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ABSTRACT

It is well known that the quality of stacking results (e.g., noise reduction, event enhancement and
continuity) can be much influenced, not only by the chosen moveout operator, but also by the em-
ployed apertures. We consider two, so-called, diffraction-stack moveouts, together with correspond-
ing apertures, designed to enhance reflections and diffractions, respectively. The first moveout under
consideration is the zero-offset (ZO), common-reflection-surface (CRS) diffraction moveout, that is
obtained from the general ZO CRS moveout in the case that the target reflector reduces to a point.
The second is the double-square-root (DSR) moveout, well established in time migration. To simplify
the terminology, we shall refer to the ZO CRS diffraction moveout as the single-square-root (SSR)
moveout. The SSR and DSR moveouts will be given specific apertures based on the Projected Fres-
nel Zone (PFZ), SSR with small apertures in midpoint, produced comparable results as the ones of
conventional CRS with full-parameter reflection moveouts with reduced computational cost. In both
situations, reflections are enhanced and diffractions attenuated. However, DSR with large midpoint
apertures yield stacked sections in which diffractions are enhanced and reflections attenuated. The
aperture size for optimal stacking is quantified by means of the PFZ that corresponds to the events
(reflections or diffractions) under consideration. Synthetic and field data confirm a good potential of
the proposed approach for image-quality improvement.

INTRODUCTION

In seismic processing, stacking is probably the tool of most widespread use. The reason is simple: Stacking
takes advantage of the large redundancy of seismic data to "clean" the data, i.e., to significantly enhance the
signal-to-noise ratio, as well as having events (say, reflections/diffractions) better suited for more reliable
interpretation. Stacking operators are designed to enhance desirable events by constructive interference,
while attenuating undesired events or noise by destructive interference.

Because of their robustness and simplicity, diffraction traveltimes occupy a prominent place as stacking
operators, the best example being their role in Kirchhoff-type migration. A good reason for the great
success of diffraction-stack traveltime stems from Huygen’s principle, in which the reflection response of
a reflector can be thought as a superposition of the responses of point scatterers densely distributed on the
reflector.

Good stacking depends on a number of factors, including (a) a stacking operator (moveout) that is able
to accurate follow (approximate) desired events, (b) a coherence measure that is able to quantify how well
the stacking operator approximates the desired events, (c) possible weights to improve the stacking and/or
producing more meaningful amplitudes and (d) carefully chosen apertures that are able to focus stacking
where only constructive interference takes place.
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Here, we examine the influence of midpoint aperture under the use of two diffraction operators, namely
(a) the ZO CRS diffraction moveout, referred throughout as the single-square-root (SSR) moveout and (b)
the double-square-root (DSR) diffraction moveout. The SSR is a simplified version of the conventional
ZO CRS moveout, that results when the target reflector reduces to a (diffraction) point. The DSR, of
widespread use in time migration, is an exact expression of a point-diffraction response in a homogeneous
medium. In fact, one can show that SSR is the second-order, Taylor-polynomial representation of the DSR.

In this work, we find that small apertures in midpoint produce enhanced reflections and attenuated
diffractions. On the other hand, large apertures in midpoints produce enhanced diffractions and attenuated
reflections. In the case of reflection enhancement, stacking results obtained using the SSR are comparable
to the ones obtained (at a higher computational cost) by conventional, full-parameter CRS. However, use of
the DSR moveout with large midpoint apertures, leads to significant enhancement of diffractions together
with attenuation of reflections.

The aperture size for optimal stacking in both situations is quantified by means of the projected Fresnel
Zone (PFZ) that corresponds to the events (reflections or diffractions) under consideration. Synthetic and
field data confirm a good potential of the proposed approach.

SSR AND DSR MOVEOUTS

In the following, we introduce and briefly discuss the SSR and DSR moveouts. Our task is greatly facili-
tated by their widespread and routine use in seismic processing.

SSR moveout

As previously indicated, SSR is a particular case of the full CRS in the case that the target reflector reduces
to a (diffraction) point. We recall (see, e.g., Jäger et al., 2001; Duveneck, 2004) that the CRS method
is based on the generalized hyperbolic traveltime, which uses first and second derivatives with respect to
midpoint and half-offset in the vicinity of a selected central or reference ray.

In the general case of a finite-offset central ray, the number of parameters of the CRS traveltime is five
and fourteen for the 2D and 3D situations, respectively. Here we adopt the simpler case (of much more
widespread use) in which the central ray is a ZO ray and also assuming non converted data and an isotropic
medium, the number of CRS parameters reduces to, respectively, three and eight parameters for 2D and 3D
datasets. The 3D ZO CRS hyperbolic traveltime reads

tCRS(m,h) =
q
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where (m,h) denotes the midpoint and half-offset of a source receiver pair in the vicinity of the ZO central
ray of coordinates (m

0
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all derivatives being evaluated at m = m

0

and h = 0. As can be readily verified, the hyperbolic CRS
traveltime of Equation (1) is directly obtained from its parabolic counterpart (namely a second-order Taylor
polynomial of traveltime, instead of traveltime squared), by squaring both sides and retaining the terms up
to second order only.

It is also well known that the parameter B, in Equation (1), is by far the most unstable parameter,
being attached to the so-called normal (N) wave and indirectly related to the curvature of the reflector at
the normal-incident-point (NIP). This heavily contrasts with the good behavior exhibited by the remaining
parameters, a and C, interpreted as slowness of the central ZO ray at its emergence point and the normal
moveout (NMO) velocity, respectively. As the CRS parameter B has the most unstable estimation, it would
be attractive if, at least for initial estimations and lateral velocity variations, one could use a traveltime not
dependent on that parameter.
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Single square root (SSR) moveout

In order to avoid complications involved to estimate all CRS parameters, we propose to use a simplified
version of Equation (1), in which we set B = C. The resulting expression, referred simply as single-
square-root (SSR) moveout, is given by

tSSR(m,h) =
q
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T
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As well known (e.g., Duveneck, 2004), the above moveout readily follows from the full CRS counterpart
in the case the target reflector reduces to a (diffraction) point. Substitution of full CRS moveout with the
SSR moveout for stacking is not a new strategy (Garabito et al., 2001). In fact, the SSR moveout has a
much longer tradition as a form of diffraction stack used in Kirchhoff migration. As shown below, in spite
of the fact that the moveout (3) is naturally attached to diffractions, we find that such moveout can be very
well suited to reflections, as long as proper apertures, in both midpoints and offsets, are chosen. More
specifically, for reflection enhancement, a small aperture on midpoints should be used combined with a
large aperture on offsets. The terms small and large refers to the convergence radius of the second-order
approximation.

Double-square-root (DSR) moveout

Because of its Taylor expansion character, SSR fails to approximate the diffraction events when large
apertures in midpoint and offset are considered. Trying to avoid such limitation, one can use smaller
apertures in offset, which diminishes the benefits of redundancy. Moreover, in many cases, required near
offsets are even not available in the dataset. As a remedy to overcome such drawbacks, we use a different
diffraction traveltime equation, also defined in terms of CRS parameters, namely the double-square-root
(DSR). That is given by

tDSR(m,h) =
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where �s = m � h � m

0

and �g = m + h � m

0

. The rule of thumb behind the use of DSR is
that, as opposed to SSR, it provides an exact point-diffraction traveltime in homogeneous media. As a
consequence, at least for mild-to-moderate laterally velocity variations, DSR should be expected to well
approximate diffractions in apertures comparable to the Fresnel zone associated with the measurement
configuration. As depicted in Figures 1 and 2, that conjecture is confirmed in the simple situation of a point
diffraction response within a vertically-inhomogeneous medium. The figures compare the SSR and DSR
traveltimes the cases where the central midpoint is (a) vertically above the point diffractor and (b) laterally
away (500 m to the left) from it. Based on the above considerations, our stacking strategy to enhance
diffraction events is focused on the DSR moveout.

STACKING APERTURES

In the following, we examine the problem of choosing stacking apertures optimally designed for enhancing
reflection or diffraction events. Our analysis uses the concept and properties of the Projected Fresnel Zone
(PFZ), as introduced in Schleicher et al. (1997). We briefly explain the PFZ concept that refers to a given
(central) source-receiver pair, (S,G), as well as a target, subsurface reflector, ⌃. Moreover, suppose that the
pair, (S,G), defines a unique reflection point, MR, at ⌃. The PFZ that corresponds to the above conditions
represents the collection of points, (S,G), in the neighborhood of (S,G), for which

|tRef (S,G)� tDif (S,MR, G)|  w

2
. (5)

Here, tRef (S,G) is the reflection traveltime of the reflection ray determined by (S,G) with respect to the
target reflector and tDif (S,MR, G) is the diffraction traveltime, that corresponds to a diffraction point at
MR and source-receir pair, (S,G). Note that the reflection ray specified by (S,G) determines a reflection
point, MR, that has a different location at ⌃ than the central reflection point, MR, assumed as a diffraction
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Figure 1: Comparison of the performances between the 2D SSR and DSR diffraction moveouts for the
case of a point diffractor lying directly below the central point and at depth 500m. The medium velocity
is given by v(z) = 1500 + 0.5z, with velocity in km/s and depth coordinate in m. From left to right, the
upper plots represent common-offset panels of offsets 0, 200, 600 and 1000 m. In the far left (ZO) panel,
the fat black point represents the response of the diffractor point at the central point. Note that in this case,
it lies at the appex of the traveltime curve. The lower plots represent the corresponding errors with the
respect of the exact traveltimes.
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Figure 2: Comparison of the performances between the 2D SSR and DSR diffraction moveouts for the
case of a point diffractor lying 500m to the left of the central point and at depth 500m. The medium
velocity is given by v(z) = 1500 + 0.5z, with velocity in km/s and depth coordinate in m. From left to
right, the upper plots represent common-offset panels of offsets 0, 200, 600 and 1000 m. In the far left
(ZO) panel, the fat black point represents the response of the diffractor point at the central point. Note that
in this case, it lies at the appex of the traveltime curve. The lower plots represent the corresponding errors
with the respect of the exact traveltimes.

point. All reflection and diffraction rays under consideration are assumed to have the same signature as the
central ray, Finally, w is the pulse length.

One key observation is that, by its very definition, the size of the PFZ is small for reflections and large
for diffractions in midpoint direction. As shown in Faccipieri et al. (2013) and Asgedom et al. (2013), the
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use of large (midpoint) apertures in SSR can be very effective for imaging diffraction energy. However, the
definition of what can be considered small and large should be better defined in order to achieve optimal
results for diffraction or reflection enhancement. It should be noted that Asgedom et al. (2013) investigated
CO-CRS and introduced a traveltime curve tailored for diffractions by generalizing a DSR type of moveout
to a horizontally layered replacement medium. From this approach, proper bounds on the CRS parameters
can be easily obtained, with the aperture size being directly related to the displacement of the apex of a
given scatterer.

By considering midpoint and half-offset coordinates, the central and neighboring source-receiver pairs
can be specified by (m

0

,h
0

) and (m,h), respectively. Moreover, we set h
0

= 0, meaning that the central
source-receiver pair is a ZO pair.

Our aim now is to express the PFZ inequality (5) in terms of the coefficients (CRS parameters) of the
CRS, SSR and DSR traveltimes. For that purpose, it is convenient to introduce the parabolic version of
these traveltimes, meaning the second-order Taylor polynomial approximations, denoted of the square-root
expressions (1), (3) and (4), respectively. Denoted by tparCRS , tparSSR, and tparDSR, such parabolic traveltimes
are easily seen to be given by

tparCRS(m,h) = t
0

+ a

T (m�m

0

) +
1

2t
0

⇥

(m�m

0

)TB(m�m

0

) + h

T
Ch

⇤

. (6)
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Replacing the traveltimes tRef and tDif by their parabolic approximations (6) and (7) in the PFZ inequal-
ity (5) yields

|tRef (m,h)� tDif (m,h)| =
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From basic results of Linear Algebra, we have that
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are the eigenvalues of the 2⇥ 2 real matrix (B�C). As a consequence, the required
inequality (8) is guaranteed whenever
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Equation (11) relates the midpoint aperture with the CRS matrices B and C. These apertures can be used,
in principle, to stack reflections or diffractions. In many practical cases, the C matrix will be of most
significance. Gelius and Tygel (2015) have demonstrated how the eigenvalue of this matrix is related to the
rms-velocity calculated along the corresponding normal ray used for time-to-depth mapping.

We finally note that we obtained no restriction for the half-offset aperture, �(h)Ref . Our proposal is, then,
to consider

�(h)Ref = �(h)CMP , (12)

which is the one used in conventional ZO CRS to obtain the matrix, C using the common-midpoint (CMP).

Aperture for reflections

Actual use of the aperture expression (11) in practice can be greatly enhanced if the quantity, �, is easily
available in the seismic processing sequence. For that aim, we introduce the heuristic assumptions

|�B |  |�C | =
4

v2NMO

, (13)
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from which, substitution into the aperture equation (11) yields the sought-for aperture, denoted, �Ref with
the expression

�Ref =
vNMO

2

r

wt
0

2
. (14)

In Equations (13) and (14), vNMO denotes the normal-moveout (NMO) velocity at the sample (m
0

, t
0

).
Justification of equation (13) will now be given, for simplicity in the 2D situation only. For that aim,

we recall the definitions of the ZO CRS (scalar) parameters B and C (Jäger et al., 2001)

B =
2t

0

v
0

cos2(�)KN , C =
2t

0

v
0

cos2(�)KNIP =
4

v2NMO

. (15)

In Equation (15), t
0

and v
0

represent, respectively, the traveltime along the (two-way) ZO central ray and
the medium velocity at the emergence point of that ray at the surface. In the present 2D situation, the point
where the ZO central ray emerges at the surface is specified by a scalar coordinate, m

0

. Next, � denotes
the angle the central ray makes with the surface normal, also at m

0

. Finally, the quantities KN and KNIP ,
represent the wavefront curvatures of the N- and NIP-wavefronts, evaluated at m

0

. The N-wave starts as
a wavefront that coincides with the reflector in the vicinity of the normal incident point (NIP), namely the
point where the central ray hits the reflector. The NIP-wave starts as a point source at NIP.

In view of the above considerations, we see that, from the very definition of the (exploding reflector)
N- and (point-source) NIP-waves, we can expect that, at least for not much pathological geologies, the
absolute value of the wavefront curvature of the NIP-wave should be greater than the absolute value of
curvature of its counterpart N-wave, namely, |KN |  |KNIP |, implying that |B|  |C|. In other words,
the curvature of the reflection traveltime curve, B, is expected to satisfy �|C|  B  |C|. Jumping from
2D to 3D is not that trivial except from cases where the azimuthal variations are small and gentle. Leaving
a more thorough investigation to further studies, the 2D heuristic considerations are assumed to here be
valid in the 3D situation.

We observe that, once the apertures, �(m)

Ref and �(h)Ref are defined, the estimation of a and C can be per-
formed using Equation (3). The stacking is then performed with the same apertures used on the estimation
of parameters. Figure 3 (left) shows the difference between the original PFZ and �(m)

Ref sizes.

Reflection curve
(Coefficient B)

PFZ

Midpoint

Ti
m

e

δRef

w
SSR operator (Coefficient C)
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Figure 3: Left: PFZ for a ZO reflection event with pulse length w at a given point (m
0

, t
0

), highlighted
in green. Note how the midpoint aperture for the SSR moveout, �(m)

Ref , well adjusts small region of the
reflection event. Right: PFZ for a ZO diffraction event with pulse length w at a given point (m

0

, t
0

),
highlighted in green. Note that the aperture in midpoints for DSR, �(m)

Dif , adjusts a much larger region of
the diffraction event.

Aperture for diffractions

We now address the problem of finding a most adequate aperture for diffraction enhancement in the stacking
process. In the same way as in our previous discussion on reflection enhancement, we base our discussion
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on equations (5) and (8), taking into consideration that the reflection traveltime, tRef , is better approxi-
mated by a diffraction traveltime. Physically, this means that the target interface significantly shrinks (has
a very large curvature), its shape being better approximated as a point rather than a reflector interface. In
that situation, tRef ⇡ tDif , so that, theoretically, the midpoint aperture tends to infinity. Under these cir-
cumstances, our strategy is to take the largest possible midpoint aperture, as long as the stacking traveltime
remains a reliable approximation of the traveltime of the observed event (see Figure 3 (right)). The above
argument justifies the choice of the DSR moveout, as it provides a better approximation of diffraction
traveltimes for large midpoints and also offsets.

To select optimal midpoint and half-offset apertures, �(m)

Dif and �(h)Dif to enhance diffractions using the
DSR moveout, we adopt the following strategy: For each sample, (m

0

, t
0

) on which the stacking will
performed, we take, as before,

�(h)Dif = �(h)CMP , (16)
namely, the aperture employed to estimate the matrix C using the CMP configuration. For the midpoint
aperture, �(m)

Dif , we propose here the choice

�(m)

Dif = �(h)Dif = �(h)CMP , (17)

namely, we take equal apertures in midpoint and half-offset.

EXAMPLE: REAL MARINE DATA

The proposed approach was applied to a 2D marine real dataset acquired offshore in Brazil with 4ms of
time sampling, 12.5 m between Common Midpoint (CMP) gathers with maximum fold of 60 traces. The
pre-processing steps applied on this data set can found in Faccipieri et al. (2013).

In order to demonstrate the effectiveness of the SSR estimation and stacking to enhance reflections, we
processed the data by (a) conventional CRS, based on the CRS traveltime of three parameters, A, B and C
of Equation (1) and (b) the alternative approach, which employs the SSR of two parameters, a and C, as
given by Equation (3). In both situations, we assume that velocity analysis has been previously carried out.
In this way, an estimation of NMO-velocities, vNMO, and offset (CMP) apertures, �(h)CMP are supposedly
available. We also assume that the dominant frequency of the data, w, has been already estimated.

Under these circumstances, we perform, for both CRS and SSR situations, global estimation of param-
eters. The last step for our imaging is stacking and here the choice of aperture is crucial. In both cases, we
used the apertures in midpoint and half-offset as prescribed by Equations (12) and (14).

Figure 4 compares three illustrative stacked traces under the use of CRS and SSR, respectively. The
corresponding entire sections are displayed in Figure 5. The results are very similar, with the SSR stack
slightly better, showing less high-frequency noise. However, since the proposed minimum aperture reduces
the influence of parameter B one can state that if a larger aperture in midpoints were used, the resulting
stacked section should be better.

Figure 6 shows a stacked section obtained with the CRS traveltime with the double of the minimum
aperture used on the previous example. Note that the resolution were compromised and the reflectors
heavily smoothed.

The results for diffraction enhancement using the proposed aperture in midpoint is shown on Figure 7
for SSR and DSR traveltimes. The apertures in offset direction for the SSR traveltime were three times
smaller them the ones used with the DSR traveltime to ensure both traveltimes yield reliable approxi-
mations. Nevertheless, the DSR showed better separation of events and almost no residual reflections as
expected, since it can use more traces to construct every sample on the stacked section. In order to illustrate
the differences between SSR and DSR approximations, Figure 8 shows the stacked section obtained using
SSR with the same apertures used generate Figure 7 (right). In this case, SSR traveltime could not adjust
to the diffractions on the longer offsets and produced blurred diffractions.

CONCLUSIONS

In the framework of CRS stacking, we propose an approach to reduce the number of parameters to be
estimated in order to obtain a stacked section with reflections or diffractions. The diffraction SSR trav-
eltime, which depends on less parameters than CRS, was investigated to stack reflection events. Stacked
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Figure 4: Comparison between three stacked traces, CMP’s 750, 1000 and 1250, with minimum aperture
in midpoint direction and large aperture in offset direction, obtained with the CRS traveltime, estimating
a, B and C (solid red line) and with SSR traveltime, estimating a and C (dashed blue line).

sections obtained with SSR with varying apertures were tested and in the case of small apertures in mid-
points, the results were slightly better and with lower computational cost to the ones obtained with the
conventional CRS with full-parameter (designed for reflections). In both cases, reflections are enhanced
and diffractions attenuated. Diffraction enhancement using SSR and DSR traveltimes were compared with
varying apertures. The DSR with large midpoint and offset apertures produced cleaner stacked sections
in which diffractions are enhanced and reflections attenuated. In addition, the quantification of small and
large apertures was defined using the PFZ for optimal imaging of reflections and diffractions.
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Figure 5: Reflection enhancement: Comparison between CRS (left) and SSR (right) stacked sections with
minimum apertures in midpoints and large apertures in offset direction. Note that SSR showed less high-
frequency noise.
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Figure 6: Reflection enhancement: Stacked section obtained with the CRS traveltime using the double of
the minimum aperture in midpoints. Note that the reflections were smoothed and resolution compromised.



Annual WIT report 2014 251

T
im

e
 (

s)

CMP bin number
500 1000 1500

1

1.5

2

2.5

3
T

im
e
 (

s)

CMP bin number
500 1000 1500

1

1.5

2

2.5

3

Figure 7: Diffraction enhancement: Comparison between SSR (left) and DSR (right) stacked sections with
the same apertures in midpoint direction. Note that DSR obtained better separation of events and almost
no residual reflections.
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Figure 8: Diffraction enhancement: Stacked section obtained with the SSR traveltime using the same aper-
tures used to obtain Figure 7 (right). Note that the reflections were smoothed and resolution compromised.
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