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ABSTRACT

When migrating more than one shot at the same time, the nonlinearity of the imaging condition causes
the final image to contain the so-called crosstalk, i.e., the results of the interference of wavefields as-
sociated with different sources. In this work, we study various ideas of using weights in the imaging
condition, called encoding, for the reduction of crosstalk. We combine the ideas of random phase
and/or amplitude encoding and random alteration of the sign with additional multiplication with pow-
ers of the imaginary unit. This procedure moves part of the crosstalk to the imaginary part of the
resulting image, leaving the desired crosscorrelation in the real part. In this way, the final image is
less impaired. Our results indicate that with a combination of these weights, the crosstalk can be re-
duced by a factor of 4. Moreover, we evaluate the selection procedure of sources contributing to each
group of shots. We compare random choice with a deterministic procedure, where the random num-
bers are exchanged for numbers similar to those of a Costas array. These numbers preserve certain
properties of a random choice, but avoid the occurrence of patterns in the distribution. The objective
is to avoid that nearby sources can be added to the same group of shots, which cannot be guaranteed
with a random choice. Finally, we show that the crosstalk noise can be reduced after migration by
image processing.

INTRODUCTION

Because of the great effort needed to migrate data from an acquisition consisting of a large number of
sources, as required in 3D seismics, blended-shot migration processes data from more than one source
simultaneously (Temme, 1984). This idea is based on the observation that the (full or one-way) wave
equation is a linear operation, i.e., the wavefield produced by a set of sources is equal to the sum of the
wavefields produced by each source acting alone.

The problem with this procedure arises when applying the image condition, conventionally a cross-
correlation (Claerbout, 1971) between the wavefield propagated down from source and the recorded field,
backpropagated from the receivers. When migrating shot groups, we replace the individual fields associ-
ated with a single source by a sum over a shot group. The result is a modified imaging consisting of two
contributions, one being the desired image and other the interference from fields associated with different
sources, called crosstalk. Thus, this procedure is only feasible in practice, if the crosstalk is considerably
smaller than the desired image. Since the number of individual crosstalk contributions is higher than that
those to the image, measures must be taken to reduce each of them in comparison to the desired image.

Several ideas on how to achieve the reduction of crosstalk have been discussed in the literature, based
on the encoding of the sources, i.e., the inclusion of weights in the imaging condition. Ideally, we would
like to choose the weights such that the resulting crosstalk matrix equals the unit matrix (Godwin and Sava,
2013, see also references there). This would mean no crosstalk. As this cannot be satisfied exactly, we
need the best possible approximation.
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One of the first proposals of shot encoding was plane-wave migration (Temme, 1984). The work of
Romero et al. (2000) contains several proposals for phase encoding (linear, random, by frequency modula-
tion – chirp). However, the noise reduction achieved in that study was not sufficient to allow for the sum
of large numbers of sources. Other ideas include the alteration of the sign (Sun et al., 2002), source mod-
ulation (Soubaras, 2006), phase encoding using gold codes (Guerra and Biondi, 2008), random amplitude
encoding (Godwin and Sava, 2010) and source decimation (Godwin and Sava, 2011). Godwin and Sava
(2013) provide a comparison of several ideas of encoding.

In this work we combine the ideas of random phase and amplitude encoding and sign alteration with
additional multiplication with the weight wgk = w̃gk = ig . In this way, half the crosstalk passes to the
imaginary part of the resulting image, while the desired image is unchanged. Thus, the real part of the
modified image is less affected by crosstalk.

Additionally to encoding, we evaluate the influence of the choice of sources contributing to each shot
group. We compare the random choice with a procedure, where the random numbers are exchanged for
numbers similar to those of a Costas array (Costas, 1965; Golomb and Taylor, 1984; Drakakis and Rickard,
2010). These numbers preserve certain properties of a random choice, but avoid the occurrence of patterns
in the distribution. The goal is to avoid coherent energy in the crosstalk by making sure that nearby sources
cannot be added to the same shot group, which cannot be guaranteed with a random choice.

Finally, under the hypothesis that the crosstalk behaves like random noise with zero mean, we apply a
denoising technique borrowed from image processing to the results of a blended-shot migration.

BLENDED-SHOT MIGRATION

Wave-equation migration consists of two basic parts. The first part is the downward propagation of the
source and receiver wavefields into the subsurface domain to be imaged. The second part is the application
of an imaging condition to distinguish potential reflection points from points with no reflectivity under the
current seismic survey.

The propagation part consists of the numerical solution of the (full or one-way) wave equation. Since
the wave equation is a linear operation, the wavefield produced by a set of sources is equal to the sum of
the wavefields produced by each source acting alone. Mathematically, we can write

L

N∑
k=1

Uk =

N∑
k=1

LUk , (1)

where L denotes the wave-equation operator under consideration, Uk denotes the wavefield to be propa-
gated, associated with source number k, and N is the number of simultaneously described wavefields.

Thus, the wave-propagation part of wave-equation migration can be carried out with several wavefields
at once. Unfortunately, the same is not true for the imaging condition. Each individual image is constructed
by crosscorrelation between the wavefield propagated down from source (Dk) and the recorded field, back-
propagated from the receivers (Uk), at the same level in depth. The final image is then determined by the
sum of the individual images of all common-shot gathers, i.e., the final image at each point x is obtained
as

I(x) =

N∑
k=1

Uk ⊗Dk , (2)

where the operator ⊗ denotes the crosscorrelation.
As we can see from equation (2), the imaging condition is nonlinear. If we want to migrate K shot

groups, we need to replace in equation (2) the individual fields associated with single sources by a sum
over a shot group. Thus, we obtain

Ĩ(x) =

G∑
g=1

(
K∑
k=1

Uk

)
g

⊗

 K∑
j=1

Dj


g

= I + C , (3)

where the sum over g represents the sum over groups and the other two sums are those over the shots
constituting the groups. Therefore, the result is a modified image Ĩ consisting of two contributions, one
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being the desired image I and other the interference from fields associated with different sources, called
crosstalk. The latter is given by

C =

N∑
k=1

∑
j 6=k

Uk ⊗Dj . (4)

Thus, this procedure is only feasible in practice, if it is possible to ensure that the contribution of crosstalk
C is negligible in comparison to the contribution of the desired image I . Since the number of individual
contributions to C is higher than that for I , C can be greater than I , thus degrading the resulting image up
to a point where it becomes useless. Therefore, measures must be taken to reduce C in comparison to the
desired image I .

Several ideas on how to achieve the reduction of C have been discussed in the literature, based on the
encoding of the sources, i.e., the inclusion of weights in equation (3) as

Ĩ(x) =

G∑
g=1

(
N∑
k=1

wgkUk

)
g

⊗

 N∑
j=1

w̃gjDj


g

= Î + C , (5)

where Î is the image, modified by weights wgk and w̃gk. For each g, the weight vectors have K nonzero
values for k between 1 and N . The weighting by these factors causes the final energy distribution between
Î and C to depend on the crosstalk matrix

Wkj =

G∑
g=1

wgkw̃
∗
gj . (6)

We observe that if the diagonal of matrix W in equation (6) is composed only of unitary values, then the
weighted image, Î , equals the desired image, I . Moreover, if the off-diagonal elements of this matrix are
all zero, then no crosstalk remains in the final image. Thus, we recognize that ideally, we would like to
choose the weights wgk and w̃gj such that

Wkj = δkj , (7)

with δkj denoting the Kronecker delta. In this case, we would obtain C = 0, i.e., no crosstalk, and Ĩ = I .
As equation (7) can not be satisfied exactly, we need the best possible approximation.

In this work we combine the ideas of random phase and amplitude encoding and sign alteration with
additional multiplication with the weight wgk = w̃gk = ig . In this way, half the crosstalk C passes to the
imaginary part of the resulting image, while the desired image I is unchanged. Thus, the real part of the
modified image (5) is less affected by crosstalk.

Weight functions

All random encoding schemes make use of a random variable to calculate the weights. Let rj denote the
j-th realization of a random variable, uniformly distributed between 0 and 1. Using this notation, we can
represent the weight functions under investigation as follows.

• Random phase encoding (between −π and π)

wgj =

{
exp{iπ(2rj − 1)} continuous

exp{iπ 2[Mrj ]−M+1
M−1 } discrete, M levels

(8)

and w̃gj = wgj .

• Random amplitude encoding (between −1 and 1)

wgj =

{
2rj − 1 continuous

(2 [Mrj ]−M + 1)/(M − 1) discrete, M levels. (9)

Here, we also used w̃gj = wgj , although this choice degrades the quality of image Î . The choice
w̃gj = 1/wgj would avoid this degradation, but introduces instabilities when the weights are very
small.
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• Random choice of sign (only factors −1 or 1)

wgj = sgn (2rj − 1) and w̃gj = wgj . (10)

Note that this choice is a subset of both preceding ones. It corresponds to a two-level phase or
amplitude encoding (phase −π and π, or amplitude −1 e 1).

• Deterministic imaginary-unit weight per group

wgj = ig and w̃gj = wgj . (11)

• Combinations of these weights, like the product of weights (8) and (9), (8) and (11), (10) and (11),
(8), (9) and (11), etc.

In the above formulas, the operator [.] denotes the Gauss brackets, defining the largest integer less than its
argument.

To evaluate the reduction in crosstalk in the migrated image achieved by these weights, we compare
the matrices W generated by the product (6) of the weights. An important number in this sense is the
energy ratio between the off-diagonal and diagonal of matrix W. The lower this number, the better W
approximates the desired relationship (7).

Group composition

Another question regarding the grouping of shots for the purpose of migration refers to the selection of
shots joined into groups. Besides classical choices like the simulation of plane or cylindrical waves, the
random choice of shots is suggested in the literature. A possible problem with this approach is that by
not controlling the choice, patterns can form that may affect the final image. An example for such pat-
terns would be the choice of neighboring shots showing strong correlations between them. In this paper,
we investigate a way to mitigate this problem through a technique that selects numbers minimizing the
occurrence of patterns (“pattern-free”).

The technique is inspired by so-called Costas arrays (Costas, 1965; Golomb and Taylor, 1984; Drakakis
and Rickard, 2010). A Costas array is a permutation of the unit matrix so that within the vector formed
by all columns, there is no equal distance between two nonzero elements. Thus, a shift creates, at most,
a coincidence of two such elements. These arrays are used to reduce crosstalk in radar and sonar systems
(Beard et al., 2004).

Unfortunately, the construction of Costas arrays presents practical difficulties. First, Costas arrays of
the dimensions 32 and 33 are not known in the literature. In addition, the definition of a Costas array
as a permutation matrix with no special restrictions leads to a simple method to find them, because the
Costas condition is not easily stated in a clear and simple set of restrictions. The only known way to find
all Costas arrays for a given order is an exhaustive search. However, to check the Costas condition for all
N ! permutations of an array of order N is prohibitively expensive. Moreover, for large N , the chance to
actually find a Costas array decreases, because the number of Costas arrays of order N drops quickly after
reaching a maximum of 21,104 for N = 16. Beard et al. (2004) show that there are only 200 Costas arrays
of order 24.

For these reasons, we opted for a process inspired by one of the algorithms for finding Costas arrays for
some dimensions, the so-called Welch algorithm (Golomb and Taylor, 1984). In our modification of this
algorithm, we first seek the smallest prime P greater than N , where N denotes the total number of shots in
the survey. We then look for the largest prime T less than P that generates a complete permutation of the
numbers from 1 to N by the following process. First, we calculate the sequence

nj = T j mod P , (12)

where nj (j = 1, . . . , P ) form a permutation of the numbers from 1 to P . In this sequence, we eliminate
the elements nj > N to arrive at the final array, which we refer to as a quasi-Costas array. If we desire
redundancy of shots within the set of groups, we change T to the largest prime less than T that allows the
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construction and repeat the process. Note that the probability for the array found with this process to be a
true Costas array decays with increasing N .

The thus obtained quasi-Costas array defines the sequence in which the shots are grouped. If we want
to build groups of K shots, each set of K values of this vector defines a group. Note that this construction
process of the permutation vector actually has an advantage over the use of true Costas arrays. Because of
the limited number of Costas arrays existing for large N , the exclusive use of these arrays could lead to
repeated groups in the case of shot redundancy.

A posteriori crosstalk reduction

Since it is impossible to prevent the occurrence of crosstalk when shot groups are migrated, another option
is to remove it (or part thereof) after migration. Assuming that the noise is random and zero mean, we
can apply existing techniques for removing such noise. In this study, we have tested the application of the
nonlocal means (NLM) technique borrowed from image processing (Buadès et al., 2005, 2010; Bonar and
Sacchi, 2012) and first applied to a seismic problem by Bonar and Sacchi (2012).

The NLM algorithm is a random-noise attenuation filter supposing that every image has a certain degree
of redundancy, which can be used to highlight structures. The process searches, for each image point,
other points whose neighborhoods are similar to the neighborhood of the original point, and uses these
similarities to recover the image in this region. The fundamental process of the algorithm is an average
over the whole image, applied with a weight that is determined by the similarities between the image in the
vicinities under consideration.

Mathematically, the filtered image I is calculated from the original image I by the weighted average

I(x) =
∑
x′

W(x,x′)I(x′) , (13)

where W(x,x′) denotes the filter weights, calculated as

W(x,x′) =
1

Z(x)
exp

{
−D2(x,x′)

h2

}
. (14)

Here, h is a parameter that controls de exponential decrease and Z(x) is a normalization factor, i.e.,

Z(x) =
∑
x′

exp

{
−D2(x,x′)

h2

}
. (15)

Function D(x,x′) represents the similarity measure between the vicinities of image points x and x′. It is
calculated as

D2(x,x′) =
∑
d

Ga(d) [I(x + d)− I(x′ + d)]
2
, (16)

where d represents a dislocation vector of size d and function Ga(d) = exp(−d2/a2) denotes a Gaussian
window taper, in which the parameter a defines the effective size of the neighborhood.

NUMERICAL RESULTS

The large number of variables involved, which implies a high amount of comparative tests, makes ac-
tual migrations with all possible weights prohibitively expensive. Therefore, to estimate the reduction in
crosstalk in the migrated image achieved by the weights (8) to (11), we evaluate the matrices W generated
by the product (6) of the weights and their proximity to the identity matrix.

An important number in this sense is the ratio between the accumulated energy in the off-diagonal and
diagonal elements of matrix W,

E =

∑
i6=j |Wij |2∑
i=j |Wij |2

(17)

for simplicity from now on referred to as “energy factor”. The lower this number, the better W approxi-
mates the Kronecker delta. Note that for a group of K shots without encoding, the energy factor always
takes the value K − 1.
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off−diag energy: 94
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Figure 1: No shot encoding, no redundancy, 50
groups of 95 shots (reference matrix).
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off−diag energy: 117.0576
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Figure 2: No shot encoding, redundancy with 50
groups of 380 shots.
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off−diag energy: 24.8954
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Figure 3: No shot encoding, redundancy with 200
groups of 95 shots.
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off−diag energy: 22.5314
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Figure 4: No shot encoding, no redundancy, 200
groups of 24 shots.

For all our tests, we have used dimensions of the narrow azimuth data from the EAGE/SEG salt model,
i.e., a total of 4750 shots. We have tested various groupings of these shots. If not mentioned otherwise,
the comparisons are done with 50 groups of 95 shots each, i.e., no redundancy of shots. The number in the
upper left corner of each figure is the energy factor as defined above.

No encoding. Figure 1 shows the matrix W without shot encoding, i.e., for unit weights, wgk = w̃gk = 1.
The choice of used sources was made randomly. We note that in this case the off-diagonal energy is 94
times greater than the diagonal energy, corresponding to 95 shots per group, as expected. When increasing
the number of shots per group by a factor of four, to 380, the energy factor increases to 117 (Figure 2).
Also, when maintaining 95 shots per group and increasing the number of groups to 200, to achieve the
same fourfold redundancy, the energy factor reduced to approximately 25 (Figure 3). However, with 24
shots in each of the 200 groups, the energy factor decreased more strongly, to about 22 (Figure 4). We
conclude that for a given number of groups, one should use a minimum of sources per group. The use of
shot redundancy is counterproductive.

Random phase encoding. The next set of figures shows the weight matrices for random phase encoding,
for some possible levels of phase shift according to equation (8), for the case of 50 groups of 95 shots. In
Figure 5, we see the result of continuous phase encoding, i.e., allowing for all values between −π and π.
Figures 6, 7, and 8 show the corresponding results for 16, 10, and 4 levels, respectively. We observe that
the continuous distribution yields the strongest reduction of the energy factor.

Random amplitude encoding. Figures 9, 10, 11 and 12 show the corresponding results for random am-
plitude encoding, with continuous distribution and 16, 10 and 4 levels. Again, we observe an increase in
energy factor for a decreasing number of levels. In addition, we note that the magnitude of the diagonal is
reduced (colored dots on the diagonal, where black indicates a unitary value). This reduction is due to the
fact that the product of the weights is not unitary, as mentioned in the context of equation (9).

The fact that the energy factors decreases for a growing number of levels, both for random phase and
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off−diag energy: 46.9254
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Figure 5: Continuous random phase encoding.
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off−diag energy: 47.1573
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Figure 6: Random phase encoding, 16 levels.
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off−diag energy: 47.5
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Figure 7: Random phase encoding, 10 levels.
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off−diag energy: 50.2322
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Figure 8: Random phase encoding, 4 levels.

Correlation coefficient nr.

C
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
t 
n
r.

 

 
off−diag energy: 51.6394

0 100 200 300 400 500

0

100

200

300

400

500

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 9: Continuous random amplitude encoding.
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off−diag energy: 52.8799
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Figure 10: Random amplitude encoding, 16 levels.
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off−diag energy: 52.7171
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Figure 11: Random amplitude encoding, 10 levels.
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off−diag energy: 57.9345
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Figure 12: Random amplitude encoding, 4 levels.

amplitude encoding, is corroborated in Figures 13 and 14, which show the energy factor as a function of the
number of levels. We see that in both cases, the factor decays with increasing number of levels. We tested
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Figure 13: Energy factor as a function of level
number for random phase encoding.
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Figure 14: Energy factor as a function of level
number for random amplitude encoding.
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off−diag energy: 25.8795
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Figure 15: Continuous random phase and ampli-
tude encoding.
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off−diag energy: 26.7021
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Figure 16: Random phase and amplitude encod-
ing, 16 levels.
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off−diag energy: 26.7297

0 100 200 300 400 500

0

100

200

300

400

500

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 17: Random phase and amplitude encod-
ing, 10 levels.
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off−diag energy: 30.652
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Figure 18: Random phase and amplitude encod-
ing, 4 levels.

up to a maximum of 20 levels. The red dot at the end of the curve represents the continuous distribution.

Random phase and amplitude encoding. When we apply random encoding of both amplitude and phase,
we obtain the matrices shown in Figures 15, 16, 17, and 18. We note that the simultaneous encoding
further reduces the power factor, while the diagonal values are comparable with those for random amplitude
encoding only. The decay of the energy factor with the number of levels is comparable to previous cases.

To avoid loss of information due to the reduction of the diagonal values, we also tested the effect of
redundancy for this type of encoding. Figure 19 shows the weight matrix for 50 groups of 380 shots and
Figure 20 shows the weight matrix for 200 groups of 95 shots. We observe the same effect as in the
case without encoding, i.e., the energy factor increases with respect to the same number of groups without
redundancy.

Random-sign and imaginary-unit encoding. Figure 21 shows the result of random sign encoding, equa-
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off−diag energy: 39.3356
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Figure 19: Continuous random phase and ampli-
tude encoding, 50 groups of 380 shots.

Correlation coefficient nr.

C
o
rr

e
la

ti
o
n
 c

o
e
ff
ic

ie
n
t 
n
r.

 

 
off−diag energy: 9.7458
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Figure 20: Continuous random phase and ampli-
tude encoding, 200 groups of 95 shots.
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off−diag energy: 94
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Figure 21: Random-sign encoding.
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Figure 22: Imaginary-unit encoding.
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Figure 23: Random phase encoding combined
with imaginary-unit weighting.
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Figure 24: Random amplitude encoding combined
with imaginary-unit weighting.

tion (10), which is equivalent to random amplitude (or phase) encoding with two levels. We note that this
encoding does not reduce the energy factor. Encoding with the imaginary unit, according to equation (11),
reduces this factor by half (Figure 22) by transferring half the crosstalk to the imaginary part of the image,
which will be discarded.

Combinations. Finally, we investigate the combination of the latter weight with random signal, amplitude
and/or phase encoding. We note that the combination of random phase encoding with imaginary-unit
weighting does not contribute to a further reduction of the energy factor (Figure 23). The reason is that
random phase encoding already transfers energy to the imaginary part of the image, thus not offering
the potential for a further reduction. On the other hand, the combination of random amplitude encoding
with imaginary-unit weighting further reduces the energy factor significantly (Figure 24), reaching the
same level as simultaneous random amplitude and phase encoding. The combination of random phase and
amplitude encoding with imaginary-unit weighting does not contribute to a further reduction of the energy
factor (Figure 25). Finally, the combination of random sign encoding with imaginary-unit weighting only
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Figure 25: Random phase and amplitude encoding
combined with imaginary-unit weighting.
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off−diag energy: 46.9086
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Figure 26: Random sign encoding combined with
imaginary-unit weighting.
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Figure 27: Random amplitude encoding combined
with imaginary-unit weighting, 50 groups of 380
shots.
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Figure 28: Random amplitude encoding combined
with imaginary-unit weighting, 200 groups of 95
shots.
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Figure 29: Random amplitude and phase encod-
ing combined with imaginary-unit weighting, 50
groups of 380 shots.
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Figure 30: Random phase encoding combined
with imaginary-unit weighting, 200 groups of 95
shots.

reduces the energy factor to the same level achieved by mere imaginary-unit weighting (Figure 26).
The use of redundancy for random amplitude encoding combined with imaginary-unit weighting (Fig-

ures 27 and 28) and random amplitude and phase along combined with imaginary-unit weighting (Fig-
ures 29 and 30) leads to the same conclusions as the previous cases.

3D migration tests

We implemented a code for 3D finite-difference blended-shot migration with two different choices of shot
selection: random and pattern-minimizing. We applied this blended-shot migration to narrow azimuth data
from the SEG/EAGE salt model. For simplicity, we tested the shot selection for random phase encoding.
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Figure 31: 3D FD migrated data from the
SEG/EAGE salt model, depth slice at depth 680 m,
with (a) random and (b) pattern-minimizing shot se-
lection; (c) model slice.
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Figure 32: 3D FD migrated data from the
SEG/EAGE salt model, depth slice at depth 1040 m,
with (a) random and (b) pattern-minimizing shot se-
lection; (c) model slice.

To enhance the effect of crosstalk, migration was performed with a redundancy of 10, using 100 groups
with 475 shots.

The following figures show depth slices at some selected depths. To our perception, at some depths the
slices using pattern-minimizing shot selection are of better quality than those using random shot selection.
At all other depths, the quality is comparable. This is the expected behavior, since the pattern minimization
is supposed to reduce the probability for correlated shots to appear in the same group.

Figure 31 compares the depth slices at depth 680 m. We observe that the events are clearer in part (b),
particularly those close to the salt body in the center of the image.

At 1040 m depth (Figure 32, the differences are more subtle. We can observe a slight improvement in
the definition of the right flank of the salt in Figure 32b.

However, not always all properties of the image are better for pattern-minimizing shot selection. While
in the salt in Figure 33b is still easier to delineate, particularly in the lower part of the image, the shape of
the inclusion on the right side of the image is better represented in Figure 33a.

Since inside the salt, the comparison is difficulted by the effect of the strong velocity contrast in the
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Figure 33: 3D FD migrated data from the
SEG/EAGE salt model, depth slice at depth 1260 m,
with (a) random and (b) pattern-minimizing shot se-
lection; (c) model slice.

6

8

10

C
ro

s
s
lin

e
 [

k
m

]

2 4 6 8
Inline [km]

(a)

6

8

10

C
ro

s
s
lin

e
 [

k
m

]

2 4 6 8
Inline [km]

(b)

6

8

10

C
ro

s
s
lin

e
 [

k
m

]

2 4 6 8
Inline [km]

(c)

Figure 34: 3D FD migrated data from the
SEG/EAGE salt model, depth slice at depth 2340 m,
with (a) random and (b) pattern-minimizing shot se-
lection; (c) model slice.

model, our last figure is a slice from below the salt, at depth 2340 m (Figure 34). In this depths, the
energy of the events is already significantly reduced by illumination effects. Still, the events in part (b) are
generally more continuous and less rugged.

A posteriori crosstalk reduction. To reduce crosstalk after blended-shot migration, we have implemented
a 2D version of the non-local-means (NLM) algorithm, following the original prescription of Buadès et al.
(2005).

Figure 35 compares the result of the NLM method for a depth slice of the image at 1040 m with its
original cut. We found that the processing could remove almost all noise caused by cross-talk. However,
some less energetic events were also attenuated. As we see in this figure, the result of the reduction of noise
depends strongly on the value of parameter h, equation (14). In our tests, the characteristics of the result
did not change as a function of depth. This result demonstrates that it is possible to mitigate crosstalk using
image processing methods.

Note that the application of the NLM method consumes a considerable computation time. Thus, a full
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Figure 35: Depth slice at 1040 m depth of (a) SEG/EAGE salt model; and of the FD migrated section (b)
without noise reduction and with NLM noise reduction with (c) h = 10−4) and (d) h = 1.5 · 10−4.

3D implementation of this algorithm would be prohibitively expensive. We believe that the implementation
can be improved using a modification of the NLM algorithm proposed by Dowson and Salvado (2011) who
report significant savings.

CONCLUSIONS

In this work, we studied the possibilities of reducing the effect of crosstalk in blended-shot migration. In
the first part, we evaluated the weight matrix of different encoding techniques.

In these tests, we found that for the investigated encoding methods, there is no advantage in admitting
redundancy in the number of shots used. In other words, the choice of the number of shots per group should
always be the ratio between the total number of shots acquired and the number of groups to be realized.
The fewer shots are contained in each group, the lower is the off-diagonal energy in the weight matrix.
This conclusion, however, needs to be confirmed in actual migration tests, since wavefields can show
destructive interference, which might help to further reduce crosstalk, even if the content of off-diagonal
energy is higher.

Another conclusion from these tests is that random amplitude encoding helps to improve the ratio
between the energy on and off the diagonal. Although this encoding reduces the energy contained in
diagonal, it reduces the off-diagonal energy more strongly, so that the amplitude of the crosstalk declines
more than the amplitude of the image.

Random phase encoding contributes to the reduction of crosstalk mainly by the fact that part of the
off-diagonal energy is transferred to the imaginary part of the image. Another way to ensure that this effect
is exploited to the maximum is applying a deterministic imaginary-unit weight, which moves every second
term of the crosstalk skip to the imaginary part. Thus, the strongest reduction of off-diagonal energy in the
weight matrix was achieved by combining this weight with random amplitude encoding. In our examples,
this combination reduced crosstalk to approximately a quarter of its nominal value.

In addition to this evaluation of the encoding weights, we studied how to select the shots to form
groups to be migrated. Comparing random selection with quasi-Costas-array-based selection, designed to
minimize patterns, we observed a trend of the latter to provide less coherent events in the crosstalk.

Finally, we investigated the possibility of reducing the noise generated by crosstalk in a processing step
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applied after migration by means of the non-local-means method. In our tests, the noise behaved favorably
to this method, so that it was possible to remove much of the crosstalk. This result demonstrates that it is
possible to mitigate the crosstalk noise by image processing methods.

ACKNOWLEDGMENTS

This work was kindly supported by the Brazilian research agencies CNPq and FINEP as well as Petrobras
and the sponsors of the Wave Inversion Technology (WIT) Consortium.

REFERENCES

Beard, J. K., Russo, J. C., Erickson, K., Monteleone, M., and Wright, M. (2004). Combinatoric collabora-
tion on costas arrays and radar applications. In IEEE National Radar Conference - Proceedings, pages
260–265.

Bonar, D. and Sacchi, M. (2012). Denoising seismic data using the nonlocal means algorithm. Geophysics,
77(1):A5–A8.

Buadès, A., Coll, B., and Morel, J. M. (2005). A review of image denoising algorithms, with a new one.
Multiscale Modeling and Simulation, 4(2):490–530.

Buadès, A., Coll, B., and Morel, J. M. (2010). Image denoising methods. a new nonlocal principle. SIAM
Review, 52(1):113–147.

Claerbout, J. F. (1971). Toward a unified theory of reflector mapping. Geophysics, 36(3):467–481.

Costas, J. P. (1965). Medium constraints on sonar design and performance. Class1 Report R65EMH33,
G.E. Corp.

Dowson, N. and Salvado, O. (2011). Hashed nonlocal means for rapid image filtering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 33(3):485–499.

Drakakis, K. and Rickard, S. (2010). On the construction of nearly optimal golomb rulers by unwrapping
Costas arrays. Contemp. Engineering Sciences, 3(7):295–309.

Godwin, J. and Sava, P. (2010). Blended source imaging by amplitude encoding. In SEG Exp. Abstracts,
pages 3125–3129.

Godwin, J. and Sava, P. (2011). A comparison of shot-encoding schemes for wave-equation migration. In
SEG Exp. Abstracts, pages 32–36.

Godwin, J. and Sava, P. (2013). A comparison of shot-encoding schemes for wave-equation migration.
Geophysical Prospecting, pages 391–408.

Golomb, S. W. and Taylor, H. (1984). Constructions and properties of Costas arrays. Proceedings of the
IEEE, 72(9):1143–1163.

Guerra, C. and Biondi, B. (2008). Phase encoding with gold codes for wave-equation migration. SEP
Report, 136:23–42.

Romero, L. A., Ghiglia, D. C., Ober, C. C., and Morton, S. A. (2000). Phase encoding of shot records in
prestack migration. Geophysics, 65(2):426–436.

Soubaras, R. (2006). Modulated-shot migration. In SEG Exp. Abstracts, pages 2430–2434. SEG.

Sun, P., Zhang, S., and Liu, F. (2002). Prestack migration of areal shot records with phase encoding. In
SEG Exp. Abstracts, pages 1031–1034. SEG.

Temme, P. (1984). A comparison of common-midpoint, single-shot, and plane-wave depth migration.
Geophysics, 49(11):1896–1907.


