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ABSTRACT

Current multi-parameter stacking techniques aim to include higher order terms in the traveltime move-
out surface. Without increasing the number of parameters, this goal is commonly achieved by assum-
ing a certain reflector geometry and straight raypaths. In the presence of heterogeneity, as a conse-
quence, moveout is described in an auxiliary medium. Although modern methods are usually based
on the same set of parameters, we show that they can be divided into two types of approximations,
one assuming an effective medium, the other describing the optical analogue in a medium of constant
near-surface velocity. Based on ideas of de Bazelaire and Höcht et al., we present optical represen-
tations of effective medium operators currently in use. In addition, we clarify the unique role of the
multifocusing method, theoretically and with synthetic examples, and point out distinct advantages of
both approaches.

INTRODUCTION

Stacking still plays a fundamental role in seismic data processing. While the summation itself helps to
decrease data redundancy and leads to a first interpretable time image with a high signal-to-noise ratio, the
estimated parameters form the foundation of many important subsequent processing steps, including depth
imaging.

In contrast to the classical NMO/DMO approach, recent works have indicated that even for complex
settings, a macro-velocity model is not needed to perform all important time imaging tasks (e.g. Mann,
2002). Extending ideas of de Bazelaire (1988), the common reflection surface (CRS) stack takes
neighbouring CMP gathers into account. It is based on three surface-related kinematic wavefield attributes,
which are closely related to first- and second-order derivatives of the traveltime near the reference ray. In
addition to the well-known parabolic and hyperbolic formulae (e.g. Jäger et al., 2001), several higher-order
approximations exist, which all depend on the very same set of parameters.

In this work, we argue that without increasing the number of parameters, all higher-order approxima-
tions are based on the concept of straight rays, and consequently describe moveout in an auxiliary medium
of constant velocity. Depending on the incorporation of parameters, the actual subsurface model is either
replaced by a medium with effective properties or the method describes traveltime differences for the
optical analogue in a medium of constant near-surface velocity.

Based on suggestions by de Bazelaire (1988) and Höcht et al. (1999), we establish a connection
between both domains and provide a general recipe with which all effective medium operators can be
transformed to their surface-based optical representations. Following this recipe, we introduce transformed
versions of the hyperbolic CRS operator and the implicit CRS (i-CRS) approach by Vanelle et al. (2010)
and Schwarz et al. (2012), which are both based on an effective medium.
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Figure 1: In the classical CMP stack, a vertically inhomogeneous model is replaced by an effective medium
with the velocity vRMS , denoting the root-mean-square velocity (left). The shifted hyperbola accounts for
inhomogeneity by shifting the reference time tp (right).

The multifocusing method (MF, Gelchinsky et al., 1999) in contrast, being closely related to de
Bazelaire’s shifted hyperbola, has properties of an optical approach. Supporting these findings, both,
multifocusing and the transformed i-CRS operator, turn out to perform equivalently for a simple syn-
thetic example as well as the more complex Sigsbee 2a synthetic dataset. Concluding this paper, we
shortly discuss distinct advantages of both concepts from a physical and an implementational point-of-view.

AUXILIARY MEDIA

In the classical CMP stack (Mayne, 1962), the summation operator is a hyperbolic expression, which is
only exact for a planar reflector and a constant velocity overburden. For the inhomogeneous case, the actual
model is replaced by an effective medium with constant velocity. Thus, the NMO hyperbola is intrinsically
based on the assumption of straight rays. De Bazelaire (1988) suggested an alternative strategy to account
for heterogeneity by utilizing simple concepts of geometrical optics. In his approach (see Figure 1), not
the velocity changes, but the centre of coordinates. Since this corresponds to the application of a shift in
time rather than in velocity, de Bazelaire’s shifted hyperbola, which depends only on the velocity near the
surface, can be considered a macro-model independent time imaging method.

OPTICAL REPRESENTATIONS

De Bazelaire’s shifted reference tp (see below) is the zero-offset time in the optical image space of constant
near-surface velocity v0. It can be formulated in terms of the radius of curvature RNIP of the fundamental
NIP wavefront (Hubral, 1983), which leads to an appealing geometrical interpretation (see Figure 2):

tp =
2RNIP
v0

. (1)

Höcht et al. (1999) found that this interpretation not only holds for a layered medium, which was initially
considered by de Bazelaire, but also for the general case of lateral inhomogeneity (compare Figure 2).

Due to coefficient comparisons, so-called osculating equations can be gained. These connect the effec-
tive to the surface-based attributes. Inspired by the work of Höcht et al. (1999), we suggest the following
strategy to transform effective-medium-based traveltime operators to the optical image space:

1. Replace the actual zero-offset traveltime t0 by its optical analogue (1),

2. Subtract the time shift tp − t0 from the total traveltime.

In the following section, we apply this strategy to the hyperbolic CRS operator and the recently introduced
implicit CRS, and shortly elaborate on the role of the multifocusing approximation.
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Figure 2: The optical methods approximate the moveout with the help of projections. A fictitious point
source initiated at P in the actual model is assumed to produce the same measured wavefront as if the
energy stemmed from point P’ in a medium of constant near surface velocity v0.

Hyperbolic CRS

The CRS stack is an extension of the classical CMP stack, in which summation not only takes place in
offset (h) but also in midpoint (xm) direction. The hyperbolic CRS operator is closely related to the NMO
hyperbola and thus describes traveltimes in an auxiliary medium of effective properties. According to
Hertweck et al. (2007), it can be written as

t2(∆xm, h) =

(
t0 +

2 sinα

v0
∆xm

)2

+
4∆x2

m

v2
CMO

+
4h2

v2
NMO

, (2)

where x0 is the horizontal position of the central midpoint and vCMO is a curvature dependent analogue of
the NMO velocity. The connection of the two velocities to the surface-based kinematic wavefield attributes
α, RNIP and RN (Hubral, 1983) is established by the following set of osculating equations,

v2
NMO =

2v0RNIP
t0 cos2 α

, (3a)

v2
CMO =

2v0RN
t0 cos2 α

. (3b)

Like in the offset situation, the curvature-dependent velocity combines the wavefield attributes with the
zero-offset traveltime. As a result, the CRS moveout also depends on t0, which is characteristic for an
effective-medium-based approach.

By the transformation according to the suggested recipe, we arrive at the optical representation of the
CRS stack formula, (

t− t0 +
2RNIP
v0

)2

=
4

v2
0

[
(RNIP + sinα∆xm)

2

+ cos2 α

(
RNIP
RN

∆x2
m + h2

)]
, (4)

which was also developed by Höcht et al. (1999). For horizontal layering (α = 0) and vanishing midpoint
displacement (∆xm = 0), this shifted CRS equation reduces to de Bazelaire’s shifted hyperbola. It is
important to note that, like for the CMP setting, the moveout becomes independent of the zero-offset
traveltime and is purely described by surface-related attributes.
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Implicit CRS

The i-CRS operator evaluates the reflection traveltime from a locally circular interface and is a pure double-
square-root expression (Vanelle et al., 2010),

t(∆xm, h) = ts + tg , (5)

ts =
1

V

√
(∆xm − h−∆xc −R sin θ)

2
+ (H −R cos θ)

2
,

tg =
1

V

√
(∆xm + h−∆xc −R sin θ)

2
+ (H −R cos θ)

2
,

where

tan θ =
∆xm −∆xc

H
+
h

H

ts − tg
ts + tg

, (6)

and ∆xc = xc − x0. The link to the surface-related attributes is again established via a set of osculating
equations, which, similar to (3) combine the wavefield attributes with the reference traveltime (Schwarz
et al., 2012),

V =
vNMO√

1 +
v2NMO

v20
sin2 α

, (7a)

xc = x0 −
RN sinα

cos2 α
(

1 +
v2NMO

v20
sin2 α

) , (7b)

H =
v0RN

vNMO cos2 α
(

1 +
v2NMO

v20
sin2 α

) , (7c)

R =
v0RN

vNMO cos2 α −
vNMOt0

2√
1 +

v2NMO

v20
sin2 α

, (7d)

with vNMO defined according to (3a). The traveltimes of the up- and downgoing ray segments are coupled
via the angle θ, which can be updated recursively following (6). The quantity R represents the radius and
(xc, H) denotes the position of the center of the circle approximating the reflector segment. Please note
that ∆xm −∆xc = xm − xc. While for a homogeneous overburden these parameters are directly linked
to the subsurface geometry, they become effective properties for the heterogeneous case.

Following the transformation recipe, relations (7) simplify to

V = v0 , (8a)
xc = x0 −RN sinα , (8b)
H = RN cosα , (8c)
R = RN −RNIP , (8d)

and the shifted i-CRS traveltime becomes

t− t0 +
2RNIP
v0

= ts(v0, α,RNIP , RN ) + tg(v0, α,RNIP , RN ) . (9)

Like the shifted CRS moveout (see equation (4)), the shifted i-CRS moveout is independent of the zero-
offset traveltime t0 and entirely described in the auxiliary medium of constant near-surface velocity v0.

Multifocusing

Gelchinsky et al. (1999) introduced a double-square-root expression for the traveltime that depends on the
same set of parameters as the CRS method, namely the kinematic wavefield attributes α, RNIP and RN .



154 Annual WIT report 2013

(a) (b)

(c) (d)

Figure 3: Underlying model (a) and corresponding semblance distributions for multifocusing (b), conven-
tional i-CRS (c), and the shifted i-CRS expression (d).

Their operator describes the traveltime of a reflection event in terms of the traveltime of a central ray and
corrections applied at source and receiver for a paraxial ray,

t(∆xs,∆xg) = t0 + ∆ts + ∆tg , (10a)

∆ts =

√
R2
s + 2Rs∆xs sinα+ ∆x2

s −Rs
v0

, (10b)

∆tg =

√
R2
g + 2Rg∆xg sinα+ ∆x2

g −Rg
v0

, (10c)

where the radii Rs and Rg are functions of the CRS attributes (for details see, e.g., Landa et al., 2010).
Please note that these two radii and, consequently, the multifocusing moveout does not depend on the
zero-offset traveltime. In addition, (10a) can be rewitten in a time shift notation,

t− t0 +
Rs +Rg

v0
= ts(v0, α,Rs) + tg(v0, α,Rg) ,

with ts = ∆ts+Rs/v0 and tg = ∆tg +Rg/v0. It reduces to de Bazelaire’s shifted hyperbola for the CMP
configuration, implying that it is natively based on concepts of geometrical optics.

SYNTHETIC EXAMPLES

To get a better idea how the optical representations behave in an actual data application, we have
investigated two synthetic examples of different complexity. The first example considers the diffraction
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Figure 4: While effective media change their properties for each time sample due to their dependency
on the reference time t0 (left), the moveout for the optical methods is purely surface-related and may be
precalculated in grid-based parameter searches (right).

case in a constant vertical velocity gradient medium v = 2000 m/s+γz, with γ ranging from 0 for the
homogeneous case to 1.5 s−1, representing strong vertical inhomogeneity. A sketch of the gradient model
can be found in Figure 3(a).

Figure 3 shows the achieved semblance values of multifocusing and both, conventional i-CRS
(expressions (5) with (7)) and its optical representation (equations (9) and (8)) as a function of the distance
from the apex and the strength of the gradient. Multifocusing (Figure 3(b)) provides a good description for
moderate and small gradients. However, it shows a rapidly decreasing performance for stronger gradients
and larger distances to the apex. The conventional i-CRS operator, in turn, despite being parameterized
with the same attributes and having the same double-square-root shape, turns out to be considerably
less affected by heterogeneity. The shifted version of the i-CRS approximation reveals exactly the same
semblance distribution as multifocusing, indicating that time-shift-based parameterizations are less suited
to account for inhomogeneity than their effective medium counterparts (compare Figure 3(c) and 3(d)).

The same behaviour occurs for the more complex Sigsbee 2a synthetic dataset. In Figure 5, the sem-
blance deviations between both i-CRS operators and multifocusing are displayed. While the differences are
noticeable for conventional i-CRS, they mostly vanish for the shifted approach. Observe in Figure 6 that
the conceptual connection of shifted i-CRS and multifocusing also shows in the estimation of the attributes.

PRACTICAL CONSIDERATIONS

The synthetic examples indicate that the auxiliary medium underlying the parameterization of a stacking
operator has an impact on its performance for stronger overburden heterogeneity. Since the zero-offset
traveltime is used as input in the stacking procedure, it serves as a direct link to the data und thus to the
actual subsurface model. The effective medium parameters in that sense are linked to the model, since
they all have in common that t0 is combined with the surface-related attributes in the osculating equations.
As a result, the traveltime moveout always depends on t0 for these operators, resulting in wavelet stretch
during moveout correction.

The optical methods on the other hand reveal a high potential for efficient implementation (see Figure
4). Since moveout is always independent of the zero-offset traveltime, grid-based parameter searches can be
accelerated by precalculating all possible moveouts outside of the time loop. While the effective medium
parameters change for each time sample, the optical representations describe the moveout always in the
same medium of constant v0.

CONCLUSIONS

We found that current multiparameter stacking techniques can be divided into two groups of approxima-
tions, one assuming an effective medium, the other dealing with projections in the optical image space.
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While the hyperbolic CRS operator is closely related to the NMO hyperbola, which substitutes the actual
subsurface model by a medium of a constant effective velocity, the multifocusing method reveals a strong
link to the shifted hyperbola by de Bazelaire, which is an optical approach. The implicit CRS, like hy-
perbolic CRS, is an effective medium operator. Based on ideas of de Bazelaire and Höcht et al., we have
presented a general recipe that allows for a simple transformation from the effective medium to optical im-
age space. Applied to CRS and i-CRS we introduced time-shifted versions, i.e. optical representations of
both operators. Synthetic examples reveal that the effective-medium-based conventional i-CRS operator is
only mildly affected by overburden heterogeneity, whereas the shifted counterpart shows considerably de-
creased quality for higher gradients. Multifocusing, being a native optical image space approach, showes
the exact same behaviour for the considered gradient example, as well as for the complex Sigsbee 2a
dataset. Since moveout in image space is independent of the zero-offset traveltime, the optical methods are
less suited to account for strong inhomogeneity but promise a high potential for efficient implementation,
because moveouts can be precalculated in grid-based parameter searches.
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Figure 5: Difference in semblance for a part of the Sigsbee 2a model. Multifocusing is compared (a)
with conventional i-CRS and (b) with the shifted i-CRS operator. Conventional i-CRS, being an effective
medium formula, shows higher semblance values than the optical methods for medium to large distances
to the diffraction apices.
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Figure 6: Difference in RNIP for a part of the Sigsbee 2a model. Multifocusing is compared (a) with
conventional i-CRS and (b) with the shifted i-CRS operator and serves as the reference. While shifted
i-CRS and multifocusing provide similar estimates throughout the section, i-CRS differs noticeably.


