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ABSTRACT

Remigration trajectories describe the position of an image point in the image domain for different
source-receiver offsets as a function of the migration velocity. They can be used for prestack time-
migration velocity analysis by means of determining kinematic migration parameters, which in turn,
allow to locally correct the velocity model. The main advantage of this technique is that it takes
the reflection-point displacement in the midpoint direction into account, thus allowing for a moveout
correction for a single reflection point at all offsets of a common image gather (CIG). We have tested
the feasibility of the method on synthetic data from three simple models and the Marmousoft data.
Our tests show that the proposed tool increases the velocity-model resolution and provides a plausible
time-migrated image. The most effort was spent on the event picking, which is critical to the method.

INTRODUCTION

Because of its conceptual clarity and simplicity, residual-moveout (RMO) analysis has become one of the
favorite tools for migration velocity analysis (MVA) (Liu and Bleistein, 1995). Many algorithms are based
on the moveout formula for a horizontal reflector (Al-Yahya, 1989). Another MVA principle is to follow
migrated reflection events through the image domain under variation of the migration velocity (Fomel,
1994; Liptow and Hubral, 1995). It is well known that a single curve in a CMP stacked zero-offset section
leads to different reflector images when different migration velocities are used (Figure 1). That is, the
image can be thought of as “propagating” as a function of migration velocity (Fomel, 1994), forming a
so-called “image wave” (Hubral et al., 1996b).

Remigration, also known as residual migration or velocity continuation, can be seen as a process to
construct a seismic image for a refined velocity model from another one already available from a previous
migration for a different velocity model (Hubral et al., 1996a; Tygel et al., 1996). In an attempt to achieve
more realistic velocity models and migrated images, many residual (or cascaded) methods, as well as
remigration processes have been proposed (Rothman et al., 1985; Liptow and Hubral, 1995; Hubral et al.,
1996a; Schleicher et al., 1997; Adler, 2003; Fomel, 2003a,b; Schleicher et al., 2008a). Such image-wave
remigration procedures can even be extended to anisotropic media (Schleicher and Aleixo, 2007; Schlei-
cher et al., 2008b).

Velocity continuation can be also used on migrated diffractions (Sava et al., 2005; Fomel et al., 2007;
Novais et al., 2008) for MVA. Based on velocity continuation, Coimbra et al. (2011, 2012, 2013b) recently
introduced a new process of extracting velocity updates for depth migration from the moveout of incorrectly
migrated diffraction events by tracing so-called remigration trajectories to their focus point in post-stack
migrated images, and Coimbra et al. (2013a) extended their work to the prestack case. This technique
makes use of local-slope information extracted from the data with the help of stacks along local trial
surfaces. Coimbra et al. (2013c) and Santos et al. (2014) modified this remigration-trajectory MVA method



92 Annual WIT report 2014

(a) (b)

Figure 1: Sketch of: (a) A single reflection event in the time domain and (b) its time migrated images for
four different migration velocities.
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Figure 2: The residual moveout of a dipping reflector in a single CIG at xm after migration with a wrong
velocity is described by curve ⌧h (fine line). However, the image of a unique reflection point moves out of
the CIG through the whole migrated data volume along a 3D moveout curve ⌧r(h) (bold solid line). This
curve can be approximated from information found at point (h

0

, xm, ⌧h0 ). For details, see text.

to make it suitable for an application to time-migration of reflection events in prestack data, presenting an
improved derivation of the time-remigration trajectories. In this work, we present an improved derivation
of the method’s theory as compared to Coimbra et al. (2013c), detail the model-building algorithm, and
report on numerical tests of the method applied to synthetic data from three gradient models and to the
Marmousoft data. These additional tests confirm the potential of the method to produce plausible velocity-
model updates in regions with strong velocity variations.

REMIGRATION TRAJECTORY

The residual moveout of a point on the migrated image of a dipping reflector as a function of half-offset is
a three-dimensional curve through the prestack-migrated data volume (see Figure 2). A remigration trajec-
tory describes the position of a point on this moveout curve as a function of migration velocity, considering
not only the half-offset, but also the variation of the reflection-point displacement in the midpoint direction
(see Figure 3).
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Figure 3: Remigration trajectories (dash-dotted lines) for selected points on the 3D moveout curve (bold
solid line) of an incorrectly migrated reflector point (xm, ⌧h0 ). Also shown is the flattened position of the
event at (xu, ⌧u).

Theoretical description

For the mathematical derivation of the remigration trajectory, we start at the well-known fact that a certain
reflection point on a dipping reflector is imaged in different common-image gathers (CIGs) at different
offsets if the migration velocity is incorrect (Figure 2). Based on the kinematic analysis of velocity con-
tinuation, Fomel (2003b) approximated the positioning of the displaced image point up to second order in
half-offset h as

⌧r(h, x) =

s
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where v is the true average medium velocity and vm is the (incorrect) migration velocity. Moreover, ⌧h is
the time coordinate at half-offset h of the image point within the CIG at image position xm, and x � xm

denotes the relative lateral coordinate, i.e., the distance to the original CIG at xm (see again Figure 2).
The envelope of these curves at all x determines the lateral displacement xr as a function of h. This

envelope can be determined by setting the derivative with respect to x equal to zero, i.e.,
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where Dh denotes the event dip in the off-CIG or common-offset direction at lateral coordinate xm and
half-offset h. In other words, Dh is given at any h by
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For h = 0, equations (1) and (3) reduce to the zero-offset equations derived by Schleicher et al. (1997).
Combining equations (1) and (3), we arrive at the residual-moveout expression as a function of the

event dip,
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Expressions (3) and (5) together approximately describe the residual moveout of the image of a reflection
point in the migrated data volume for a given migration velocity vm at a given half-offset h (see again
Figure 3), if the position ⌧h at that offset is known. For not too large offsets, the approximation is valid to
the same extend as time migration, i.e., as long as the medium is acceptably described by a locally constant
average velocity (which may vary from CIG to CIG). The derivation of more general expressions can be
conceived of by using improved approximations for the out-of-CIG displacement (equation (1)).

However, for the use in velocity analysis, equations (3) and (5) together are still insufficient, since they
do not allow to predict the continuation from an image point at some half-offset h

0

to the corresponding
point at another half-offset h without additional information. For this purpose, we need a relationship
between the image-time coordinates ⌧h0 and ⌧h.

To find such a relationship, we start at considering a CMP section for a single reflector below an
isotropic constant-velocity overburden with (true) average medium velocity v. At a given reflection point,
the conventional NMO traveltimes for two different half-offsets h

0

and h read

t2h0
= t2

0

+
4h2

0

v2n
, (6)

t2h = t2
0

+
4h2

v2n
, (7)

where th0 and th are the source-receiver traveltimes, t
0

is the vertical time at zero offset, which is indepen-
dent of the half-offset h, and vn is the NMO velocity, used during the processing in a tentative to flatten
the events present in the CMP section.

Taking the difference between equations (6) and (7), we find a direct relation between th0 and th that is
independent of t

0

,
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+

4
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) . (8)

Now, consider time migration using an (incorrect) migration velocity vm. The traveltime for a source-
receiver pair with a half-offset h is defined by the usual double-square-root (DSR) equation,
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where ⇠ is the midpoint between source and receiver and, as before, xm and ⌧h are the coordinates of the
image point in the time-migrated CIG (Figure 2).

To simplify this expression, we use the fact that for small h, the square roots in equation (9) can be
approximated as

s

⌧2h
4

+
(xm � ⇠ ± h)2

v2m
⇡

s

⌧2h
4

+
(xm � ⇠)2 + h2

v2m
± h(xm � ⇠)

v2m

q

⌧2
h

4

+ (xm�⇠)2+h2

v2
m

. (10)

With this approximation, equation (9) can be written for two different half-offsets h and h
0

as
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Substituting equations (11) and (12) in equation (8) yields the relationship between migrated times ⌧h0 at
h
0

and ⌧h at h as
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Another way to reach this relation is to solve the classical expression of Al-Yahya (1989) describing the
position of the image of a horizontal reflector in a time-migrated image, viz.,
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, (14)

for ⌧
0

at two half-offsets h and h
0

and equal the results. The advantage of our derivation is that it demon-
strates that equation (13) remains valid for a dipping reflector up to second order in h.

It is important to notice that equation (13) is used exclusively to estimate the event position ⌧h within
the CIG at xm. The provisional NMO velocity vn is not needed for any other purpose than fitting the event.
Therefore, any expression that reasonably approximates the event can be used instead of equation (13),
even without any physical justification.

Equation (13) allows us to estimate the vertical time ⌧h at h as a function of ⌧h0 at h
0

without the need
for any information of the zero-offset section. However, we still need the information of the event dip Dh

in the migrated volume in the offset direction at all offsets h. To avoid the necessary dip estimations in all
involved common-offset migrated sections, we use that the event dip Dh at h is approximately related to
the one at h

0

as
Dh = Dh0

⌧h0

⌧h
. (15)

This relationship is obtained from the derivative of equation (13) with respect to x under the assumption
that the variation of vn can be neglected. It can also be inferred from equation (3) upon noticing that at a
fixed h the dislocation xr(h) � xm out of the CIG must be the same independently of the initial point of
the moveout curve. Note that in agreement with the physics involved, Dh ! 0 when ⌧h ! 1.

The set of expressions (3), (5), (13), and (15) describes the so-called remigration trajectory, i.e., the
variation of the position of each point on the 3D residual moveout in the 3D migrated data volume as a
function of the migration velocity vm (see Figure 3). With this trajectory, we can estimate whereto in the
data volume a point (h

0

, ⌧h0) in a CIG will move when the migration velocity is changed. When applying
this equation to all points in a CIG at a chosen image point, we can estimate the velocity value for which
the resulting set of moved points becomes closest to a horizontal line.

To calculate the image-point positions with this set of equations, we need an estimate of all image times
⌧h in the initial CIG and all event dips Dh perpendicular to the CIG. For the estimation of ⌧h, we fit a curve
of the form of equation (13) to the migrated event within the CIG at xm. To estimate the local slopes Dh

in all common-offset migrated sections at each h, we use a generalization of local slant stacks. Upon the
use of equation (15), we define a surface T = T (h, x) as

T (h, x) = ⌧h + (x� xm)Dh = ⌧h + (x� xm)
⌧h0

⌧h
Dh0 . (16)

This surface is composed of all tangent lines to the event surface in the migrated data volume, if the
correct value of Dh0 is used. This fact can be used to estimate this parameter from the date by semblance
maximization using trial surfaces. Since the estimate employs a surface rather than a line stack, it provides
more reliable results.

Velocity analysis

With the remigration trajectory established, we can now devise a migration-velocity-analysis algorithm
based on local-slope estimation and approximate image-wave propagation of the CIG. For the purpose of
velocity analysis, the residual moveout of the remigration trajectory must be minimized, since at the correct
velocity, the event in the CIG must be horizontal. Therefore, we can choose the derivative of ⌧r(h) as the
objective function. Thus, the optimization condition is

min
v

�

�

�

�

@⌧r
@h

�

�

�

�

. (17)

In this paper, we minimize this derivative analytically using an exhaustive search. For this purpose, we use
the time position ⌧h0 and the slope parameter Dh0 extracted from the data to calculate the remigration
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trajectory according to equation (5) with the help of equation (13). Doing so for a reasonable set of
migration velocities allows us to look for the velocity value that produces the lowest variation of ⌧r as a
function of h. This procedure turned out to be faster than an optimization process using Newton’s method.

The minimum value of the variation of ⌧r as a function of h defines the desired updated time-migration
velocity vu associated with the image point at (xm, ⌧h0 ). For velocity building, vu is attributed to its
updated position (xu, ⌧u), determined equations (3) and (5) upon the use of vu instead of v (see again
Figure 3).

MODEL BUILDING ALGORITHM

To construct the final velocity model, we propose to use the above corrections in an iterative process. The
information contained in a CIG at a selected migrated reflection point allows to construct the approximate
time-remigration trajectory, which then provides an update for the velocity value and the spacial and time
coordinates of that point. The algorithm for this procedure and the corresponding flowchart are detailed in
Figure 4.

Let us emphasize again that velocity vn (equation (13); step (3)) is a provisional velocity estimate that
is used only to determine the values of ⌧h in the current CIG at point (xm, ⌧h0 ). In turn, these values of ⌧h
are used to flatten the event along the remigration trajectory (equation (3) and (5); step (7)) by minimization
of the residual moveout (equation (17); step (8)), which then determines the updated migration velocity v.

By its principle, the proposed MVA algorithm is a local procedure, updating the velocity at a single
image point at a time. If sufficient image points are available in a certain region, a smooth model can
be interpolated for that region. In the interpolation stage, a-priori information or constraints can be taken
into account. In our numerical tests on synthetic data, reported below, the method was able to build time-
migration velocity models without an initial model, starting with a constant-velocity migration, as long as
the model complexity lies within the validity range of time migration.

NUMERICAL EXAMPLES

We have applied our time remigration technique to three constant-gradient velocity models with sets of
dipping reflectors, and the more complex Marmousoft data set.

Application to constant-gradient models

We applied the method to three constant-gradient models that can be thought of as representing subregions
of a larger model. To verify the feasibility of our method, which was derived under the assumption of
constant average velocities, in more realistic situations, we chose rather strong velocity gradients in the
vertical, horizontal, and diagonal directions. The true velocity models are given by

v(z) = 2000 + 0.5z m/s , (18)
v(x) = 2000 + 0.5x m/s , (19)

v(x, z) = 2000 + 0.5x+ 0.5z m/s . (20)

All three models contain six interfaces with, from top to bottom, initial depths at the origin of 400 m,
500 m, 600 m, 700 m, 800 m, and 900 m, and dips of 0�, 4.8�, 10�, 15�, 23.6�, 39.5�, respectively.
Moreover, they contain seven diffraction points in different parts of the models. The diffraction events
were not used for velocity analysis. Their only purpose is the quality control of the extracted velocity
models.

We generated the corresponding synthetic data sets using a Kirchhoff-modeling algorithm of Seismic
Un*x (Cohen and Stockwell, 2014). We simulated 25 common-offset sections for offsets between 200 m
and 680 m spaced at 20 m, with a sampling rate of 2 ms up to a maximum time of 2.5 s, each with
400 source-receivers pairs spaced at 10 m between CMP coordinates 500 m and 4500 m, thus covering an
extension of 4000 m. We used a symmetric Ricker wavelet with 20 Hz peak frequency, and contaminated
the data with pseudo-random Gaussian noise with zero mean and at level of 5% of the maximum amplitude.

We then applied the present remigration-trajectory MVA method to these data. The first step consisted in
a constant-velocity time migration. For these examples, we used an intermediate velocity of v

0

= 3.0 km/s.
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ALGORITHM

1. Time migration of the data with a given initial ve-
locity model vm = vm(x, ⌧). In our numerical
tests, a constant-velocity migration was sufficient
to start the process.

2. Selection of an image point (xm, ⌧h0 ) in the
shortest-offset migrated section or stacked migrated
image. Normally, it is useful to choose points on
already visible reflector images. In our numerical
examples, we chose the points by visual inspection.
Automatic picking might be an option, but weak re-
flector amplitudes, usually discarded by automatic
picking procedures, often indicate the need for ve-
locity improvements.

3. Coherence analysis in the CIG at (xm, ⌧h0 ) using
equation (13) for a consistent range of NMO veloc-
ities vn. The maximum coherence value defines a
(temporary) NMO velocity vn that best describes
the event at all half-offsets h.

4. Computation of ⌧h for all h using equation (13)
with the so-determined vn and the current migra-
tion velocity vm.

5. Estimation of the off-CIG dip Dh0 by means of
a coherence analysis along the surface defined by
equation (16).

6. Computation of Dh for all h using equation (15).

7. Calculation of several remigration trajectories us-
ing equations (3) and (5) for a range of velocities
v. In our numerical tests, this range had to be finer
sampled than the above one for vn.

8. Determination of the updated migration velocity vu
for (xm, ⌧h0 ) that minimizes the variation of ⌧r in
the offset direction, according to equation (17).

9. Calculation of the corrected position (xu, ⌧u) of the
selected image point.

10. Loop over steps (2) to (8) until a sufficient number
of image points are processed.

11. Interpolation of the set of new velocity values.

12. Model smoothing if necessary. In some of our nu-
merical tests, a moving average filter turned out to
be useful to improve the correlation between adja-
cent image points.

13. Time migration of the original data with the new
velocity model.

14. Loop over steps (2) to (13) until the events in all
CIGs are satisfactorily flattened.

Prestack Time Migration

Seismic Data

Select a CIG point

Are the amount 
of CIG points 

enough?

Interpolate the new 
velocity points

Need to be smoothed?

Low-pass ltering

Are the CIG's 
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Figure 4: Remigration-trajectory MVA. Left: Algorithm. Right: Flowchart.
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Figure 5: Vertical-gradient model: (a) Velocity model with reflectors and control diffractors. (b) Time-
migrated image using v

0

= 3.0 km/s.
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Figure 6: Vertical-gradient model: (a) Extracted velocity model after one iteration with 21 image points
and (b) corresponding final time-migrated image. (c) Extracted velocity model after moving-average
smoothing and (d) corresponding final time-migrated image. Also shown in parts (a) and (c) are the picked
image points (black crosses) and their updated positions (pink plusses).

Figures 5 to 7 summarize the results for the vertical-gradient model. Figure 5a depicts the true velocity
model with reflectors and control diffractors, and Figure 5b shows the time-migrated zero-offset section
using a constant migration velocity of 3000 m/s.

From this initial migration, we started the remigration-trajectory velocity analysis. To investigate the
quality of the result in dependence of the number of points picked, we performed the analysis twice, once
with 21 image points and once with 100 image points. Figure 6a shows the 21 image points picked in
the first run (black crosses) together with their updated positions (pink plusses) superimposed over the
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Figure 7: Vertical-gradient model: (a) Extracted velocity model after one iteration with 100 image points
and (b) corresponding final time-migrated image. (c) Extracted velocity model after moving-average
smoothing and (d) corresponding final time-migrated image. Also shown in parts (a) and (c) are the picked
image points (black crosses) and their updated positions (pink plusses).

obtained updated velocity model after one iteration. This model results from a B-splines interpolation
(Matlab implementation, see Sandwell, 1987) of the updated velocities at the 21 updated image-point
locations. Figure 6b shows the corresponding time-migrated stacked section. In the velocity model, we
recognize some undulations, indicating that the velocity estimate is better at the chosen image points than
in their vicinity. Nonetheless, the control diffractors in the image are reasonably focused and the reflectors
only slightly curved. This indicates that the model in Figure 6a already is an acceptable time-migration
velocity model. For further improvement, we applied two passes of moving-average smoothing with a
1 km ⇥ 0.4 s (100 by 100 points) window. The idea is to carry the velocity information at the chosen
image points over to their vicinities where no updated velocity values are available. Figures 6c and d show
the so-obtained model and the corresponding image. While the model has improved and resembles the
true model of Figure 5a more closely, the time-migrated image of Figure 6d is almost identical to that of
Figure 6b.

Figure 7a shows the 100 image points picked in the second test (black crosses), also together with
their updated positions (pink plusses) and superimposed over the obtained updated velocity model after
one iteration. Again, Figure 7b shows the corresponding time-migrated stacked section. In comparison to
Figure 6a, we observe that the velocity undulations in Figure 7a are reduced in amplitude and wavelength.
The migrated image in Figure 7b has slightly improved as compared to Figure 6b, particularly regarding the
positioning of the deepest reflector and the focusing of the deepest diffractor. Moving-average smoothing
further improves the model (Figure 7c), but again has little effect on the resulting image (Figure 7d).

Similar conclusions can be drawn from the corresponding experiments with the horizontal (Figures 8,
9, and 10) and diagonal (Figures 11, 12, and 13) gradients. While the models extracted with 100 image
points (Figures 10a and 13a) are slightly better than the ones extracted with 21 image points (Figures 9a
and 12a), it is doubtful that the improvements warrant fivefold picking expense. The smoothed models
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Figure 8: Horizontal-gradient model: (a) Velocity model with reflectors and control diffractors. (b) Time-
migrated image using v

0

= 3.0 km/s.
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Figure 9: Horizontal-gradient model: (a) Extracted velocity model after one iteration with 21 image
points and (b) corresponding final time-migrated image. (c) Extracted velocity model after moving-average
smoothing and (d) corresponding final time-migrated image. Also shown in parts (a) and (c) are the picked
image points (black crosses) and their updated positions (pink plusses).

using 21 points (Figures 9c and 12c) almost reach the same quality as the ones obtained with 100 points
(Figures 10c and 13c).

These tests demonstrate that even in the presence of a strong velocity gradient, the method is capable of
extracting meaningful time-migration velocity models using a not too large number of image points where
reflector images can be picked in the incorrectly migrated image.
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Figure 10: Horizontal-gradient model: (a) Extracted velocity model after one iteration with 100 image
points and (b) corresponding final time-migrated image. (c) Extracted velocity model after moving-average
smoothing and (d) corresponding final time-migrated image. Also shown in parts (a) and (c) are the picked
image points (black crosses) and their updated positions (pink plusses).
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Figure 11: Diagonal-gradient model: (a) Velocity model with reflectors and control diffractors. (b) Time-
migrated image using v

0

= 3.0 km/s.

Application to the Marmousoft data

Encouraged by these results, we set out for a more realistic test. We applied the described MVA technique
to the Marmousoft data (Billette et al., 2003). These data were constructed by Born modeling in a smoothed
version of the Marmousi model. The true (depth) Marmousoft velocity model is depicted in Figure 14a. We
chose this model so as to analyze the behaviour of our MVA method in a complex sedimentary geology. We
did not expect the method to work in the central part of the model because of the limits of time migration.
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Figure 12: Diagonal-gradient model: (a) Extracted velocity model after one iteration with 21 image
points and (b) corresponding final time-migrated image. (c) Extracted velocity model after moving-average
smoothing and (d) corresponding final time-migrated image. Also shown in parts (a) and (c) are the picked
image points (black crosses) and their updated positions (pink plusses).

In order to simulate a time-migration velocity model we computed the root-mean-square (vrms) velocity
model in pseudo-time from the stratigraphic velocity using vertical conversion only. The resulting time-
velocity model is depicted in Figure 14b. It indicates acceptable migration velocity values, though probably
laterally mispositioned.

The Marmousoft data contain traces at every 25 meters with a sampling rate of 4 ms. We used 96
common-offset sections with source-receiver offsets between 100 m and 2475 m. Figure 15a shows a
short-offset section with a total source-receiver offset of 100 m.

To these data, we applied the remigration-trajectory MVA method. For the first migration, we chose
v
0

= 2.0 km/s. Figure 15b depicts the migrated image obtained from the short-offset data of Figure 15a.
The migration aperture used was 241 traces.

Next, we picked 70 points on some of the most prominent migrated events in the image of Figure 15b.
At the positions of these picks, we extracted local slopes in the migrated common-offset section and then
minimized the residual moveouts along the remigration trajectories as described above. Figure 15c shows
the locations of our picks (black crosses) and their corrected positions after velocity updating (pink plusses)
overlain on the resulting updated velocity model. As before, we used B-splines to interpolate the velocity
model in the complete region.

We then used the velocity model of Figure 15c for a second migration. The result is depicted in Fig-
ure 15d. We recognize that the updated velocity model leads to an improved migrated image, particularly
regarding the upper parts of the fault lines and the reflectors in the sedimentary regions on both sides of the
model.

To eliminate the unrealistic oscillations in the velocity model, we smoothed it (Figure 15c) by two
passes of a moving average with a 2.5 km⇥0.4 s (100 by 100 points) window (see Figure 15e). The
Kirchhoff-migrated image corresponding to this velocity model is depicted in Figure 15f.
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Figure 13: Diagonal-gradient model: (a) Extracted velocity model after one iteration with 100 image
points and (b) corresponding final time-migrated image. (c) Extracted velocity model after moving-average
smoothing and (d) corresponding final time-migrated image. Also shown in parts (a) and (c) are the picked
image points (black crosses) and their updated positions (pink plusses).
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Figure 14: Marmousoft velocity models. (a) Depth velocity model (Billette et al., 2003). (b) Time-velocity
model computed from (a) by vertical depth-to-time conversion.

Although the velocity models of Figures 15c and e are rather different, the corresponding migrated
images (Figures 15d and f) are quite similar, indicating that both velocity models are equivalent regarding
the final time-migration result. These results are in agreement with those produced by common-image
gather image-wave propagation and double multi-stack migration (see Santos et al. (2013a) and Santos
et al. (2013b) for a parameterization discussion). For further evaluation of the model quality, a time-
to-depth conversion will be necessary to compare the attainable model quality as well as to check its
application as an initial model for tomographic or depth MVA methods.
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Figure 15: Single iteration of remigration-trajectory MVA on the Marmousoft data. (a) Seismic near-offset
section. (b) Time-migrated image of the seismic near-offset section using a constant velocity v

0

= 2 km/s
and migration aperture equal to 141 traces. (c) Extracted velocity model after one iteration. Also shown
are the 70 picked image points (black crosses) and their updated positions (pink plusses). (d) Final time-
migrated image by a migration aperture equal to 241 traces. (e) and (f) show the results after moving-
average smoothing by two passes with a 2.5 km⇥0.4 s (100 by 100 points) window.

CONCLUSIONS

We have investigated an MVA tool that uses the estimation of local kinematic attributes of selected events
in seismic data to update the velocity model and improve the positioning of key reflectors. The method is
based on image-wave propagation in the common-image-gather (CIG) domain described by the means of
time-remigration trajectories in the prestack time-migrated domain. Such a trajectory is defined as the set
of points where a certain point on a reflection event is migrated to as a function of migration velocity.

The method consists of analyzing the local slope of selected key reflections and determining the velocity
value for which an approximate residual-moveout (RMO) expression is minimized. The advantage of this
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procedure over conventional MVA methods is that the RMO expression follows the events outside a fixed
CIG. In this paper, we have provided an improved theoretical derivation, a detail algorithm for the method’s
implementation, and additional numerical tests. In these tests, the method led to acceptable time-migration
velocity models in a single iterations, even if the starting model was simply a constant velocity. Also the
sedimentary shallow part of the Marmousoft model was satisfactorily resolved in one iterations. Tests with
different numbers of picked event points demonstrated that the number of points does not need to be very
large. Our results indicated that a step of smoothing the data can be helpful, especially for deeper and/or
steeper events.

The computational cost of the technique is determined by the cost of prestack time migration in each
iteration. Intermediate computations are negligible. The most human effort was spent on the event picking,
which is critical to the method. The rather low number of image points needed was helpful to reduce
turnaround time. Future research will have to show if this picking process can be automatized, so that the
number of picks will no longer be a restrictive parameter.

By its principle, the proposed MVA algorithm is a local procedure, updating the velocity at a single
image point at a time. If sufficient image points are available in a certain model region, a smooth velocity
distribution can be interpolated for that region. In the interpolation stage, a-priori information or constraints
can be taken into account. In our numerical tests on synthetic data, we applied the method to simple models
consisting of a single region in order to study its behaviour under different conditions. The simple models
could be inverted in a single iteration.

We believe that the method’s main application will be in the local improvement of previously existing
velocity models to enhance the focusing of selected key horizons. Further research will be necessary to
extend the method to depth MVA.

ACKNOWLEDGMENTS

This research was supported by Petrobras and CGG as well as the Brazilian research agencies CNPq,
FAPESP, FINEP, and CAPES. The first author (HBS) thanks CGG-Brazil for his fellowship. Additional
support for the authors was provided by the sponsors of the Wave Inversion Technology (WIT) Consortium.

REFERENCES

Adler, F. (2003). Kirchhoff image propagation. Geophysics, 67(1):126–134.

Al-Yahya, K. M. (1989). Velocity analysis by iterative profile migration. Geophysics, 54(06):718–729.

Billette, F., Le Bégat, S., Podvin, P., and Lambaré, G. (2003). Practical aspects and applications of 2D
sterotomography. Geophysics, 68(3):1008–1021.

Cohen, J. K. and Stockwell, J. J. W. (2014). CWP/SU: Seismic Un*x Release No. 43R6: An open source
software package for seismic research and processing. Center for Wave Phenomena, Colorado School
of Mines.

Coimbra, T. A., de Figueiredo, J. J. S., Novais, A., and Schleicher, J. (2011). Migration velocity analysis
with diffraction events using residual moveout. Annual WIT report, 15:57–70.

Coimbra, T. A., de Figueiredo, J. J. S., Novais, A., Schleicher, J., and Arashiro, S. (2013a). Migration
velocity analysis using residual diffraction moveout in the pre-stack depth domain. Annual WIT report,
17:44–53.

Coimbra, T. A., de Figueiredo, J. J. S., Schleicher, J., Novais, A., and Costa, J. (2013b). Migration velocity
analysis using residual diffraction moveout in the poststack depth domain. Geophysics, 78(3):S125–
S135.

Coimbra, T. A., de Figueiredo, J. J. S., Schleicher, J., Novais, A., and Costa, J. C. (2012). Migration
velocity analysis with diffraction events using residual moveout: Application to SIGSBEE 2B data.
Annual WIT report, 16:45–58.



106 Annual WIT report 2014

Coimbra, T. A., Santos, H. B., Schleicher, J., and Novais, A. (2013c). Prestack migration velocity analysis
using time-remigration trajectories. Annual WIT report, 17:66–79.

Fomel, S. (1994). Method of velocity continuation in the problem of seismic time migration. Russian
Geology and Geophysics, 35(5):100–111.

Fomel, S. (2003a). Time migration velocity analysis by velocity continuation. Geophysics, 68(5):1662–
1672.

Fomel, S. (2003b). Velocity continuation and the anatomy of residual prestack time migration. Geophysics,
67(5):1650–1661.

Fomel, S., Landa, E., and Taner, M. T. (2007). Poststack velocity analysis by separation and imaging of
seismic diffractions. Geophysics, 72(6):U89–U94.

Hubral, P., Schleicher, J., and Tygel, M. (1996a). A unified approach to 3-D seismic reflection imaging -
Part I: Basic concepts. Geophysics, 61:742–758.

Hubral, P., Tygel, M., and Schleicher, J. (1996b). Seismic image waves. Geophysical Journal International,
125:431–442.

Liptow, F. and Hubral, P. (1995). Migrating around in circles. The Leading Edge, 14(11):1125–1127.

Liu, Z. and Bleistein, N. (1995). Migration velocity analysis: Theory and an iterative algorithm. Geo-
physics, 60(1):142–153.

Novais, A., Costa, J., and Schleicher, J. (2008). GPR velocity determination by image-wave remigration.
Journal of Applied Geophysics, 65(2):65–72.

Rothman, D., Levin, S., and Rocca, F. (1985). Residual migration: Applications and limitations. Geo-
physics, 50(1):110–126.

Sandwell, D. T. (1987). Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data. Geo-
physical Research Letters, 2:139–142.

Santos, H. B., Coimbra, T. A., Schleicher, J., and Novais, A. (2014). Prestack time-migration velocity
analysis using remigration trajectories. Geophysics. Submitted.

Santos, H. B., Schleicher, J., and Novais, A. (2013a). Initial-model construction for MVA techniques. In
Expanded Abstracts, 75th EAGE Conference & Exhibition. EAGE Publications BV.

Santos, H. B., Schleicher, J., and Novais, A. (2013b). Initial-model construction for MVA techniques.
Annual WIT report, 17:124–135.

Sava, P., Biondi, B., and Etgen, J. (2005). Wave-equation migration velocity analysis by focusing diffrac-
tions and reflections. Geophysics, 70(3):U19–U27.

Schleicher, J. and Aleixo, R. (2007). Time and depth remigration in elliptically anisotropic media using
image-wave propagation. Geophysics, 72:S1–S9.

Schleicher, J., Costa, J. C., and Novais, A. (2008a). Time-migration velocity analysis by image-wave
propagation of common-image gathers. Geophysics, 73(5):VE161–VE171.

Schleicher, J., Hubral, P., and Höcht, G. (1997). Seismic constant-velocity remigration. Geophysics,
62(2):589–597.

Schleicher, J., Novais, A., and Costa, J. C. (2008b). Vertical image waves in elliptically inhomogeneous
media. Studia Geophysica et Geodaetica, 52(1):101–122.

Tygel, M., Schleicher, J., and Hubral, P. (1996). A unified approach to 3-D seismic reflection imaging -
Part II: Theory. Geophysics, 61:759–775.


