T

 (QTQ)−1 0
0

0 0
(
v2
Dix|det Q|

)−1

 (∇̂ξZ) = 1 . (50)

It is also useful to write the above equation in non-matrix form. As a first step in that direction, we we
readily observe that Equation (50) can be recast as[

Zξ Zη
]

(QTQ)−1

[
Zξ
Zη

]
+

1

v2
Dix|det Q|

Z2
τ = 1 . (51)

From the expression of matrix Q in Equation (38), we write

Q−1 =
1

det Q

[
Q22 −Q12

−Q21 Q11

]
, (52)

which, in turn, yields

(QTQ)−1 = Q−1(Q−1)T =
1

(det Q)2

[
a b
b c

]
, (53)
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with the notations

a = Q2
22 +Q2

12, b = −(Q11Q12 +Q22Q21), c = Q2
11 +Q2

21 . (54)

Substitution into the Equation (51), we obtain the the eikonal in non-matrix form

aZ2
ξ + 2b ZξZη + cZ2

η +
|det Q|
v2
Dix

Z2
τ = (det Q)2 . (55)

2D situation: In this situation, the eikonal equation involves only the quantities Zξ e Zτ . In addition,
the matrices Q, VM e VDix, reduce to scalars, Q, VM = vM e VDix = vDix. As a consequence, the
Equation (47) simplifies to

v2
Dix =

∂

∂τ

(τ
2
v2
M

)
= v2

(
1

Q2

)
. (56)

In the same way, the 3× 3 matrix, Λ̂, reduces to the 2× 2, Λ given by

Λ =

[
1/Q2 0

0 1/(Q2v2
Dix)

]
=

1

Q2

[
1 0
0 1/v2

Dix

]
. (57)

That leads to the eikonal [
Zξ Zτ

] [1 0
0 1/v2

Dix

] [
Zξ
Zτ

]
= Q2 , (58)

in matrix form, or, alternatively,

Z2
ξ +

1

v2
Dix

Z2
τ = Q2 . (59)

in non-matrix form.

Locally laterally homogeneous media: This is the where the velocity is assumed to be laterally constant
in the vicinity of each image ray. In the 3D situation this implies that

Q = I, VM = vMI, and VDix = vDixI, (60)

where I is the 2 × 2 identity matrix and vM = vM (τ) and vDix = vDix(τ) are escalar velocities that
depend only on the migration tempo, τ , being independent from the lateral coordinates, (ξ, η). The relation

v2
Dix =

d

dτ

(τ
2
v2
M

)
, (61)

is still valid. Substituting Equation (60) into Equation (49), we have that

v2 = |det(vDixI)||det Q| = v2
Dix , (62)

in which we have used the properties

det(vDixI) = v2
Dix det I = v2

Dix, e det Q = det I = 1. (63)

As a consequence,
det VDix = det(vDixI) = v2

Dix det I = v2
Dix . (64)

To obtain the eikonal in the present case, we observe that the condition Q = I implies that Q11 = Q22 = 1
e Q12 = Q21 = 0, which, in view of Equation (54), yields

a = c = 1, e b = 0 . (65)

From Equation (55), we have that the 3D eikonal in locally laterally homogeneous media is given by

Z2
ξ + Z2

η +
1

v2
Dix

Z2
τ = 1 . (66)
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The above equation can be used as an approximate solution para the time-to-depth conversion, under the
consideration

v2
Dix = |det VDix| =

∣∣∣∣det

[
∂

∂τ

(τ
2

V2
M

)]∣∣∣∣ . (67)

By means of analogous arguments as before, the corresponding eikonal for the 2D situation is given by

Z2
ξ +

1

v2
Dix

Z2
τ = 1 . (68)

In that case,

v2
Dix = V 2

Dix =
∂

∂τ

(τ
2
V 2
M

)
. (69)

APPENDIX B: DERIVATION OF MODELING WAVE EQUATION

For a given wave equation, the process for obtaining a corresponding eikonal leads to a unique equation.
However, the reciprocal situation is not unique: A given eikonal may correspond to several wave equations.
In this situations, it is reasonable to choose the simplest wave equation that corresponds to a give eikonal.
In the present case, the simples wave equation associated to the eikonal equation (55) is given by

a
∂2P̄

∂ξ2
+ 2b

∂P̄

∂ξ∂η
+ c

∂2P̄

∂η2
+
|det Q|
v2
Dix

∂2P̄

∂τ2
− (det Q)2 ∂

2P̄

∂z2
= 0 , (70)

where P̄ = P̄ (ξ, η, τ, z) represents the "pressure". In the above modeling wave equation, the variable, z,
plays the role of the propagation variable. Besides that, a = a(ξ, η, τ), b = b(ξ, η, τ) and c = c(ξ, η, τ), as
well as vDix = vDix(ξ, η, τ) and Q = Q(ξ, η, τ), have the same meaning as before.

We now verify that the above wave equation has ats associated eikonal the Equation (55). To do so, we
tentatively consider the z-propagation ray solution

P̄ (ξ, η, τ, z) = B F (z − Z) , (71)

where B = B(ξ, η, τ) and Z = Z(ξ, η, τ) represent the amplitude and “traveltime” in z-propagation.
Substitution of the above ray solution into the wave equation (17), and after straightforward manipulations,
we obtain the expression of the form

U2 F
′′(z − Z) + U1 F

′(z − Z) + U0 F (z − Z) = 0 , (72)

where U2 = U2(ξ, η, τ), U1 = U1(ξ, η, τ) and U0 = U0(ξ, η, τ) are functional coefficients determined
by that substitution. In order that the ray solution (71) effectively satisfies the wave equation (70), we
must have that all coefficients U2, U1 and U0 identically vanish. Doe to the fact that we have only two
unknowns, B(ξ, η, τ) and Z(ξ, η, τ) (the “pulse”, F (z), does not interfere in the problem), we can impose
these vanishing conditions to two coefficients only. By the well-accepted assumptions of ray theory, the
coefficients to be chosen to zero are the ones associated with the higher-order derivatives of F , namely U2

and U1. The reason for that is that these coefficients are attached to the terms of highest frequency with
respect to the propagation variable, z.

The condition U2 = 0 gives rise to the eikonal equation for the function Z, which, in turn, determines
the ray trajectories in the propagation variable, z. The condition, U1 = 0, gives rise to the so-called
transport equation, that determines the amplitude,B, along the previously determined rays. The coefficient,
U0 is left free in the process. The basic assumption of ray theory is that Equation (71) produces a valid
approximate solution of the wave equation.

In our situation, we are interested in the eikonal equation only, which derives from the conditionU2 = 0.
As can be readily verified, we have

U2 = a Z2
ξ + 2b ZξZη + c Z2

η +
|det Q|
v2
Dix

Z2
τ − (det Q)2 = 0 , (73)

which represents the expected eikonal of Equation (55).
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