
51

ACCELERATING SEMBLANCE COMPUTATIONS ON
HETEROGENEOUS DEVICES USING OPENCL

E. Borin, H. Cardoso da Silva, J. H. Faccipieri Jr., and M. Tygel

email: edson@ic.unicamp.br, hercules.cardoso.silva1@gmail.com, jorge.faccipieri@gmail.com and
tygel@ime.unicamp.br

keywords: Semblance, CRS, CMP, GPU, OpenCL, HPC

ABSTRACT

The core of several seismic processing methods, such as the CRS and the CMP methods, is the com-
putation of the traveltime and semblance functions. In this work we investigate the use of OpenCL
to accelerate these computations on multicore CPUs, GPUs, and other hardware accelerators. Our
experiments indicate that the OpenCL code is highly portable among different computing devices and
the performance results suggests that GPUs are promising computing devices to accelerate the seismic
processing methods that rely on high volumes of semblance computations.

INTRODUCTION

Several seismic processing techniques demand high amounts of data transfer, depending on the size of data
to be considered, and also intensive computational power, depending on the operation complexity of the
processes involved. In particular, imaging methods based on multiparametic traveltime stacking, such as
the Common-Reflection-Surface (CRS) method, suffer from both difficulties. In fact, depending on three
parameters in 2D case and eight in 3D, the computational cost associated with the CRS method renders its
application unfeasible on large-scale seismic datasets routinely acquired by the oil industry.

The estimation of the CRS parameters lies on computation of traveltime surfaces and associated sem-
blance functions, which represent almost 100% of the computing time. Since these methods require a large
amount of computation when processing real data, they are typically coded to be executed in parallel on
clusters with multiple machines.

Recent trends indicate that future computing systems will be composed by heterogeneous computing
devices, including multicore Central Processing Units (CPUs), Graphical Processing Units (GPUs) and
other hardware accelerators, such as the Intel Xeon Phi and Field Programmable Gate Arrays (FPGAs).
However, in order to use the computing power available on these heterogeneous devices, existing programs
will need to be adapted or, in some case, be completely rewritten using new programming frameworks.

Ni and Yang (2012) used CUDA to accelerate the so-called 3D Output Imaging Scheme (CRS-OIS)
method on GPUs and report that the code running on the GPU can be 10 to 220 times faster than the CPU
when processing a synthetic data. When processing a real data, the GPU (Model c1060) is roughly 35 times
faster than a CPU processing with only one of the cores. Marchetti et al. (2011) accelerated the search for
the eight parameters on the CRS method using OpenCL to run the semblance and traveltime operations
on a GPU. The authors reported that the GPU (Radeon HD 5870) is roughly 60 times faster than the CPU
processing when processing a 3GB seismic data. Marchetti et al. (2010) used the Maxeler MaxCompiler
tool to accelerate the CRS method using FPGAs. The authors reported that their solution is 200 to 230
times faster than the CPU when processing a seismic data from a land survey.

In this work, we investigate how we can accelerate the computation of semblance operations using
OpenCL, a parallel application program interface (API) designed to enable the same code to be executed



52 Annual WIT report 2015

on different parallel hardware accelerators, including GPUs from different vendors, multicore CPUs, and
FPGAs. In particular, we implemented an OpenCL program to compute the semblance operations to esti-
mate the Normal Moveout (NMO) velocity (see, e.g. Taner and Kohler, 1969) on the Common Midpoint
(CMP) method (see, e.g. Neidell and Taner, 1971) and found that GPUs can execute it 6.4 to 43.3 times
faster than CPUs. Since the core of the computation is semblance and traveltime evaluations, we expect
to see similar performance benefits on other methods that rely on such computations, with the Common-
reflection-surface (CRS) method as a prominent example.

The text is organized as follows: we first provide a brief overview of GPUs, hardware accelerators and
OpenCL. Then, we discuss the implementation of the CMP method using both OpenMP and OpenCL.
Finally, we present some experimental results and conclusions.

GPUS, HARDWARE ACCELERATORS AND OPENCL

Graphic Processing Units, or GPUs, are devices that were originally dedicated to accelerate graphics pro-
cessing on computer systems. However, at the end of the last decade, new programming models and
hardware advances allowed programmers to harness the computing power available on GPUs to perform
general-purpose computation. A simplified hardware mechanism to control the execution flow allied with
tens to hundreds of parallel computing elements render GPUs highly energy efficient and highly parallel
computing devices. As a result, these devices became popular with the high-performance computing com-
munity and is currently present on the fastest supercomputers in the world (Top 500 supercomputer sites,
2015).

The use of GPUs for high-performance computing has influenced the microprocessor hardware industry
and several new solutions, such as the Accelerated Processing Units, by AMD, and the Xeon PHI copro-
cessor, by Intel, were introduced. These new products and the supercomputer hardware usage trends (Top
500 supercomputer sites, 2015) indicate that these technologies are becoming a standard. Figure 1 illus-
trates the evolution of supercomputers over the years, including the computing devices and their respective
programming technologies. Notice that during the nineties and the first half of the 2000’s supercomputers
were composed of multiple single-core nodes (several machines) and programmed mostly with Message
Passing Interface (MPI). After the introduction of multicores, in 2005, the supercomputers started to em-
ploy this kind of processors in their nodes and new programming technologies were introduced to explore
the parallelism available inside the node. Later, in 2009, when the supercomputers started to use hardware
accelerators, new programming technologies, such as CUDA, OpenCL and OpenACC, were introduced.
These new programming technologies were introduced because compilers were not capable of compiling
legacy C/C++ programs, generated for traditional CPUs, into high performing GPU code. Despite recent
progresses on code generation technologies, it is still very unlikely that compilers will be able to perform
this task automatically. As a result, programs need to be modified to harness the computational power
available on these accelerators.

Figure 1: Evolution of supercomputers over the years, including their computing devices and respective
programming technologies.



Annual WIT report 2015 53

OpenCL

As soon as researchers demonstrated the benefits of using GPUs for general purpose computing, NVIDIA,
one of the major manufacturers of GPUs, introduced a programming framework to enable users to exe-
cute general-purpose programs on their GPUs. This framework, called CUDA, was quickly adopted by
the community and became a very popular framework for programming GPUs. However, since CUDA is
proprietary, programs coded with CUDA are fated to be executed only on NVIDIA GPUs. After CUDA
was introduced, the Khronos group (The Khronos Group – Connecting Software to Silicon, 2015) started
developing OpenCL, a new parallel programming standard for heterogeneous computing systems that of-
fers a common application programming interface (API) to enable programmers to implement a single
program that runs on different types of computing devices, such as multicore CPUs, GPUs, FPGAs, and
other hardware accelerators. The Khronos group is a non-profit organization dedicated to creating open
standard APIs and promoted by several members of the microprocessor industry, including Intel, Apple,
NVIDIA, AMD, ARM, Qualcomm, and Samsung. As a consequence, most of these companies implement
OpenCL drivers so that users can run OpenCL code on their hardware accelerators. This makes OpenCL
code highly portable across different devices, including devices from different vendors.

OpenCL programs are divided in two parts, one that runs on the host, or the system CPU, and another
that runs on the OpenCL device, which can be a GPU, an FPGA or even a multicore CPU. The former is
typically a C or C++ program and is compiled to run on traditional CPUs, such as Intel x86 processors. The
later is a set of OpenCL language (C-like) functions, called OpenCL kernels, that are compiled to run on
the hardware accelerator (Kaeli et al., 2015). OpenCL kernels are typically compiled by the OpenCL driver
at runtime, as a result of an API that is called by the host program. This mechanism allows the same code
to run on systems with different hardware accelerators (e.g. a cluster of machines in which each machine
may have a different hardware accelerator).

The host program is responsible for invoking OpenCL APIs to allocate and transfer data to the OpenCL
device, dispatching the execution of OpenCL kernels and retrieving the results from the device when the
computation is done. The OpenCL device may execute several instances of the same OpenCL kernel in
parallel, each instance on a different processing element. Each instance is known as a work item and,
despite executing the same code, each work item has a different ID, which is typically used inside the
kernel to ensure that each instance of the kernel works on a different part of the data.

CMP ON OPENCL

We now discuss how we accelerated the velocity analysis in the CMP method using OpenCL to parallelize
the execution of semblance operations. Since the computational kernel of the CMP and CRS methods are
very similar, the approach discussed here can be easily extended to accelerate CRS.

The CMP method searches for the Normal Moveout (NMO) velocity that yields the best semblance
value for each time sample on each CMP gather. The search involves computing the semblance function
for several different trial NMO velocities, which are defined by the search space. Listing 1 provides a
pseudo-code that illustrates the CMP method. The getmax_V procedure computes the semblance for
each value of V (the NMO velocity) in the search space and returns the one that generated the maximum
semblance value. The cmp procedure, in turn, invokes the getmax_V procedure for every time sample
(t0) on every gather to search for the velocity that provides the best semblance for the given time sample.
Once the best NMO velocity is found, the traces are stacked, producing a single trace for each CMP gather.

As we can see in Listing 1, this computation is embarrassingly parallel. In fact, each gather, each t0
and even each semblance can be computed in parallel to accelerate the computation. In order to accelerate
this kernel in multicore CPUs, we modified our original sequential C code to leverage OpenMP to process
each CMP gather in parallel. We will refer to this program as CMP-OpenMP. Even though this program
can only be executed on CPUs, it will serve as a basis to measure the quality of the OpenCL based code
when running on multicore CPUs.

As discussed previously, OpenCL programs typically transfer the input data to the computing device(s),
dispatch the execution of the computing kernel on the device(s) and retrieve the results once the computa-
tion is done. In case the input data is larger than the device memory, this computation may be performed in
multiple steps, each one on a subset of the data. The computing kernel is executed in parallel by multiple



54 Annual WIT report 2015

Listing 1 Pseudo-code for the CMP method

procedure: cmp ()

for each CMP gather g; do
for each t0 in g; do

C = getmaxV (g, t0);
stack (g, t0, V);

end for
end for

end procedure

procedure: getmaxV (g, t0)

bestV = 0;

maxSemb = 0;

for each V in the search space; do
semb = semblance (V, t0, g);
if (semb > maxSemb); then

maxSemb = semp;
bestV = V;

end if
end for
return bestV;

end procedure

work items, each one working on different slices of the data that is stored at the computing device memory.
In this sense, we could transfer gathers to the computing device memory and have each work item process-
ing a different t0, a different gather or even a different semblance. After reasoning about these options, we
make the following observations:

• One gather per work item: assigning one gather per work item may require the computing device
to store multiple (number of work items) gathers at the same time. However, if work items are
executed in lock step, then the memory access pattern is very regular and the input data structure
can be shapped to enable coalesced memory access, which is very important to improve memory
bandwidth on several GPUs (Fauzia et al., 2015; Ryoo et al., 2008).

• One t0 per work item: assigning a different t0, of the same gather, per work item would allow the
device to store only one (or a few) gather at the same time. Also, since several work items may access
the same or nearby input data items, there may be an increased locality on spatial and temporal data
access that could improve performance on computing devices that rely on cache memories.

• One semblance per work item: assigning a different semblance computation per work item would
also allow the device to store only one (or a few) gather at a time and even increase performance
on computing devices that rely on cache memories, however, after computing the semblance, the
maximum semblance value would have to be computed, which would require different work items
to synchronize. Since synchronization methods tend to impose significant overheads on GPUs, this
options is likely to be worse than the previous ones.

Analyzing the typicall memory size of GPUs (1− 6 GBytes), and the typicall CMP gather sizes (∼500
KB), we concluded that several gathers can be stored at the GPU memory without a problem. Also,



Annual WIT report 2015 55

considering that several GPUs require a regular memory access pattern to maximize memory bandwidth,
we decided to implement the first approach: one gather per work item.

Shaping the input data for coalesced memory accesses

The host program reads the seismic data from the input file and groups them into CMP gathers to transfer
to the GPU memory. The gathers are transfered in sets of size NG. Since each gather have multiple traces
and each trace has multiple samples, the data has three dimensions. In this sense, the host program builds
cubes of data that are transfered to the OpenCL device to be computed. Figure 2 illustrates a cube of data
with 6 gathers, each one containing 9 seismic traces with 9 samples each.

W5

traces

sa
m

p
le

s

gathers

W0
W1

W2
W3

W4

Figure 2: Cube of data where each axis represents the gathers, traces and time samples.

Work items may execute in lock step, which would cause different processing elements to access the
memory at the same time. If these accesses are performed on consecutive addresses, then the GPU may
issue a single, wide, memory access, which can improve the memory access bandwidth.

Since we assign a different gather for each work item, in order to promote the coalesced memory access,
we interleaved the gathers data on the device memory. In this way, when accessing a given piece of data,
say the first sample of the second trace of the gather, all the work items access consecutive elements on the
GPU memory, each one belonging to a different gather. As a result, the data in our cube is organized so
that the ith sample from the jth trace of all gathers are placed continuously on memory. The black circles
in Figure 2 illustrate the different work items (W0, W1, ... W5) accessing the first sample of the third trace
on different gathers in parallel.

The semblance computation

The semblance (e.g., Neidell and Taner, 1971) computation is performed over a traveltime curve that
intersects seismic traces. This curve is defined by one parameter that corresponds to the NMO velocity in
the CMP method. Since the traces are represented by discrete samples, the the point where the traveltime
curve intersects a trace may not lie on an actual sample of the dataset. As a consequence, interpolation
using the nearby samples is performed to estimate the seismic amplitude at that point. Figure 3 illustrates
the traveltime curve on a CMP gather and an intersection point that lies between the seismic trace discrete
samples, represented as black circles.

Listing 2 provides a pseudo-code that illustrates the semblance computation process. For a given gather
g, a time sample t0, and a velocity V, the code computes for each trace (tr) the time (t) in which the curve
intersects the trace and the amplitude (a) of the seismic trace in this time. We use a linear interpolation
to compute the amplitude. The amplitude and its square are accumulated on the num and den variables in
order to compute the semblance value.



56 Annual WIT report 2015

sample

traces

sa
m

p
le

s

Traveltime
curve

Intersection
point

Discrete

Figure 3: Traveltime curve and seismic trace intersections on a CMP gather.

Listing 2 Pseudo-code for the semblance computation

procedure: semblance (V, t0, g)

num = 0;

den = 0;

for each trace tr in g; do
t = time (t0, V, h(tr));
a = interpol_linear (t, tr);
num = num + a;
den = den + (a×a);

end for
return (num×num) / den;

end procedure

In order to improve the signal-to-noise ratio, the semblance may be extended to also evaluate multiple
amplitudes per trace. This approach involves the inspection of the amplitudes of neighboring time samples
in each intersection point, which is defined by a window W. Listing 3 provides a pseudo-code for the
semblance computation extended to analyze neighboring time samples. In this case, the program inspects
W amplitudes per seismic trace when computing the semblance.

The amount of data read and computations performed by the semblance operation is highly dependent
on F and W , where F is the gather fold and W is the semblance window size. For example, computing
the semblance operation on a gather that contains 20 traces may be twice as expensive than computing
the same operation on a gather with only 10 traces. In fact, we conjecture that the performance is highly
dependent on the number of interpolations computed. In this sense, in order to factor these differences when
comparing the performance of semblance operations on different datasets we propose using the following
metric: SemblanceTraces/s. The SemblanceTraces/s metric is computed as:

SemblanceTrace/s =

N∑
i=1

interpolations(Si)/time (1)

where:

• N is the total number of semblance operations computed;

• Si is the ith semblance operation being computed;



Annual WIT report 2015 57

Listing 3 Pseudo-code for the extended semblance computation

procedure: semblance (V, t0, g)

num[0..W] = 0;

den[0..W] = 0;

for each trace tr in g; do
t = time (t0, V, h(tr));
for i in 0..W-1; do

a = interpol_linear (t + (i-W/2), tr);
num[i] = num[i] + a;
den[i] = den[i] + (a×a);

end for
end for
NUM = 0;

DEN = 0;

for i in 0..W-1; do
NUM = NUM + (num[i]×num[i]);
DEN = DEN + den[i];

end for
return (NUM×NUM) / DEN;

end procedure

• interpolations(Si) is the number of interpolations performed by the ith semblance operation. This
is a function of F and W ;

• time is the execution time it took to compute the N semblance operations.

We expect this metric to provide similar values on the same system when processing different datasets,
which is very helpfull to estimate the time it may take to process a different dataset. In fact, as we show in
our experimental results, this metric provides similar values when processing different datasets.

EXPERIMENTAL RESULTS

We compare the performance of two different programs:

• CMP-OpenCL: CMP method parallelized with OpenCL – This program can be executed both on
multicore CPUs and hardware accelerators, such as GPUs.

• CMP-OpenMP: CMP method parallelized with OpenMP – This program can only be executed on
CPUs.

Two distinct seismic datasets were used in our experiments: one synthetic and the other one from a real
data acquisition. The synthetic data has 428 gathers, most of them containing 15 seismic traces. Each trace
contains 2502 samples and the search space for the NMO velocity contains 101 values. The semblance
computations are performed on a window of size 3 and the total amount of SemblanceTraces computed
is 4 548 636 000. The real dataset is that of a single seismic line of the Jequitinhonha basin, in Brazil,
and contains 201 gathers and an average fold of 29.5. Each trace contains 1701 samples and the search
space for the NMO velocity contains also 101 values. The semblance computations are also performed
on a window of size 3 and the total amount of semblance SemblanceTraces computed is 6 261 208 290.
Table 1 summarizes the properties of these seismic datasets.



58 Annual WIT report 2015

Input name # of CMPs Search Average Samples Semblance # semblance
space sz. fold per trace window sz. × trace

Simple-synthetic 428 101 14.01 2502 3 4 548 636 000
Jequitinhonha 201 101 29.5 1701 3 6 261 208 290

Table 1: Input datasets used in our experiments.

The performance experiments were conducted on four computing systems, containing six distinct
OpenCL computing devices: two distinct multicore CPUs, three GPUs and a Intel Xeon PHI. Table 2
lists the processor model, memory characteristics, the operating system, the compiler and runtime systems
used in each one of the computing system. It also lists the hardware accelerators that are installed on each
one of these systems. When executing our OpenCL program, the host part is always executed on the system
CPU. The OpenCL kernel may be executed on the hardware accelerator or on the host multicore CPU.

System 1 System 2 System 3 System 4

Host

Processor(s) 2 x Intel Xeon 1 x Intel Xeon
E5-2670 E5-2630 v2

Memory DDR3 64 GB DDR3 32 GB
OS Red Hat 4.4.7-16 Ubuntu 14.04 - LTS 64 bits
Compiler gcc 4.4.7 gcc 4.8.4 nvcc V7.0.27
Runtime Xeon Phi AMD OpenCL OpenCL 1.1 CUDA 7.0.28
Drivers Driver 3.1.2-1 2.0 Driver (14.41) Driver(346.46)

Accelerator

Model Xeon Phi 3120 Radeon R9 290x GTX 770 GTX Titan
Mem. Band. 240 GB/s 320 GB/s 224.3 GB/s 288.4 GB/s
Cores 57 cores 2816 cores 1536 cores 2688 cores
Frequency 1.1 GHz 1.04 GHz 1.05 GHz 0.84 GHz

Table 2: Computing systems used in our experiments.

Performance of CMP-OpenMP vs CMP-OpenCL

One of the factors that may affect a performance of an OpenCL program on multicore CPUs is the quality of
the code generated by the runtime compiler. Hence, in order to establish a fair baseline for our comparisons,
we check whether our CMP-OpenCL program is performing well on the multicore CPUs by comparing
its performance with the performance of the CMP-OpenMP program, an OpenMP based version that was
tuned on the host processor of the dual processor node.

Figure 4 shows the performance results of the CMP-OpenMP and the CMP-OpenCL programs when
processing the Simple-synthetic and the Jequitinhonha datasets on two different computing systems: a
single processor node and a dual processor node. The results indicate that the CMP-OpenCL program is
2.1 to 2.8 times faster than the CMP-OpenMP program.

Performance of CMP-OpenCL across devices

In this experiment we compare the performance of the CMP-OpenCL program across different OpenCL
computing devices. Since we used OpenCL, there was no modification required to run the code on these
devices. Figure 5 shows the performance of the program on six different computing devices: two multicore
CPUs, three GPUs and one Xeon PHI.

Notice that the Radeon R9 290x GPU executes roughly 21 billion SemblanceTraces per second and
is 6.4 to 15.6 times faster than the CPU devices when running the CMP-OpenCL program. If we compare
its performance with the one achieved by the CMP-OpenMP program on the CPUs the performance gains
are even higher, between 14.3 to 43.3 times.



Annual WIT report 2015 59

Figure 4: Performance of semblance compuations using OpenCL and OpenMP on multicore CPUs.

Figure 5: Performance of semblance computation using OpenCL on different CPUs and hardware accel-
erators.

Performance reporting discussion

Ni and Yang (2012) reported gains ranging from 10 to 220 times (35 times for real data) when accelerating
the 3D-CRS-OIS method on a GPU. They compared the performance of the CUDA code running on a
GPU against the performance of a sequential code running in only one of the cores of an 8-core CPU.
Marchetti et al. (2011) reported that their GPU code is 60 times faster than their CPU code when executing
the CRS method on a 3GB seismic data, however, it is not clear whether all the cores or just a single core
of the CPU was used. Moreover, the CPU model was not reported. Marchetti et al. (2010) also reported
very expressive performance gains (200-230 times) when using FPGAs to accelerate the semblance and
traveltime computations, however, it is also not clear whether all the cores of the CPU were used measuring
the baseline.

Clearly, the performance gains can be highly affected by the performance of the baseline system. For
example, if Ni and Yang (2012) had optimized their CPU code to use the 8 CPU cores, the performance
gain using the GPU could have dropped from 35 to 4.4 times when processing the real data. The same is
true for Marchetti et al. (2011). In this sense, in order to allow an easier comparison, we propose the use of
SemblanceTraces/smetric when accelerating seismic processing methods that rely mostly on semblance
computations. This metric will allow us to perform a direct comparison between acceleration techniques
and will allow users to estimate how much it would take to process their own methods if they use the
proposed acceleration technique.

CONCLUSIONS

In this work we investigated the potentials of using OpenCL to accelerate the computation of semblance
operations on heterogeneous devices, including two multicore CPUs, three different GPUs and a Xeon PHI.



60 Annual WIT report 2015

Our experiments indicate that the OpenCL program can be executed on these different devices without
changes and the performance results indicate that GPUs are promising computing devices to accelerate
seismic processing methods that rely on semblance computations.

Future work includes accelerating the CRS method using OpenCL, profiling and applying other op-
timizations to the OpenCL programs, such as using local storage (Ryoo et al., 2008), and experimenting
with different OpenCL compatible hardware accelerators, such as FPGAs (Singh et al., 2013; Putnam et al.,
2014).

ACKNOWLEDGMENTS

This work was kindly supported by the National Council for Scientific and Technological Development
(CNPq-Brazil), the Coordination for the Improvement of Higher Education Personnel (CAPES), the Na-
tional Institute of Science and Technology of Petroleum Geophysics (ICTP-GP-Brazil), the Center for
Computational Engineering and Sciences (Fapesp/Cepid # 2013/08293-7-Brazil) and the Brazilian Oil
Company - Petrobras (Cooperation term # 0050.0066919.11.9). We also thank Intel and AMD for provid-
ing the Intel Xeon PHI and GPUs. The authors finally acknowledge support of the sponsors of the Wave
Inversion Technology (WIT) Consortium.

REFERENCES

Fauzia, N., Pouchet, L.-N., and Sadayappan, P. (2015). Characterizing and enhancing global memory data
coalescing on gpus. In Proceedings of the 13th Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’15, pages 12–22, Washington, DC, USA. IEEE Computer Society.

Kaeli, D. R., Mistry, P., Schaa, D., and Zhang, D. P. (2015). Heterogeneous Computing with OpenCL 2.0.
Morgan Kaufmann, 3rd edition edition.

Marchetti, P., Oriato, D., Pell, O., Cristini, A., and Theis, D. (2010). Fast 3d zo crs stack–an fpga imple-
mentation of an optimization based on the simultaneous estimate of eight parameters. In 72nd EAGE
Conference and Exhibition incorporating SPE EUROPEC 2010.

Marchetti, P., Prandi, A., Stefanizzi, B., Chevanne, H., Bonomi, E., and Cristini, A. (2011). OpenCL imple-
mentation of the 3D CRS optimization algorithm, chapter 678, pages 3475–3479. Society of Exploration
Geophysicists.

Neidell, N. S. and Taner, M. T. (1971). Semblance and other coherency measures for multichannel data.
Geophysics, 36(3):482–497.

Ni, Y. and Yang, K. (2012). A GPU based 3D Common-Reflection-Surface stack algorithm with the output
imaging scheme (3d-crs-ois). In SEG Technical Program Expanded Abstracts, pages 1–5.

Putnam, A., Caulfield, A., Chung, E., Chiou, D., Constantinides, K., Demme, J., Esmaeilzadeh, H., Fowers,
J., Gopal, G. P., Gray, J., Haselman, M., Hauck, S., Heil, S., Hormati, A., Kim, J.-Y., Lanka, S., Larus, J.,
Peterson, E., Pope, S., Smith, A., Thong, J., Xiao, P. Y., and Burger, D. (2014). A reconfigurable fabric
for accelerating large-scale datacenter services. In 41st Annual International Symposium on Computer
Architecture (ISCA).

Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B., and Hwu, W.-m. W. (2008). Opti-
mization principles and application performance evaluation of a multithreaded gpu using cuda. In Pro-
ceedings of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’08, pages 73–82, New York, NY, USA. ACM.

Singh, D. P., Czajkowski, T. S., and Ling, A. (2013). Harnessing the power of fpgas using altera’s opencl
compiler. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA ’13, pages 5–6, New York, NY, USA. ACM.

Taner, M. T. and Kohler, F. (1969). Velocity spectra - Digital computer derivation and applications of
velocity functions. Geophysics, 34(6):859–881.



Annual WIT report 2015 61

The Khronos Group – Connecting Software to Silicon (Nov 2015). See https://www.khronos.org/.

Top 500 supercomputer sites (Nov 2015). See http://www.top500.org/.


