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ABSTRACT

Since the early days of seismic processing, time migration has proven to be a valuable tool for a num-
ber of imaging purposes. Main motivations for its widespread use include robustness with respect to
velocity errors, as well as fast turnovers and low computation costs. In areas of complex geology, in
which it has well-known limitations, time migration can still be value by providing first images and
also attributes, which can be of much help in further, comprehensive depth migration. Time migra-
tion is a very close process to the zero-offset common-reflection-surface (ZO CRS) stacking method,
in fact, Kirchhoff time migration operators can be readily formulated in terms of CRS parameters.
In the nineties, several studies have shown appealing advantages in the use of common-reflection-
point (CRP) traveltimes to replace conventional common-midpoint (CMP) traveltimes for a number
of stacking and migration purposes. In this paper, we follow that trend and introduce a Kirchhoff-type
prestack time migration algorithm, referred to as CRP time migration. The algorithm is based on a
CRP operator together with optimal apertures, both computed with the help of CRS parameters. Field
data example indicate the good potential of the proposed technique.

INTRODUCTION

Time migration is routinely applied in seismic processing to obtain first, time-domain, images in a fast
and inexpensive way. In many situations, typically mild to moderate laterally velocity variations, time
migration can yield satisfactory imaging solutions. Advantages of time migration include robustness (less
sensitivity to velocity errors), fast turnovers and low computational costs. Losses in image accuracy and
interpretation power (mainly associated with geological complexity and strong lateral velocity variations)
are well-known limitations of time migration, as compared to comprehensive depth migration (see, e.g.,
Hubral and Krey, 1980; Yilmaz, 2001; Robein, 2003). Because of noise reduction, collapse of diffractions
and triplications, time-migrated images can be of help in event picking, seismic tomography (Dell et al.,
2014), as well as time-to-depth conversion (Cameron et al., 2007; Iversen and Tygel, 2008).

The good properties of time migration motivates the search of more accurate algorithms to overcome
limitations and enlarge the applicability of time migration. As shown in the literature (Bancroft et al.,
1994; Perroud et al., 1999; Spinner and Mann, 2006; Coimbra et al., 2013), it is advantageous to replace
the conventional NMO (for CMP stacking) or diffraction (for time migration) operators by appropriate
common-reflection-point (CRP) operators, the latter being constructed, typically with common-reflection-
surface (CRS) parameters. Moreover, additional accuracy is also obtained by considering minimal, so-
called projected Fresnel Zone (PFZ), apertures (Schleicher et al., 1997), such apertures also being estimated
using CRS parameters.

In this paper, we follow the trend of performing Kirchhoff-type, time migration under the use of a
CRP operator and optimal apertures, both computed with the help of CRS parameters. The approach is
called CRP time migration. Besides describing the proposed technique, we briefly discuss the related
approaches, already available in the literature. A field data example confirm the good potential of the
proposed technique for accurate time migration.
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FORMULATION

The CRP time migration technique envisaged here is formulated as a Kirchhoff-type algorithm, in which
the migration operator is a CRP traveltime defined in terms of CRS parameters estimated from the prestack
data. Furthermore, the same CRS parameters also define a minimal aperture in which the Kirchhoff sum-
mation is optimally carried out.

The construction of the proposed CRP time migration is based on the relationships between the trav-
eltime operators of stacking (here represented by the ZO CRS diffraction traveltime) and time migration
(here represented by the double-square root (DSR) traveltime), in which both operators refer to the same
(unknown) target reflector. For simplicity, we assume that the acquisition surface is planar horizontal.

Notation: Both operators are defined on a same prestack data volume, with traces specified as (m,h), in
which m = (m

1

,m
2

)T and h = (h
1

, h
2

)T represent midpoint and half-offset coordinates. As usual prac-
tice, we assume that the application of the stacking operator produces a data volume that well approximates
the one obtained when the subsurface is illuminated by a ZO acquisition. In the same way, the application
of the time migration operator produces a prestack Kirchhoff time-migrated image of that subsurface.

The central point of the stacking operator (i.e., the point where the stacking output is assigned) is
denoted by (m

0

, t
0

), in which m

0

represents trace location and t
0

the traveltime in the ZO (stacked)
domain. More specifically, t

0

represents the two-way traveltime of the ZO reflection ray (assumed non-
converted primary) from the surface point specified by m

0

to the target reflector. That ZO ray is called the
central normal ray and supposed to be uniquely determined by m

0

. The point where the ZO central ray
hits the target reflector is referred to as the normal-incidence point (NIP).

In the same way, the central point of the time migration operator (i.e., the point where the time migration
output is assigned) is denoted by (x

0

, ⌧
0

), in which x

0

= (x
1

, x
2

)T represents trace location and ⌧
0

is the
two-way traveltime in the time migrated domain. The point at the surface specified by x

0

is determined
from the central image ray, which is the one that starts at NIP on the target reflector and hits the surface
with slowness vector perpendicular to that surface.

Stacking and time migration operators: With the notations described above, we are ready to write the
stacking and time migration operators under consideration. We recall that such operators are linked to
the same (unknown) target reflector. More specifically, the central ZO points (m

0

, t
0

) and (x
0

, ⌧
0

) of the
stacked and time migration operators relates to the same NIP at the target reflector by means of the central
ZO and image rays, respectively. We have

(a) Stacking operator: That is given by the ZO CRS diffraction moveout, defined in the prestack domain
and central point, (m

0

, t
0

) at the ZO (stacked) volume.

tDCRS(m,h) =
q

[t
0

+ a

T (m�m

0

)]
2

+ (m�m

0

)TC(m�m

0

) + h

T
Ch, (1)

(b) Time-migration operator: That is given by the double-square-root (DSR) moveout, defined in the
prestack domain and of central point (x

0

, ⌧
0

) in the time-migrated domain

tM (m,h) = (1/2)
q

⌧2
0

+ (m� h� x

0

)TS(m� h� x

0

)

+ (1/2)
q

⌧2
0

+ (m+ h� x

0

)TS(m+ h� x

0

) . (2)

In the literature, the time-migration quantity, S, is referred to as the sloth parameter. For later use, it is
convenient to write down the above traveltimes in the ZO configuration, namely tDZO(m) = tDCRS(m,0)
and tMZO(m) = tM (m,0). After a little algebra, we find

[tDZO(m)]2 = t2
0

+ 2t
0

a

T (m�m

0

) + (m�m

0

)T (aaT +C)(m�m

0

) , (3)

[tMZO(m)]2 = ⌧2
0

+ (m� x

0

)TS(m� x

0

) . (4)
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Relationships between coefficients of stacking and time migration operators: We now investigate
the link between the coefficients of the stacking and time migration operators related to the same target
reflector. For that, we consider stacking and time-migration ZO operators of Equations (3) and (4) in the
main text.

We suppose that the the central point (m
0

, t
0

) of the stacking operator is a reflection point in the ZO
(stacked) domain and, moreover, that point mapped to (x

0

, ⌧
0

) after time migration. Following, e. g., Mann
et al. (2000) (in the 2D situation) and Gelius and Tygel (2015) (in 3D case), we recall that the time-migrated
point, (x

0

, ⌧
0

), that corresponds to the ZO point (m
0

, t
0

), is the minimum (apex) of the stacking operator,
tDZO(m). As such, that apex, m = x

0

, is determined by the condition
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)] = 0 . (5)

Solving for m
0

and substituting into Equation (3), leads to the expressions

x

0

= m

0

� t
0

(aaT +C)�1

a , (6)

⌧
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= tDZO(x0

) = t
0
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Moreover, we also find

tDZO(m)2 = ⌧2
0
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)T
�
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T +C

�
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) , (8)

so that, comparison with the ZO time-migration operator tMZO(m) of Equation (4) leads to the additional
relations

S = aa

T +C , (9)

t2
0

= [tMZO(m0

)]2 = ⌧2
0

+ (m
0

� x

0

)TS(m
0

� x

0

) . (10)

We also observe that
C = 4V�2

NMO, and S = 4V�2

M , (11)

where VNMO and VM are the so-called NMO and time migration velocity ellipses, evaluated at (m
0

, t
0

)
and (x

0

, ⌧
0

), respectively. We note that, in the 2D situation, VNMO and VM represent the NMO and time
migration velocities, respectively.

CRP curve and CRP surface: In what follows, we assume that the quantities {m
0

, t
0

,a,C} are given.
That differs from the usual practice with the CRS method, in which the central point, (m

0

, t
0

) is given and
the CRS parameters a and C are estimated from the data and attached to that central point. Here, we the
four parameters {m

0

, t
0

,a,C} are all freely given. At a later stage, these four parameters will be estimated
regarding their relationship to a given central point (x

0

, ⌧
0

) in the time-migrated domain.
We recall that the CRP gather that pertains to a given central point, (m

0

, t
0

), assumed to be a reflection
point in the ZO (stacked) volume, consists of the source-receiver pairs, (SCRP (h), GCRP (h)) which, for
varying half offsets, h, share the same reflection point at the target reflector as the one (NIP) determined
by (m

0

, t
0

). As shown in Appendix A, the quantities {m
0

, t
0

,a,C}, determine the source SCRP (h) =
mCRP (h)� h and receiver GCRP (h) = mCRP (h) + h, in which the midpoints mCRP (h), is given by

mCRP (h) = m

0

+
2(hT

a)h

t
0

+
p

t2
0

+ 4(hT
a)2

. (12)

In the following, the CRP traveltime curve, tCRP (h) (see Figure 1) that refers to the quantities
{m

0

, t
0

,a,C} is chosen to be the one that results from the DSR traveltime applied to the CRP gather
that corresponds to such quantities. In symbols

tCRP (h) = tM (mCRP (h),h) . (13)
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For varying m in the neighborhood of m
0

and small varying h, the CRP stacking surface, TCRP (m,h)
(see Figure 1) that refers to the central point, (m

0

, t
0

), in the ZO (stacked) domain is chosen to be (see
Appendix A),

TCRP (m,h) = tCRP (h) + [aCRP (h)]
T [m�mCRP (h)] , (14)

with
aCRP (h) =

@tM
@m

(mCRP (h),h) . (15)
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Figure 1: 2D example of a CRP curve computed on (m
0

, t
0

) for a synthetic dipping plane reflector. Note
that the CRP curve follows the migration surface (starting at (x

0

, ⌧
0

)) along the offsets and also is tangent
to the reflection traveltime (CRP stacking surface). In constrast, the CMP curve was not able maintain this
adjustment along the offsets.

CRP TIME MIGRATION ALGORITHM

Our aim now is to apply the previous results to construct a CRP time migration traveltime, tMCRP =
tMCRP (h), and CRP time migration surface, TM

CRS = TM
CRS(m,h) that refer to a given (central)

image point, (x
0

, ⌧
0

), in the time migration domain. For that, we need to estimate the quantities,
{mM

0

, tM
0

,aM ,CM}, that pertain to the given (x
0

, ⌧
0

) in the time-migrated domain.
From Equations (6)-(7), we readily see that

m

M
0

= x

0

+ ⌧
0

⇥

1� a

T
MS

�1

M aM

⇤�1/2
(S�1

M aM ) ,

tM
0

= ⌧
0

⇥

1� a

T
MS

�1

M aM

⇤�1/2
,

(16)

where we used the notation
SM = aM a

T
M +CM . (17)

From Equations (16), we readily see that our problem reduces to find the parameter pair (aM ,CM ). Once
these quantities are obtained, the sought-for CRP curve and surface are given by

tMCRP (h) = tDSR(m
M
CRP (h),h) ,

TM
CRP (m,h) = tMCRP (h) + [aMCRP (h)]

T [m�m

M
CRP (h)] ,

(18)
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where m

M
CRP and a

M
CRP are the same functions as their counterparts mCRP and aCRP , computed, how-

ever, with the quantities {mM
0

, tM
0

,aM ,CM}.

Time migration parameter estimation: We are now ready to address the problem of estimating the
parameters aM and CM , from which the central point, (mM

0

, tM
0

), as well as the CRP curve, tMCRP (h),
and CRP surface, TM

CRP (m,h), are obtained. That is simply done as follows: For a user-selected ensemble
of trial parameters {a,C}, construct for each of them the CRP surface, TCRP (m,h) and compute the
stacking energy (semblance) along that surface. The parameter pair for which the maximum energy is
attained is the one to be selected.

The estimations indicated above require proper apertures in midpoint and half-offset directions. The
aperture in midpoint direction is attached to the estimation of the midpoint inclination, aMCRP , of the CRP
surface for varying offsets. Since a is the first derivative in midpoint, only a small aperture is needed and
experiments. In our 2D experiments, we found that aperture sizes of five traces for each offset are enough.
Based on these results, in the 3D case, we recommend the same aperture size in inline and crossline
directions (i.e., totaling 25 traces in regular grid for each offset). In offset direction, the aperture should be
the same as in any prestack time migration. Thus, in the 3D case, the number of traces considered on each
estimation of aM and CM is the number of midpoint traces times the number of offsets.

Computation of CRP time migration: As earlier indicated, we propose Kirchhoff-type time migration
such that, for each output image point, stacks the prestack data along the CRP surface that corresponds to
that output point. as stacking migration using the CRP surface that refers to the image point. In analogy of
the well-established Kirchhoff depth migration (see, e.g., Schleicher et al., 1993), the CRP time migration
is computed by an expression that has the form

DM
CRP (x0

, ⌧
0

) = � 1

2⇡

Z

A

WM
CRP [@tD]t=tMCRP

dmdh . (19)

Here, DM
CRP (x0

, ⌧
0

) is the time migration output at the image point, (x
0

, ⌧
0

), D = D(m,h, t) is the
prestack data. As well known (see, e.g., Schleicher et al., 1993), the partial derivative of the data,
@tD(m,h, t) with respect to time is applied to preserve the original time shape of the seismic signal.
Moreover, tMCRP = tMCRP (m,h) represents the CRP surface that refers to the (output) image point.

The quantity WM
CRP represents the weight function that aims in recovering of the amplitudes. Based

on Zhang et al. (2000), we use the true-amplitude weight for a locally homogeneous medium of matrix
migration velocity determined by the matrix S (see Equation (11)),

WM
CRP =

⌧
0

p
detS

4(�h)2

✓

1

tS
+

1

tG

◆✓

tS
tG

+
tG
tS

◆

, (20)

to measure the amplitudes stacked along of the diffraction manifold in Equation (19). The values tS and
tG are defined in (A-2) and (A-3), respectively.

The migration aperture, denoted A represents the region over which the migration integral is performed.
Based on the concept of Projected Fresnel Zone (PFZ) (Schleicher et al., 1997), the aperture A is proposed
to consist of points (m,h) which simultaneously satisfy the conditions

km�mCRP (h)k < �m and khk < �h , (21)

where, �m and �h are midpoint and half-offset aperture bounds. Here, the aperture bound in half-offset
direction, �h, is taken as the one used in any prestack time migration. Following the same lines as in
Faccipieri et al. (2015), the aperture bound in midpoint direction, �m can be given by

�m = ↵

s

wtM
0

�C
, (22)

where, |�C | = max{|�C1

|, |�C2

|}, in which �C1

and �C2

are the eigenvalues of the 2⇥2 symmetric matrix
C, w is the length of the seismic pulse. Moreover, t0M is the ZO traveltime that is given by Equation (16), in
terms of the CRS parameters, {aM ,CM}, that pertain to the (output) image point (x

0

, ⌧
0

). Finally, ↵ > 1
is a user-selected adjustment parameter.
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2.5D situation: In the case of 2D dataset, the above-described time-migrated algorithm needs to be mod-
ified so as to yield 3D meaningful amplitudes after integration on a single seismic line. To overcome this
situation, we adopt the so-called 2.5D assumption, which considers that the geological properties of the
medium do not vary in the out-of-plane direction of the seismic line, at the same time maintaining the 3D
character of a point source and point receiver. In this case, the out-of-plane influence to the amplitudes can
be accounted for from in-plane information only. More information on 2.5D media can be found in, e.g.,
Bleistein (1986). In 2D seismic data, the parameters a and C become the scalars, having the form

a = a

T
u✓ and C = u

T
✓ Cu✓ (23)

with
u✓ = (cos ✓, sin ✓)T , (24)

where ✓ is the acquisition azimuth. The midpoint and offsets coordinates also changes with the azimuth
and are given by

m = mu✓ and h = hu✓. (25)

In the 2.5D situation, the CRP time migration integral, Equation (19), becomes

DM
CRP (x0

, ⌧
0

) =
1p
2⇡

Z

A

WM
2.5D

h

@1/2
t D

i

t=tMCRP

dmdh (26)

where the operator @1/2
t represents the anti-causal half-derivative in time (see. e.g., Bleistein, 1986). For

the weight function, Equation (20), we use the expression derived on Zhang et al. (2000), namely

WM
2.5D =

⌧
0

2�h

r

1

tS
+

1

tG

✓

tS
tG

+
tG
tS

◆

. (27)

The aperture bound in midpoint is now given by (compare with Equation (22) for the 3D case)

�2.5Dm = ↵

r

wtM
0

C
. (28)

The aperture bound in half-offset, �h is, once more, the one used in any time-migration algorithm.

EXAMPLES

The proposed CRP time migration was applied to a 2D real dataset acquired offshore in Brazil at Jequit-
inhonha basin. The dataset has 4 ms time sampling, 12.5 m between Common Midpoint (CMP) gathers,
25 m between hydrophones with minimum and maximum offsets of 150 m and 3125 m, respectively. For
comparison purposes, Figure 2 (left) shows a CRS stacked section obtained with global estimation of pa-
rameters with the following apertures: (i) Midpoint: 30 m from zero to 1.3 s, increasing linearly until
150 m at 3.5 s and constant until the maximum time sample. (ii) Offset: 650 m from 0 to 1.3 s, increasing
linearly until 1050 m at 3.5 s and constant until the final time, 6.0 s. A conventional post-stack Kirchhoff
time-migrated section constructed with that dataset is shown at Figure 2 (right). The migration aperture
that has been used was ten times greater than the minimum aperture proposed, ↵ = 10 in Equation (28).
We observe that, under that conventional procedure, smaller apertures were not able to image some of
the dips present in the data. To carry out the CRP time migration, the CRS parameters a and C must be
estimated using TM

CRP from Equation (18). In the present example, the estimations were performed us-
ing constant midpoint and half-offset apertures of 50 m and 1000 m, respectively. Once these parameters
were estimated, for each (x

0

, ⌧
0

), the dataset was migrated, considering the 2.5D case formulation, given
by Equations (26)-(27). The obtained time-migration section is shown in Figure 3 (left). The migration
apertures were calculated using Equation (28) for each (mM

0

, tM
0

) with ↵ = 1 and w = 40 ms which leads
to different values of apertures depending of CM and tM

0

. Figure 3 (right) shows the semblance values for
the estimated parameters. It is possible to identify and quantify the regions where the CRP surface adjusted
the events properly. The semblance panel can be seen as valuable tool for the purposes of evaluation and
quality control of the CRP time migration.
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Figure 2: Stacked section obtained with CRS method (left) and its post-stack Kirchhoff migration with
aperture ten times greater (↵ = 10) than the proposed minimum aperture in midpoints (right). Remark:
The velocity model used to migrate the dataset was obtained by the CRP time migration.
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Figure 3: Left: Prestack time-migrated section obtained with the proposed CRP algorithm using the mini-
mum apertures in midpoint. Right: Semblance obtained on the estimation of parameters for each (x
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, ⌧
0

).

Using the same velocity model estimated before, two conventional prestack Kirchhoff time migration
were perfomed varying only the migration apertures aiming to examinate their influence on final result.
Figure 4 shows theses migrated sections with ↵ = 1 (left) and with ↵ = 10 (right). For the minimum
migration aperture, ↵ = 1, some of the dips were not imaged and the reflections appear unfocused. This
is expected since the conventional time migration is not able to indentify the region where the constructive
interference occurs. In practice, larger migration apertures are used to avoid this limitation. Figure 4 (right)
shows an example where the migration aperture was ten times greater and it is possible to observe that the
features present on Figure 3 (left) were imaged. However, the noise levels between these two results are
considerable which justifies the application of the proposed method.
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Figure 4: Left: Prestack migrated section obtained with conventional Kirchhoff time migration using the
minimum aperture in midpoints, ↵ = 1. Right: Same procedure using ↵ = 10.

CONCLUSIONS

A Kirchhoff-type, time migration algorithm is proposed that is optimal in two respects. First, the sum-
mation is performed along the common-reflection-point (CRP) curve (as opposed to the conventional
diffraction-time hyperbola). Second, a small aperture, associated to the projected Fresnel zone (PFZ),
is employed that is able to restrict the summation to that part of the CRP curve where constructive interfer-
ence occurs. A key feature of the algorithm is a transformation function that maps each given image point
into a corresponding point in the ZO (stacked) volume and also computes the zero-offset (ZO) common-
reflection-surface (CRS) parameters there. Such quantities are used to construct the CRP curve and the
summation aperture at each image point. First field-data examples confirm the good potential of the new
technique for high-quality, time migration results.
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APPENDIX A

EXPRESSION OF CRP TRAJECTORY

We now focus our attention on the construction of the CRP operator that refers to a given time-migration
sloth parameter, S and time-migration central point, (x

0

, ⌧
0

). For that, start with the time migration opera-
tor of Equation (2) for a fixed half-offset, which we recast in the more convenient form

tM (m,h;x
0

, ⌧
0

) = tS(m,h;x
0

, ⌧
0

) + tG(m,h;x
0

, ⌧
0

) , (A-1)

with tS = tS(m,h;x
0

, ⌧
0

) and tG = tG(m,h;x
0

, ⌧
0

) given by

t2S =
⌧2
0

4
+

1

4
(m� h� x

0

)TS(m� h� x

0

) , (A-2)

t2G =
⌧2
0

4
+

1

4
(m+ h� x

0

)TS(m+ h� x

0

) . (A-3)

Note the change in notation in the above expressions, in which the dependence on the time-migration
central point, (x

0

, ⌧
0

), is made explicitly. Introducing the notation �m = m � m

0

and also using
Equation (10) to replace ⌧2

0

in Equations (A-2) and (A-3), we can recast the time-migration traveltime,
tM (m,h;x

0

, ⌧
0

), of Equation (A-1) into the modified form, more convenient to our purposes,

t(m0,t0)
M (m,h;x

0

) = t(m0,t0)
S (m,h;x

0

) + t(m0,t0)
G (m,h;x

0

) , (A-4)



240 Annual WIT report 2014

where

4[t(m0,t0)
S ]2(m,h;x

0

) = t2
0

+ (�m� h)TS(�m� h) + 2(m
0

� x

0

)TS(�m� h) , (A-5)

4[t(m0,t0)
G ]2(m,h;x

0

) = t2
0

+ (�m+ h)TS(�m+ h) + 2(m
0

� x

0

)TS(�m+ h) . (A-6)

Geometrical interpretation of t(m0,t0)
M (m,h;x

0

): The time-migration traveltime of Equations (A-4)-
(A-6) admit the following appealing interpretation: Consider the isochrone in depth domain specified by
the central point (m

0

, t
0

). That isochrone is taken only conceptually because we do not have a depth-
velocity model. For any point, P , on that isochrone, specified by the lateral coordinate, x

0

, and for every
fixed half-offset, h, Equation (A-4) represents the (DSR) traveltime that refers to the point diffractor the P
under common-offset configuration of half-offset, h.

For varying point diffractors along the isochrone (as specified by correspondingly varying coordinate
vectors, x

0

, an ensemble of diffraction surfaces are obtained. Such ensemble has, as an envelope, the
reflection response of the isochrone, taken as a reflector, also under the same common-offset configuration
specified by h. In order to determine the envelope of the ensemble of diffraction surfaces parameterized by
x

0

, We apply the so-called envelope condition

@tM
@x

0

(m,h) = 0 . (A-7)

In view of the expressions

@t2S
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= 2tS
@tS
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0

= �S(�m� h) ,

(A-8)
@t2G
@x

0

= 2tG
@tG
@x

0

= �S(�m+ h) .

Using Equation (A-8) in Equation (A-7), leads to

1

tS
S(�m� h) +

1

tG
S(�m+ h) = 0 , (A-9)

which transforms into
tG(�m+ h) = �tS(�m� h) . (A-10)

Squaring both sides of the above equation and after a little algebra, we obtain

x
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= m

0

+
4t2

0

S
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h

T
h��m

T�m

. (A-11)

Substitution of Equation (A-11) into Equations (A-5) and (A-6), we find the expression

[tRISO(m,h;m
0

, t
0

)]2 = h

T
Sh+

t2
0

h

T
h

h

T
h��m

T�m

. (A-12)

Geometrical interpretation of tRISO(m,h): Consider a fixed half-offset, h. Equation (A-12) represents
the reflection traveltime of the ZO isochrone that refers to the central point, (m

0

, t
0

), taken as a depth
reflector, under the common-offset configuration of that fixed half-offset. Let us suppose now that the ZO
reflection traveltime of the target reflector is given by the expression t

0

= t
0

(m
0

). For varying points
(m

0

, t
0

(m
0

)) on that reflection curve, the traveltime functions of Equation (A-12) constitute an ensemble
of reflection traveltimes of isochrones, parameterized by the midpoints, m

0

. The envelope of that ensemble
is obtained by the condition
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0

, t
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Under the consideration that
@tRISO

@m
0

=
1

2tRISO

@[tRISO]
2

@m
0

, (A-14)

we find
2a(hT

h��m

T�m) + t
0

�m = 0. (A-15)

The above quadratic equation in �m = �mCRP = mCRP �m

0

, which mCRP is given by Equation (12)
in the main text.


