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ABSTRACT

We derive qP and qS-wave eikonal equations and dispersions from the VTI wave equation and show
that they degenerate in the pseudo-acoustic approximation into a single dispersion relation. Therefore,
when using this dispersion relation for FD wave simulation, both events are generated. To avoid the oc-
currence of the pseudo-S wave, the qP-wave dispersion relation alone needs to be approximated. This
can be done with our without the pseudo-acoustic approximation. A Padé approximation with slightly
unconventional numbers for the Padé coefficients led to the best approximation. An implementation of
a low-rank approximation to this equation demonstrated that is can provide high-accuracy wavefields
even in strongly anisotropic inhomogeneous media.

INTRODUCTION

Reverse time migration using anisotropic velocity models has become the standard methodology for seis-
mic imaging in complex exploration settings. Although anisotropy is essentially an elastic property, migra-
tion with elastic wave equation is currently unfeasible. Even if one is able to successfully estimate elastic
migration velocity models, the computational cost to solve elastic wave equation and the lack of efficient
algorithms to compute wave mode separation are major obstacles to elastic imaging. In this scenario,
pseudo-acoustic approximation (Alkhalifah, 1998, 2000) is a very cost-effective approach to anisotropic
RTM. The pseudo-acoustic wave equation, proposed to model the evolution of qP modes, is derived under
the assumption that shear velocity is zero along the symmetry axis.

However, finite difference implementations of pseudo-acoustic wave equation can be plagued by phys-
ical instability and undesirable S-wave modes even in the weakly anisotropic regime. Several strategies
have been proposed to overcome these problems. Stability of space-time FD implementations of the
pseudo-acoustic wave equation can be only be assured if the Thomsen parameters satisfy the constraint
✏ � �, which is not always valid for shales (Thomsen, 1986). Fletcher et al. (2009) and Fowler et al. (2010)
showed that a stable approximation for qP modes in VTI media can be derived if one does not assume
the shear velocity along the symmetry axis to be zero. However, their proposed stable coupled system of
second-order differential equations still can produce undesirable S-wave modes.

The mitigation of the S-wave in FD implementations of the pseudo-acoustic approximation has been
an area of active research since the original work of Alkhalifah (1998). For example, Alkhalifah (2003)
indicated that if the source is in an isotropic region the S modes are not generated, although it still can be
produced at interfaces with sharp contrast. The work of Grechka et al. (2004) indicates that the instability
of pseudo-acoustic wave-equation is due to the coupling of the S mode to the qP mode. The S mode is not
stable when ✏ � �.

For this reason, one solution to obtain a stable qP wave equation is to factor out these spurious modes
from the pseudo-acoustic wave equation. The work of Klíe and Toro (2001) presents one such approxi-
mation for pure qP wave-equation under the assumption of weak anisotropy. Exact factorization results
in a pseudo-differential operator in the mixed space-wavenumber domain (Liu et al., 2009). Differential
equations in space-time for the pure qP mode can be derived through approximations to the exact pseudo-
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differential operator for qP evolution. Liu et al. (2009) proposed an algorithm to implement the exact
factorization of the pseudo-acoustic wave equation in the mixed space-wavenumber domain. Pestana et al.
(2012) derive an alternative approximation for the exact factorization which is valid for weak anisotropy
and can be implemented using finite difference in time and pseudo-spectral method in space. More so-
phisticated approximations of this factorization can be found in Du et al. (2014). Most recently, the exact
factorization of the pseudo-acoustic wave equation in the mixed space-wavenumber domain has been im-
plemented using the low-rank approximation (Sergey Fomel et al., 2013; Song and Alkhalifah, 2013; Wu
and Alkhalifah, 2014).

In this work, we derive a new pure qP-mode approximation free of physical instability and S modes and
valid even for strong anisotropic media. Numerical experiments in strong anisotropic media with positive
and negative anellipticity indicate the accuracy and stability of the implementation and demonstrate that
the S modes are eliminated from the proposed qP equation for weak and strong anisotropic models. We
also present simulations in a smoothly heterogeneous medium.

THEORY

Elastic wave propagation in a VTI medium

We start at the approximate elastic wave equation for VTI media with small �, as specified by Bloot et al.
(2013). It reads

⇢
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parameters and ✏, �, and � are the anisotropy parameters of Thomsen (1986). Here and in the following,
we make use of Einstein’s convention, i.e., repeated indices imply summations.

Note the derivation of equation (1) involved linearization in �. However, it can be easily generalized
to higher orders. For example, for an equation up to second order in �, it is sufficient to replace � by
�̂ = �

⇣

1� �+2µ
�+µ �

⌘

in equation (1).
In the above equation, we have used the notations

br =

✓

@

@x
1

,
@

@x
2

, 0

◆T

(2)

and

br? = J

br =

✓

@

@x
2

,� @

@x
1

, 0

◆T

, (3)

with

J =

0

@

0 1 0
�1 0 0
0 0 0

1

A . (4)

Moreover, the (i, j)-element of the Jacobian matrix ru is given by @ui/@xj .
Still according to Bloot et al. (2013), substitution of a zero-order ray ansatz (Červený, 1985; Červený,

V., 2001) of the form
u(x, y, z, t) = U(x, y, z)g(t� T (x, y, z)), (5)

with U denoting a vectorial amplitude and T denoting the traveltime, into equation (1) without a source
term yields the eigenvalue problem

�U = U, (6)
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where the eigenvalues are all ⇤ = 1. The Christoffel matrix � has the elements
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where the slowness vector p is defined as

p = rT = (p
1
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, p
3

) . (8)

Moreover, we have replaced the Lamé parameters by the vertical P and S wave velocities according to
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Bloot et al. (2013) calculated three eigenvalues ⇤ of � exactly to obtain
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Since equation (1) is already linearized in �, we can ignore the term proportional to �2 in the latter equation,
i.e.,
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For higher-order considerations, all terms in equation (13) must be taken into account.
The condition that the eigenvalues must be equal to one in order to correspond to a solution to equation

(6) translates thus into
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If higher orders in � are taken into account, a term ↵4p2
3

kbpk2�2 must be subtracted from B in equation
(18).

Equation (15) with a positive sign is the qP eikonal equation that describes the kinematic properties of
qP-wave propagation, and with a negative sign it is the qSV eikonal equation. Correspondingly, equation
(16) is the qSH eikonal equation.
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Pseudo-acoustic approximation

The pseudo-acoustic approximation (Alkhalifah, 1998, 2000) consists of setting the vertical S-wave veloc-
ity to zero in the equations governing wave propagation. With � = 0, equations (15) and (16) become
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⇤
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2
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For higher orders in �, again the term ↵4p2
3

kbpk2�2 must be subtracted from b in equation (23).
It follows immediately from equation (21) that qSH-wave propagation in impossible in a pseudo-

acoustic VTI medium. At first view, the situation of qP and qSV-wave propagation is less clear.
A simple analysis of equation (20) reveals that
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which is nothing else but the pseudo-acoustic qP dispersion relation of Alkhalifah (2000). Since in the
analysis leading to equation (24), we have taken into account both signs in front of the square root, this
equation is actually a dispersion relation for both, qP and qSV waves.

Pseudo-acoustic qP and qSV degeneration

Pseudo-acoustic qP and qSV waves degenerate into a single arrival, if

±
p

a2 � b = 1� a = 0 . (27)

Equation (27) immediately implies that a = b = 1, i.e.,
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b = 2↵4(✏� �)p2
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kbpk2 = 1 . (29)

These two equations define the propagation directions in which pseudo-acoustic qP and qSV waves travel
with the same velocity. Solving equation (28) for p2

3

and substituting the resulting expression in equation
(29) results in

(1 + 2✏)↵4kbpk4 � 2↵2kbpk2 + 1/(2✏� 2�) = 0 , (30)
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which can be solved for the horizontal slowness to yield
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. (31)

Note, however, that equations (28) and (29) cannot be satisfied simultaneously for any kind of VTI
medium. On the one hand, for equation (29) to be fulfilled, we need ✏ � � > 0. On the other hand, for
equation (31) to represent a real propagation direction, i.e., describing a transient, nonevanescent wave, the
term under the square root must be nonnegative. This condition translates to the requirement that ✏�� < 0,
unless � = �1/2, which is the smallest value � can take. In other words, as already observed by Grechka
et al. (2004), only for media with � = �1/2, the qP-qSV wave degeneration can be observed. Note that the
same analysis carried out up to second order in � yields for this condition � = 1�

p
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for this degeneration in more realistic media.
In a medium satisfying this condition, equation (31) reduces to
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The vertical slowness component is then given by substituting equation (32) into equation (28), which
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(see again Grechka et al., 2004).

Separate pseudo-acoustic qP and qSV propagation

From the above analysis, it is clear that to propagate qP waves or qSV waves only, we must not rely on the
common dispersion relation (26). The individual eikonal equations

qP eikonal equation: +
p

a2 � b = 1� a (35)

qSV eikonal equation: �
p

a2 � b = 1� a (36)

must be considered.
The positive sign in front of the square root in the qP eikonal equation (35) shows that this equation

can only be fulfilled if 1 � a > 0, i.e., a < 1. Moreover, since we are interest in describing transient
waves, we need the argument of the square-root to be positive, which translates into the condition b < a2.
Correspondingly, we see from the qSV eikonal equation (36) that we need a > 1 and b < a2. Moreover,
equation (36) cannot be fulfilled if b < 0, because in that case the left-hand side �

p
a2 � b < �a, while

the right-hand side 1� a > �a. Thus, for transient pseudo-acoustic qSV-wave propagation to be possible,
we need 0 < b < a2. The condition b > 0 directly requires ✏ � � > 0. Thus, the pseudo-acoustic qSV
wave can only be observed in VTI media with ✏ > � or ⌘ > 0.

This analysis demonstrates that the domains for qP and qSV waves are separated by
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↵2

2

�
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This equation represents an elliptical slowness surface with horizontal velocity ↵
p

(1 + 2✏)/2 and vertical
velocity ↵

p

1/2.

Approximations to the pseudo-acoustic qP eikonal equation

Because we are interested in describing the propagation of qP waves only, we need to transform equation
(35) into a differential equation, which can then be solved, e.g., by means of a finite-difference approxima-
tion. However, since equation (35) contains a square root, it cannot be used directly to derive an equivalent
wave equation. Therefore, we study a few possible approximations to the square root.
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Near vertical propagation The first idea is to approximate square root for near-vertical propagation, i.e.,
for kbpk2 ⌧ p2

3

. Writing the square root in equation (35) in terms of ratios kbpk2/p2
3

, we find up to first
order
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Substitution back in equation (35) yields an approximate elliptical eikonal equation

v2nkbpk2 + ↵2p2
3

= 1 . (39)

Alternative approximation Another promising idea is to approximate square root for b ⌧ a2, given that
it has to satisfy b < a2 anyway for the square root to remain real. We find
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This leads to the approximate eikonal equation
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The corresponding dispersion relation reads
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This equation has been previously derived, transformed into a differential equation and numerically tested
through an FD implementation by Klíe and Toro (2001).

Non-acoustic qP eikonal equation

The structure of the original qP eikonal equation

A
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is almost identical to its pseudo-acoustic version (35). Therefore, the same approximation that lead to
Klíe and Toro’s equation above can also be directly applied to equation (45). For B ⌧ A2

�, we find the
approximate square root
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which leads to the approximate eikonal equation
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or, using that A
+

+A� = 2a (compare equations (17) and (22)),
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The corresponding dispersion relation reads
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This equation has been derived in a different way by Pestana et al. (2012), based on a factorization of the
dispersion relation by Du et al. (2008).

Equation (50) has some properties that are worthwhile to note: It

• Reduces to Klíe and Toro’s equation for � = 0;

• Allows stable implementation for ⌘ < 0;

• Possesses only a weak dependence on �.

The latter observation is important because it means that the approximation can be expected to work even
if using a constant ratio between the vertical P and S-wave velocities, which helps to reduce the number of
required parameters to the same number used in the equation of Klíe and Toro (2001).

For values of B close to A2

�, this approximation may not have sufficient quality. A better approximation
of the square root can be achieved by means of a fractional Padé approximation, i.e.,
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where q
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and q
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are the Padé coefficients. The corresponding approximate eikonal equation reads
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Explicitly, it becomes
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which yields the dispersion relation


�

[(1 + 2⌘)v2n � �2]k2x + (↵2 � �2)k2z
�

2 � 8q
2

⌘v2n(↵
2 � �2)k2xk

2

z

�

�

(1 + 2⌘)v2nk
2

x + ↵2k2z � !2

�

= 4q
1

�

[(1 + 2⌘)v2n � �2]k2x + (↵2 � �2)k2z
�

⌘v2n(↵
2 � �2)k2xk

2

z . (55)

NUMERICAL EXAMPLES

To better understand the S-wave modes in the pseudo-acoustic approximation and to demonstrated the
quality of the approximations obtained from the above analysis, we have calculated a number of slowness
surfaces and modeled wave propagation for a set of differently anisotropic media.
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Figure 1: Pseudo-acoustic qP dispersion relation for Taylor Sandstone. The dispersion relation becomes
imaginary at the horizontal P-wave velocity, but turns real again for larger kx.
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Figure 2: Slowness and phase-velocity surfaces for Taylor Sandstone. The domains for qP and qSV
propagation are separated by the surface a = 1 (red line).

Pseudo-acoustic qP dispersion relation

The S-wave modes in the pseudo-acoustic approximation are best understood from an analysis of the
pseudo-acoustic qP dispersion relation. Figure 1 shows this relation for the parameters of Taylor Sand-
stone (Thomsen, 1986): ↵ = 3.368 km/s, � = 1.829 km/s, ✏ = 0.110, � = �0.035, i.e., ⌘ > 0 for this
material.

We observe in Figure 1 that the dispersion relation becomes imaginary at the horizontal P-wave velocity,
but turns real again for larger kx (Amazonas et al., 2010). These larger wavenumbers correspond to a
slower wave propagation, as we can see in Figure 2. Also shown in this Figure is the surface a = 1, which
separates the domains for qP and qSV-wave propagation.

qP relation for near-vertical propagation

Our first approximation for the pure qP dispersion relation is equation (39) for near-vertical propagation.
Figure 3 shows this approximation for four different materials of Thomsen (1986) with very different
anisotropies. These are Taylor Sandstone (↵ = 3.368 km/s, � = 1.829 km/s, ✏ = 0.110, � = �0.035),
Mesaverde Laminate Siltstone (↵ = 4.449 km/s, � = 2.585 km/s, ✏ = 0.091, � = 0.565), dry Green River
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Figure 3: Pseudo-acoustic slowness surface (magenta line) and its near-vertical approximation (dashed
blue line) for (a) Taylor Sandstone; (b) Mesaverde Laminated Siltstone; (c) dry Green River Shale; (d)
Biotite Crystal.

Shale (↵ = 3.292 km/s; � = 1.768 km/s, ✏ = 0.195, � = �0.220), and Biotite Crystal (↵ = 4.054 km/s,
� = 1.341 km/s, ✏ = 1.222, � = �0.388). We see that in all cases the approximation correctly describes
the slowness surface for propagation directions up to about 25-30�.

Small b approximation

Better approximation is achieved for all of these materials with the small b approximation of equation (44),
previously derived by Klíe and Toro (2001). A comparison to the true pseudo-acoustic slowness surface for
the four cited materials is shown in Figure 4. We see that for Taylor Sandstone (Figure 4a) and Mesaverde
Laminated Siltstone (Figure 4b) the small b approximation is virtually indistinguishable from the pseudo-
acoustic slowness surface. Even for the rather strongly anisotropic dry Green River Shale (Figure 4c), the
differences in the diagonal directions are quite small. Only for the extremely anisotropic Biotite Crystal
(Figure 4d), significant differences are visible.

Non-acoustic approximations

Next, we analyse the quality of the non-acoustic approximations of equations (50) and (55). Figure 5
compares the approximation of equation (50), previously derived by Pestana et al. (2012), to the true qP
slowness surface. The quality of the approximation is practically identical to the one of equation (44) of
Klíe and Toro (2001) to the pseudo-acoustic slowness surface.

Figure 6 demonstrates the improved quality of the Padé approximation. Even for the Biotite Crystal
(Figure 6d), no deviation between the true and approximated slowness surfaces is visible.

Here, we used the theoretical value of q
1

= 1/2 for the first Padé coefficient, but chose the second one
q
2

to be represented in dependence on ✏ and � according to the function q
2

= 3.75 + 2✏ � 3�/10 instead
of the conventional value q

2

= 1/4. Figure 7 shows the relative error of the slowness as a function of the
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Figure 4: Pseudo-acoustic slowness surface (magenta line) and its small b approximation (dashed blue
line) for (a) Taylor Sandstone; (b) Mesaverde Laminated Siltstone; (c) dry Green River Shale; (d) Biotite
Crystal.

propagation angle for the chosen materials for the theoretical and optimized value of q
2

. We see that the
error is visibly reduced when using the latter.

Propagation snapshots

Encouraged by these very good approximations of the slowness surface, we implemented a low-rank
scheme to simulate numerical wave propagation by means of these equations. Figure 8 compares the
snapshots in a homogeneous dry Green River Shale and Figure 9 in Biotite Crystal. In both figures, part (a)
shows the true wavefield with qP and qSV waves, part (b) shows the pseudo-acoustic wavefield with the
approximate qP wave and an incorrect qSV wave, and part (c) shows the non-acoustic Padé approximation
to the pure qP wave. We recognize that even for these media with very strong anisotropy, the non-acoustic
Padé approximation provides a very good approximation of the qP wavefront, while eliminating the S mode
entirely.

Inhomogeneous medium

Our final test simulated qP wave propagation in an inhomogeneous anisotropic TTI medium. The medium
parameters are: Vertical constant gradient in ↵ from 2.5 km/s at the top of the model to 4.5 m/s at the
bottom, homogeneous ✏ = 0.195 and � = �0.220 (taken from the dry Green River Shale), and symmetry
axis tilted by an angle of 30� from the vertical. Figure 10 compares the result of low-rank approximate
modeling of the exact qP dispersion relation (Figure 10a) with the result of approximate equation (55)
(Figure 10b). Even for this rather strong anisotropy and velocity gradient, we observe almost perfect
coincidence between the true and approximated wavefields.



268 Annual WIT report 2014

(a)

  0.2

  0.4

30

210

60

240

90

270

120

300

150

330

180 0

Non−acoustic Approximation

qP

nP

(b)

  0.2

  0.4

30

210

60

240

90

270

120

300

150

330

180 0

Non−acoustic Approximation

qP

nP

(c)

  0.2

  0.4

30

210

60

240

90

270

120

300

150

330

180 0

Non−acoustic Approximation

qP

nP

(d)

  0.2

  0.4

30

210

60

240

90

270

120

300

150

330

180 0

Non−acoustic Approximation

qP

nP

Figure 5: True qP slowness surface (red line) and its non-acoustic approximation (dashed blue line) for (a)
Taylor Sandstone; (b) Mesaverde Laminated Siltstone; (c) dry Green River Shale; (d) Biotite Crystal.
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Figure 6: True qP slowness surface (red line) and its non-acoustic Padé approximation (dashed blue line)
for (a) Taylor Sandstone; (b) Mesaverde Laminated Siltstone; (c) dry Green River Shale; (d) Biotite Crystal.
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Figure 7: Error of non-acoustic slowness surface for theoretical (blue line) and optimized value of q
2

(green line) for (a) Taylor Sandstone; (b) Mesaverde Laminated Siltstone; (c) dry Green River Shale; (d)
Biotite Crystal.
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Figure 8: Snapshots of wave propagation in a homogeneous dry Green River Shale. (a) Full tension
wavefield. (b) Pseudo-acoustic wavefield. (c) Non-acoustic Padé approximation.
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Figure 9: Snapshots of wave propagation in a homogeneous Biotite Crystal. (a) Full tension wavefield.
(b) Pseudo-acoustic wavefield. (c) Non-acoustic Padé approximation.
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Figure 10: Snapshots of wave propagation in an inhomogeneous anisotropic TTI model. (a) True qP
wavefield. (b) Non-acoustic Padé approximation.

CONCLUSIONS

We have studied elastic wave propagation in a VTI medium in order to better understand the coupling
of qP and qSV wave propagation in the pseudo-acoustic approximation. We have found that the pseudo-
acoustic qP dispersion relation of Alkhalifah (2000) is actually a coupled equation that describes both qP
and a qSV waves. The equation can be uncoupled if the individual eikonal equations are considered. Since
these equations contain square roots, they cannot be directly converted into differential approximations.
Even their implementation by means of a low-rank approximation might be impaired in heterogeneous and
strongly anisotropic media, as indicated by Wu and Alkhalifah (2014).

Therefore, we have discussed several approximations to the square root and found that some of them
have already been derived in the literature by decoupling Alkhalifah’s dispersion relation. A Padé ap-
proximation with slightly unconventional numbers for the Padé coefficients led to the best approxima-
tion. An implementation of a low-rank approximation to this equation demonstrated that is can provide
high-accuracy wavefields even in strongly anisotropic inhomogeneous media. Using the new equation, we
hope to explore in the near future its potential to provide an approximation that factors heterogeneity and
anisotropy even in strongly anisotropic media in the fashion used by Liu et al. (2009) and Pestana et al.
(2012) for weak anisotropy.
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