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ABSTRACT

We analyze the performance of a higher order accurate staggered viscoelastic time-domain Finite-
Difference method, in which the staggered Adams-Bashforth (ABS) third-order and fourth-order ac-
curate time integrators are used for temporal discretization. ABS is a multi-step method that uses
previously calculated wavefields to increase the order of accuracy in time. The analysis shows that
the numerical dispersion is much lower than that of the widely used second-order leapfrog method.
Numerical dissipation is introduced by the ABS method which is significantly smaller for fourth-order
than third-order accuarcy. In 1-D and 3-D simulation experiments we verify the convincing improve-
ments of simulation accuracy of the fourth-order ABS method. In a realistic elastic 3-D scenario the
computing time reduces by a factor of approximately 2.4, whereas the memory requirements increase
by approximately a factor of 2.2. The ABS method thus provides an alternative strategy to increase
the simulation accuracy in time by investing computer memory instead of computing time.

INTRODUCTION

Today, full wavefield seismic imaging and full waveform inversion require the efficient and accurate nu-
merical simulation of seismic waves through complex earth models. For this purpose higher-order Finite-
Difference (FD) methods are widely applied where the wave equation is discretized in both space and
time. For the spatial derivatives different methods are available. For the time discretization, however, the
second order FD leapfrog scheme is still common because of its easy implementation and no additional
requirements of computer memory. Unfortunately, second order time integration is often inefficient as it
requires a dense temporal sampling to achieve a sufficient accuracy. Higher order time stepping methods
are thus desirable to save computation time. For this reason new techniques have been proposed that allow
to increase the order of time discretization. They can be divided into low-storage methods and multi-step
methods. Low-storage methods increase the temporal order without significantly increasing the memory
requirements. Multi-step methods store the time history to increase the accuracy order.

An efficient and popular low-storage strategy today is the so-called Lax-Wendroff method which re-
places high-order temporal derivatives in the Taylor series expansion by spatial derivatives using the wave
equation (Dablain, 1986; Blanch and Robertsson, 1997; Schwartzkopff et al., 2004). However, in 2D and
3D media the Lax-Wendroff approach involves quite expensive calculations of high-order mixed spatial
derivatives and thus leads to an increase of floating point operations on extended spatial stencils. Recently,
Tan & Huang (2014) developed a shorter Lax-Wendroff-type stencil having only a few more grid points
and floating point operations than the standard stencil. Another low-storage approach to increase the tem-
poral accuracy is the predictor-corrector optimally accurate FD scheme of Geller & Takeuchi (1998). This
scheme is essentially equivalent to a Lax-Wendroff scheme with fourth-order accuracy in both space and
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time. Liu & Sen (2009) achieved higher order accuracy in time by minimizing the dispersion relations in
the joint time-space domain. Their scheme yields higher order accuracy in 2D along eight spatial directions
only. More recently, Liu & Sen (2013) improved this scheme to higher order accuracy for all spatial direc-
tion using a spatially extended rhombus-shaped stencil. Both the commonly applied Lax-Wendroff methods
(Dablain, 1986; Tan and Huang, 2014) and the joint time-space discretization of Liu & Sen (2013) require
spatially extended stencils which can lead to simulation errors in case of strong material discontinuities
(Tan and Huang, 2014).

A memory intensive strategy to increase the temporal accuracy are multi-step methods (Hairer et al.,
2006). In a multi-step method the history of the temporal evolution is stored to increase the order of
the time integration. The classical way are Runge-Kutta methods that yield better accuracy for long-time
simulations than the Lax-Wendroff schemes (Chen, 2007) but are limited to fourth order accuracy. Ghrist et
al. (2000) compare two other multi-step methods, the staggered Adams-Bashforth (ABS) and the Backward
Differentiation method (BDS) and show applications to the acoustic wave equation. Both have also been
applied to Maxwell’s equation for the 2-D TE mode (Xiao et al., 2007; Hwang and Ihm, 2006). These
investigations show that for hyperbolic wave equations the numerical dispersion of both methods is similar
but the stability restraint of the ABS method is much relaxed by approximately 33 per cent. Furthermore,
the BDS method is stable for wave equation simulations up to fourth order only, whereas the ABS method
is stable also for higher orders. The ABS method thus has considerable advantages compared to the BDS
method.

In this work we therefore further evaluate the implementation of the ABS-method into 3-D staggered-
grid viscoelastic FDTD schemes that are widely used for realistic and efficient seismic wavefield simula-
tions. The ABS method was chosen because of the following advantages. (1) It has a relatively large region
of stability. (2) The implementation is straightforward. (3) The time discretization is independent of the
used spatial discretization scheme. (4) The increase of accuracy must be paid by the storage of the time
evolution which is feasible today on modern parallel high performance computing (HPC) systems that are
equipped with large memory capacity.

In this paper we first illustrate the implementation of the ABS-method for the 1-D acoustic wave equa-
tion. We analyze the numerical properties of the 1-D implementation with respect to accuracy, numerical
dispersion and numerical dissipation. Afterwards we describe the implementation of the ABS-method for
3-D staggered grid velocity-stress time-domain viscoelastic simulation. We derive the stability limits and
discuss the accuracy and computational requirements for 3-D simulations.

THEORY

For the sake of simplicity we first illustrate the staggered Adams-Bashforth method (ABS-method) using
the 1-D acoustic wave equation in velocity-stress formulation

∂p(x, t)

∂t
= −π(x)

∂v(x, t)

∂x
∂v(x, t)

∂t
= −ρ−1(x)

∂p(x, t)

∂x
(1)

The wavefield variables are the pressure p(x, t) and the particle velocity v(x, t). The material is described
by the P-wave modulus π(x) and the mass density ρ(x). For simplicity we omit the temporal (t) and spatial
dependencies (x) in the following.

Using the conventional second order staggered grid approximation to the first order time derivative we
obtain

p|n+1/2 − p|n−1/2

4t
= −π ∂v

∂x

∣∣∣∣n + O(4t2)

v|n − v|n−1

4t
= −ρ−1 ∂p

∂x

∣∣∣∣(n−1/2)

+ O(4t2) (2)
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M a0 a1 a2 a3

2 1 0 0 0
3 25/24 -1/12 1/24 0
4 13/12 -5/24 1/6 -1/24

Table 1: Weights used for the summation of previous time levels in the Adams-Bashforth method (Ghrist
et al., 2000).

This results in the conventional explicit second order accurate time-stepping (leapfrog) scheme

p|n+1/2 = p|n−1/2 −4tπ ∂v
∂x

∣∣∣∣n + O(4t2)

v|n = v|n−1 −4tρ−1 ∂p

∂x

∣∣∣∣(n−1/2)

+ O(4t2) (3)

which requires no additional storage of the wavefield variables p and v.
With the ABS-method the order of the temporal integration can be increased by using previous time

levels of the right hand sides of equation 2 (Ghrist et al., 2000). The ABS-method thus requires the storage
of previous time levels of spatial derivatives of the pressure p and particle velocity v. The time update for
the ABS-method thus reads

p|n+1/2 = p|n−1/2 −4tπ
M−1∑
k=0

ak
∂v

∂x

∣∣∣∣n−k + O(4tM )

v|n = v|n−1 −4tρ−1
M−1∑
k=0

ak
∂p

∂x

∣∣∣∣(n−1/2−k)

+ O(4tM ) (4)

The weights for the time accuracy orders M = 2, 3, 4 are given in Table 1.

1-D SIMULATIONS

Seismograms

We first compare seismograms calculated with the 1-D ABS-method using equations 4 for different orders
of accuracy in time (M ). We use a 1-D homogeneous acoustic medium with a wave velocity of c =
3500 m/s and constant density of ρ = 2000 kg/m3 . The source signal is a Ricker signal with a center
frequency of 600 Hz. We choose a large source-receiver distance of 120 dominant wavelength to emphasize
the effects of numerical dispersion and numerical dissipation in the synthetic seismograms. The spatial
derivatives are computed with high accuracy using a centered staggered FD stencil of 8th order accuracy.
The spatial grid spacing is held constant at4x = 0.4 m corresponding to approximately 14 grid points per
dominant wavelength. Discrepancies to the analytical solution (time-shifted Ricker signal) are thus mainly
caused by the chosen time step interval 4t and the order of the temporal discretization (M = 2, 3, 4).
The numerical results for Courant numbers r = c4t/4x = 0.4, 0.2, 0.1 and temporal orders of accuracy
M = 2, 3, 4 are compared with the analytical solution in Figure 1. For a large Courant number of r = 0.4
(corresponding to a large time step interval) and second order approximation of the time derivative (M = 2)
we can observe a large time dispersion error causing a leading phase with high amplitude (Figure 1, top-
left). Figure 1 compares two ways to reduce this time discretization error. The conventional way is to
stay with the given temporal order of accuracy (typically M = 2) and then reduce the time step interval,
i.e. Courant number. The resulting waveforms are shown in the rows of Figure 1. Reducing the Courant
number (time step interval) will increase the computation time proportional to 1/r. The alternative way
proposed in this study is to increase the order of the temporal discretization with the ABS-method which
requires to store M − 1 previously calculated spatial derivates of wavefields. The resulting waveforms are
shown in the columns of Figure 1.
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Figure 1: Seismograms (red lines) calculated for the 1-D case for different Courant numbers r and orders
of accuracyM . M = 2 corresponds to the classical second order leapfrog scheme (equations 2). M = 3, 4
correspond to the multi-step ABS method (equations 4). The analytical solution is plotted as a black line.
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Accuracy in 1-D

In Figure 1 we see that the simulation accuracy increases with decreasing Courant number and increasing
order of accuracy. In order to quantify the corresponding numerical simulation error we calculated the
normalized L2-misfit between the numerical and analytical solution for different Courant numbers and
orders of accuracy M = 2, 3, 4. In Figure 2 we plot the normalized L2-misfit over the Courant number. As
a secondary axis we plot the number of time steps NT = T/4t = Tc/(r4x) that are required to yield
the same propagation time of waves of T = 0.24 s. We can observe the expected higher order reduction
of the simulation accuracy which reduces proportional to 4tM or NT−M . For a given accuracy level of
E = 0.1% (horizontal line in Figure 2) the required numbers of time steps are 39233, 13938, and 8704 for
M = 2,M = 3 and M = 4, respectively. The number of time steps thus reduces to 36% and 22% when
we increase the temporal order from M = 2 to 3 and 4, respectively (Figure 2). The ABS methods thus
allows to significantly decrease the number of time steps to achieve a certain level of accuracy due to the
higher order approximation of the time derivatives. This comes with an increase of the number of floating
point operations per time step and additional memory requirements to store spatial derivative wave fields
at previous time levels. The balance between these factors and the overall improvement of the performance
will be discussed for realistic 3-D elastic simulations.

Numerical dispersion in 1-D

We performed a classical dispersion analysis by inserting a plain wave into the discrete scheme 4. The
plain wave is described by

p = p0 · ei(kx+ωt) and v = v0 · ei(kx+ωt) (5)

which can be expressed in a discrete way as

pnj = p0 · ei(kj∆x+ωn∆t) and vnj = v0 · ei(kj∆x+ωn∆t) (6)

p0 and v0 are the amplitudes of the pressure p and particle velocity v. k denotes the wave number and ω is
the circular frequency. j and n are the spatial and temporal indices, respectively. For the spatial derivatives
in the ABS-method (equation 4) we use centered staggered grid approximations of the accuracy order N

∂v

∂x

∣∣∣∣n
j

≈
N/2∑
n=1

βn

(
vnj+(n−1/2) − v

n
j−(n−1/2)

)
(7)

where βn are the FD weights than can be obtained by a Taylor series expansion. Inserting the discrete plane
wave 6 into equation 7 yields

∂v

∂x

∣∣∣∣n
j

≈
2ivoz

n
j

4x

N/2∑
n=1

βn sin

(
(2n− 1)k4x

2

)
=

2ivoz
n
j

4x
D(k4x) (8)

where we use the abbreviation znj = e(kj∆x+ωn∆t). The dispersion introduced by the spatial discretization
is summarized in the factor

D(k4x) =

N/2∑
n=1

βn sin

(
(2n− 1)k4x

2

)
(9)

which we use in the following.
We now insert the discrete plane wave (eq. 6) into the update equations 4. The following dispersion

relation ist obtained

sin(ω4t/2) = rD(k4x)

M−1∑
l=0

ale
−iωl4t (10)

from which we take the real part

sin(ω4t/2) = rD(k4x)

M−1∑
l=0

al cos (ωl4t) (11)
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Figure 2: Relative error of 1-D simulations (Figure 1). The normalized L2 norm is plotted over the Courant
number (bottom axis) and the number of time steps NT (top axis) required to yield the same propagation
time. The temporal accuracy orders are M = 2, 3, 4. The spatial accuracy is fixed at order N = 8. The
number of time steps to achieve a given accuracy of E = 0.01% (horizontal line) reduce to 36% and 22%
for the temporal orders M = 3 and M = 4, respectively. For small Courant numbers (small time step
intervals) the error converges to the fixed error of the spatial discretization.
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Figure 3: Numerical dispersion (left) and numerical dissipation (right) for the temporal ordersM = 2, 3, 4
as a function of Courant number r. The curves are plotted up to the corresponding stability limits. The
accuracy order of the staggered grid spatial derivatives is N = 8 (equation 7). The dominant wavelength
is discretized with approximately 14 grid points.

to calculate the ratio between the numerical wave velocity cfd = ω
k and the model velocity c

cfd

c
=

ω
k

c
=

ω
k

r·∆x
∆t

=
ω∆t

k ·∆x · r
(12)

Substitution equation 12 into equation 11 yields the implicit dispersion relation

sin(φ) = rD(k4x)

M−1∑
l=0

al cos (φ) with φ =
1

2

cfd

c
kr4x (13)

Here the spatial dispersion factor D(k4x) can be nicely separated. It is thus straightforward to calculate
the numerical dispersion of the ABS-method for other methods of approximations of spatial derivatives.

The relative numerical propagation velocity cfd
c −1 as a function of the Courant number r is obtained by

numerically solving equation 13. The results are shown in Figure 3 (right). We see a significant reduction
of the numerical time dispersion error when increasing the temporal order of accuracy from M = 2 to 3
or 4. The magnitude of numerical dispersion of orders M = 3 and M = 4 is comparable. For M = 3 we
obtain faster numerical velocities, whereas the numerical velocities for M = 4 are smaller than the model
velocity c.

Numerical dissipation in 1-D

In contrast to the common leapfrog scheme (M = 2), the ABS method (M > 2) exhibits numerical
amplitude loss with propagation distance called numerical dissipation. In order to quantify the numerical
dissipation we introduce an amplification factor g (Fei and Xiaohong, 2006).

pnj = p0 · gn · ei·j·k∆x , (14)

vnj = v0 · gn · ei·j·k∆x = − c
π
· p0 · gn · ei·j·k∆x (15)

If we insert this ansatz into the staggered grid approximation of spatial derivatives (equation 7) we obtain
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∂v

∂x

∣∣∣∣n
j

≈ 2ivoe
ikj4x

4x
D(k4x)gn (16)

When inserting equations 16 and 15 into the update scheme of the pressure (equation 4) we obtain the
following characteristic polynomial in g

0 = g
1
2 − g− 1

2 − 2irD(k4x)

M−1∑
l=0

alg
−l (17)

We used the modulus of the smallest root of this characteristic polynomial to calculate the amplitude of
wavefield after 2000 time steps as a function of the Courant number r. The results are shown in Figure 3
(left). The leapfrog scheme (M = 2) is free of dissipation. The ABS-method of temporal order M = 3
suffers from quite significant dissipation, whereas the dissipation caused by the fourth order approximation
(M = 4) is much smaller. The strong dissipation for M = 3 is also clearly visible in Figure 1 for a
large Courant number of r = 0.4. M = 3 thus may lead to an underestimation of simulated amplitudes
especially for long times of wave propagation.

3-D IMPLEMENTATION

3-D viscoelastic wave equations

We implemented the ABS-method into a 3-D viscoelastic staggered grid velocity-stress time-domain
Finite-Difference (FDTD) simulation code (Bohlen, 2002). The underlying first order system of partial
differential equations consists of the the stress-strain relation for a generalized standard linear solid

σ̇ij = (π (1 + Lτp)− 2µ (1 + Lτs))T

+2µ (1 + Lτs)
∂vi
∂xj

+

L∑
l=1

rijl if i = j ,

σ̇ij = µ (1 + Lτs) ˙εij +

L∑
l=1

rijl if i 6= j , (18)

the equations for the L memory variables (l = 1, ..., L)

ṙijl = − 1

τσl

{
(πτp − 2µτs)T + 2

∂vi
∂xj

µτs + rijl

}
if i = j ,

ṙijl = − 1

τσl
{µτs ˙εij + rijl} if i 6= j , (19)

and the equations of momentum conservation

%
∂vi
∂t

=
∂σij
∂xj

+ fi . (20)

where ˙εij =
(
∂vi
∂xj

+
∂vj
∂xi

)
denotes the first time derivative of the deformation tensor and T = trace { ˙εij}

the cubic dilatation. The meaning of the remaining symbols is as follows:
σij denotes the ijth component of the stress tensor (i,j = 1, 2, 3),
vi denote the components of the particle velocities,
xi indicate the three spatial directions (x,y,z),
rijl are the L memory variables (l = 1,...,L),
fi denotes the components of external body force,
τσl are the L stress relaxation times for both P- and S-waves,
τp, τs define the level of attenuation for P- and S-waves, respectively,
% is the mass density,
π and µ are the moduli for P- and S-waves, respectively.

A derivation of these equations can be found for example in Robertsson et al. (1994). Following Blanch
et al. (1995), we use the variable τ in the wave equation formulation.
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3-D scheme

As described in the theory section the ABS-method is essentially a weighted summation over previous time
levels of each right hand side (RHS) of equations 18, 19, and 20. The method is thus independent of the
numerical procedure used to calculate spatial derivatives. In the following we therefore denote the time
discretization only. We discretize the time evolution on a staggered grid where full time levels are denoted
by n and intermediate time levels by n± 1/2.

If we apply the staggered time discretization and take weighted summations of each RHS of the form∑M−1
k=0 ak(RHS)|n−k we obtain the following explicit velocity stress update scheme that has a time accu-

racy of the order M .

σij |n+1/2 = σij |n−1/2

+4t (π (1 + Lτp)− 2µ (1 + Lτs))

M−1∑
k=0

akT |n−k

+24tµ (1 + Lτs)

M−1∑
k=0

ak
∂vi
∂xj

∣∣n−k
+
4t
2

M−1∑
k=0

ak

L∑
l=1

(
rijl|n+1/2−k + rijl|n−1/2−k

)
if i = j ,

σij |n+1/2 = σij |n−1/2 +4tµ (1 + Lτs)

M−1∑
k=0

ak ˙εij |n−k

+
4t
2

M−1∑
k=0

ak

L∑
l=1

(
rijl|n+1/2−k + rijl|n−1/2−k

)
if i 6= j , (21)

rijl|n+1/2 =

(
1 +

a04t
2τσl

)−1
[
−4t
τσl

(πτp − 2µτs)

M−1∑
k=0

akT |n−k

+
4t2µτs

τσl

M−1∑
k=0

ak
∂vi
∂xj

∣∣n−k
+

(
1− a04t

2τσl

)
rijl|n−1/2

− 4t
2τσl

M−1∑
k=1

ak

L∑
l=1

(
rijl|n+1/2−k + rijl|n−1/2−k

)]
if i = j ,

rijl|n+1/2 =

(
1 +

a04t
2τσl

)−1
[
−4t
τσl

µτs
M−1∑
k=0

ak ˙εij |n−k

+

(
1− a04t

2τσl

)
rijl|n−1/2

− 4t
2τσl

M−1∑
k=1

ak

L∑
l=1

(
rijl|n+1/2−k + rijl|n−1/2−k

)]
if i 6= j , (22)
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vi|n+1 = vi|n +
4t
%

M−1∑
k=0

ak
∂σij
∂xj

∣∣∣n+1/2−k (23)

3-D stability analysis

We performed the von Neumann stability analysis to find the stability limits for the viscoelastic update
scheme presented in equations 21-23. In the stability analysis we use the update equation for the x-
component of particle velocity only. Numerical simulations, however, show that the obtained stability
limits hold also for the full 3-D elastic update scheme.

If we insert the discrete eigenmodes

vx|n = vx0 · gn · ei(kxl4x+kym4y+kzp4z)

σxi|n = σxi0 · gn · ei(kxl4x+kym4y+kzp4z), i = x, y, z (24)

into the update equation for the horizontal particle velocity

vx|n+1 = vi|n +
4t
%

M−1∑
k=0

ak
∂σxj
∂xj

∣∣∣n+1/2−k (25)

we obtain the following polynomial for the amplification factor g

g1 = g0 − 2i
√

3 ·D(k4h) · r
M−1∑
k=0

akg
1/2−k (26)

In the derivation of equation 26 we assumed an equidistant grid with spacing4h = 4x = 4y = 4z. We
further assumed that the waves propagate in an homogeneous medium (% = const, c = const) along the
diagonals of each grid cell. We can thus write for the corresponding wave number k =

√
k2
x + k2

y + k2
z =

√
3kx. The amplitudes of the inserted eigenmodes are related via %c

√
3vx0 = σxx0 + σxy0 + σxz0. This

relation is obtained by inserting a plane wave into the equation of motion. The dispersion due to the spatial
discretization is hidden in the factor D(k4h). Rearranging equation 26 to the Courant number r yields

r =
−i
(
g1 − g0

)
2 ·
√

3 ·D(k4h) ·
∑M−1
k=0 ak · g

1
2−k

(27)

The criterium for stability is that the inserted eigenmodes are bound. This is fulfilled if |g| ≤ 1.
This means that roots of the characteristic polynominal must lie inside or on the unity circle eiΘ (Fei and
Xiaohong, 2006). Courant numbers rmax for which g = eiΘ thus define the stability limits.

rmax = MAX

∣∣∣∣∣ −i
(
ei·1·Θ − e−i·0·Θ

)
2 ·
√

3 ·D(π) ·
∑M−1
k=0 ak · ei·Θ·(

1
2−k)

∣∣∣∣∣ (28)

For the spatial dispersion factor we insert the dispersion D(π) at the Nyquist wave number k4h = π.
We assumed symmetric staggered Taylor series approximation of the order N for the spatial derivatives
(equation 7). In this case the factor becomes D(π) =

∑N/2
n=1 βn. We solved equation 28 numerically.

The obtained stability limits rmax are listed in table 2 for different orders of accuracy used for the spatial
and temporal approximations. The stability limits presented in Table 2 have been verified by 3-D elastic
simulations. With increasing spatial and temporal order rmax is decreasing, i.e. the region of stability is
getting more restricted and smaller time step intervals are required for stable simulations.
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M = 2 M = 3 M = 4
N = 2 0.577 0.494 0.384
N = 4 0.494 0.424 0.329
N = 6 0.464 0.398 0.309
N = 8 0.448 0.384 0.299
N = 10 0.438 0.375 0.292

Table 2: Stability limits for 3-D elastic/viscoelastic FDTD simulations using equations 21-23. The max-
imum Courant-Friedrichs-Lewy number rmax (equation 28) is given for different accuracy orders of the
temporal (M ) and spatial (N ) approximations.

Accuracy in 3-D

We analyzed the accuracy of the 3-D elastic update scheme which is obtained by setting L = 0 in the
corresponding viscoelastic equations 21-23. We used the same set-up as in the accuracy analysis for the
1-D case presented before. We compared the synthetic seismograms with an analytical solution for an
explosive point source in a homogeneous full space. The elastic model parameters are vp = 3500 m/s and
vs = 2000 m/s for the P- and S-velocities, respectively, and % = 2000 kg/m3 for the density. The explosive
point source generates a Ricker signal with a dominant frequency of 600 Hz. We analyze the accuracy of
the direct P-wave in a distance of 180 m corresponding to 30 dominant wavelength. The size of the model
grid is 800x400x400 grid points. The direct P-wave is spatially sampled with approximately 14 grid points
per dominant wavelength. The influence of numerical dispersion due to the discretization in space is small
because of the chosen high spatial accuracy order of N = 8. The simulations are performed on 80 cores
on a small-scale shared memory cluster with the software SOFI3D (Bohlen, 2002).

As a measure of accuracy we again use the normalized L2-norm between the numerical and analytical
seismograms which only contain the direct P-wave. The results are shown in Figure 4 (left). The L2-error
reduces with increasing number of time steps NT = T/4t because of the decreasing time step interval
4t. (The wave propagation time T = 0.07 s is held constant). At higher orders of the time accuracy (M )
the error reduces more rapidly proportional to4tM . The observed overall behavior of the convergence of
accuracy in the 3-D elastic case (Figure 4, left) is quite similar to the convergence obtained for the 1-D
scheme shown in Figure 2. This indicates that the numerical dispersion and dissipation properties derived
for the 1-D case are also applicable to P-waves in 3-D media.

In Figure 4 (left) we see see that we can reduce the number of time steps that are required to achieve a
certain level of accuracy by increasing the temporal accuracy orderM . For a given error level ofE = 0.1%
the required number of time steps reduce to approximately 43% and 29% when increasing the temporal
order from M = 2 to M = 3 and M = 4, respectively. The corresponding run times decrease less
significant because the number of floating point operations also increase with M . The observed relation
between the number of time steps and the total run time is plotted in Figure 4 (right). The computational
requirements are also summarized in Table 3. We see that the corresponding run times reduce only to 58%
and 42% for M = 3 and M = 4, respectively, which is still a substantial improvement. The downside
of these significant run time savings is the boost of the memory requirements which increase to 174% and
220% (Table 3). Interestingly, the factor for the run time reduction and the increase factor for memory are
quite similar for the same accuracy order M .

CONCLUSIONS

The ABS method is an efficient way to increase the time accuracy of explicit time-stepping simulation
codes. The implementation is straightforward as it is independent of the method used to calculate the
spatial derivatives. The method is thus directly applicable also to e.g. pseudo-spectral or discontinuous
Galerkin methods which also apply explicit time stepping to advance in time. The ABS method does not
require much additional floating point operations but the additional storage of M −1 perviously calculated
time-levels of spatial derivative wave fields. It thus opens an alternative way to improve the time accuracy
by investing computer memory instead of computing time. This seems to be affordable on modern parallel
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M = 2 M = 3 M = 4
Run time 4349 s 2505 s 1833 s

100% 58% 42%

Time steps 8133 3505 2350
100% 43% 29%

Total memory 19.9 GB 34.7 GB 43.8 GB
100% 174% 220%

Error 0.10013% 0.10014% 0.10013%

Table 3: Comparison of computational demands for 3-D elastic FDTD simulations with the ABS time
integrator of accuracy M to achieve the same level of accuracy. The required run time and number of time
steps decrease with M . At the same time the total requirements of memory increase by approximately the
same factor due to the required storage of previously calculated wavefields.
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Figure 4: Left: Relative error of 3-D elastic simulations. The normalized L2 norm is plotted over the
Courant number (bottom axis) and the number of time steps NT (top axis). The temporal accuracy orders
are M = 2, 3, 4. The spatial accuracy is fixed at order N = 8. The number of time steps to achieve a
given accuracy of E = 0.1% (horizontal line) reduce to 43% and 29% for the temporal orders M = 3 and
M = 4, respectively. For large NT (small time step intervals) the error converges to the fixed error of the
spatial discretization. Right: The required run time of the program as a function of the Courant number
and number of time steps. The total run time to achieve an accuracy level of E = 0.1% reduces to 58%
and 42% for the temporal orders of M = 3 and M = 4, respectively.
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high performance computing systems that are equipped with large memory capacities which are generally
not fully exploited by the conventional low-storage second order leap-frog schemes.
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