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ABSTRACT

One reason for the high cost of 3D wave-equation migration is the inversion of large matrices involved.
The technique of directional splitting reduces this cost by significantly reducing the dimensions of
the matrices to be inverted. Unfortunately, this approach is not accurate and introduces a numerical
error in the propagation of the wavefields. The most accepted way in the literature to correct for
this error is the Li correction. However, this technique still has a high computational cost due to
the need of applying multiple Fourier transforms and their inverses. To see if we can avoid this
costly method and find a fix that has roughly the same effect as the Li correction, we investigate its
theoretical expression in order to approximate the Fourier transforms. To do so, we use the method
of stationary phase. We find a convolutional operator of small support that could be used to make an
approximate correction. However, its implementation involves finding the directions of the stationary-
phase correction by means of an equation system that has no analytical solution. To further facilitate
the correction process, we choose to further reduce the convolution operator to a simple application of
a phase-correction factor in space, using the direction of wave propagation as the dominant direction.
Numerical experiments with the exact propagation angle show that the so-achieved correction has
acceptable quality with considerable reduction in computational cost. However, application of this
operator in inhomogeneous media requires the extraction of the propagation angle from the wavefield.
In our numerical tests, the correction with angles obtained by phase extraction did not reach the same
quality as obtained with the exact angles.

INTRODUCTION

The application of wave-equation migration in three dimensions adds the problem of computational cost to
the problems of stability and accuracy. To accelerate FD or FFD migration, a technique known as splitting
is frequently used, i.e., the separation of single-step 3D migration into two steps inside 2D planes along
the horizontal coordinate axes, usually in the inline and crossline directions (Brown, 1983). When operator
splitting is applied to the implicit FD operator, so that the equations are solved alternately in the inline and
crossline directions, the scheme is called alternating directions implicit (ADI). This bears the disadvantage
of being incorrect for reflectors with high slope, resulting in strong positioning errors of reflectors with dip
directions far from the directions of the migration planes. Thus, it generates strong numerical anisotropy.
Over the years, several approaches were proposed to remedy this problem. Ristow (1980) suggested (see
also Ristow and Rühl, 1997), in addition to migrations 2D axes directions, 2D migration in the diagonal
directions. Kitchenside (1988) used phase-shift migration plus extrapolation of the wavefield residual by
finite differences to reduce the error caused by splitting. Graves and Clayton (1990) proposed implementing
a phase-correction operator using finite differences incorporating a damping function to ensure stability of
the 3D FD migration scheme.

Instead of using phase-shift migration plus FD residual-wavefield extrapolation as in Kitchenside
(1988), Li (1991) proposed the use of conventional FD migration plus residual-wavefield extrapolation
by phase shift to improve the quality of the migrated image. Without change in conventional 3D FD migra-



112 Annual WIT report 2013

tion, the Li correction consists of adding an error compensation by means of a phase-shift filter at certain
steps of downward extrapolation. This method not only compensates for the splitting error of extrapolation,
but also corrects the positioning error of steeply dipping reflectors.

However, the Li correction is a technique that demands a high computational cost due to the need of
applying multiple Fourier transforms and their inverses. However, a large spacing between two subsequent
Li corrections is generally not an option because the correction becomes increasingly worse if too much
error is accumulated. Therefore, we are interested in a cheaper, possibly approximate, version of the Li
correction that can be applied at every depth step without the need for a Fourier transform and its inverse.
Such a procedure should help to reduce the high cost of the Li correction while retaining approximately
the same effect. To find such an approximation to the Li correction, we investigate its asymptotic behavior
by means of the method of stationary phase in order to approximate the Fourier transforms involved.

CORRECTION FOR SPLITTING IN TWO DIRECTIONS (LI CORRECTION)

As discussed previously, splitting in two directions causes numerical anisotropy, i.e., the occurrence of
positioning errors in the images of large complex structures. To compensate for these errors and still pre-
serve the efficiency of the method of finite-differences migration, Li (1991) proposed the application of a
phase-correction operator, implemented either using the phase-shift method or phase-shift plus interpola-
tion (PSPI). This operator is obtained by evaluating the difference between the ideal and split migration
operators.

The idea of this method is to carry out the split migration, i.e., conventional 2D FD migrations in
the two coordinate directions, together with a further extrapolation of the wavefield residual. This latter
correction is done by the phase-shift method when the lateral velocity variation is small, and by phase-shift
plus interpolation when the lateral velocity variation is relevant.

To obtain the Li correction for the techniques discussed above, we expand the one-way wave equation
in a complex Padé series and apply the splitting technique in two directions. Rewriting the directional parts
of the migration operator in fractional terms, we arrive at the FD migration operator

Opmig = 1 +

N∑
n=1

An
∂2

∂x2

1 +Bn
∂2

∂x2

+

N∑
n=1

An
∂2

∂y2

1 +Bn
∂2

∂y2

. (1)

In this work, we consider the complex Padé version of FD migration (Amazonas et al., 2007), where An
and Bn are the complex Padé coefficients. The error caused by a migration using this operator can be
described by the difference
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The above difference operator (2) defines a differential equation that needs to be solved to correct the
extrapolated wavefield for the splitting error. It reads

∂P

∂z
=

[
iω

c(x)
Opdif

]
P . (3)

In order to allow for the solution of this differential equation (3) and find the correction operator of Li
(1991), the square root in the difference (2) needs to be approximated by means of a Padé expansion. The
solution to the differential equation with the resulting approximate difference operator can be represented
by means of the finite-difference method as

P (z + ∆z) = ei(k
r
z− ω

cr
)∆z

N∏
n=1

pn + iqn
pn − iqn

N∏
n=1

rn + isn
rn − isn

P (z) , (4)
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where the coefficients are given by
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In these equations, cr is a reference velocity and µ is the term of the Douglas (1962) that increases the
order of the approximation from second to fourth order. Finally, the overlined symbols k̄x and k̄y denote
the numerical approximations to the wavenumbers. According to Claerbout (1985), they are given by

k̄2
x =

2− 2 cos(kx∆x)

∆x2
,

k̄2
y =

2− 2 cos(ky∆y)

∆y2
.

As is evident from the dependence on the wavenumbers kx and ky , the Li correction needs to be applied
in the wavenumber domain. This implies that multiple spacial Fourier transforms are required, because the
original FD migration operator (1) is in the space domain.

SPATIAL APPROXIMATION OF THE LI CORRECTION

To reduce the cost involved in this procedure, we search for a spatial-domain approximation to the Li
correction. For this purpose, we study the stationary-phase evaluation of the involved Fourier transforms.

In the wavenumber domain, the Li correction can be represented by a simple multiplication of the
wavefield by a phase-correction factor, given by

Pcorr(kx, ky, z, ω) = P (kx, ky, z, ω)ei
ω
cr
E∆z , (5)

where the phase-correction term, E, can be written as (Li, 1991, equation 11)

E =

√
1−cos2 φ sin2 θ−sin2 φ sin2 θ

−
√

1−cos2 φ sin2 θ −
√

1−sin2 φ sin2 θ + 1

= cos θ −
√

1− cos2 φ sin2 θ −
√

1− sin2 φ sin2 θ + 1, (6)

and where ∆z represents the depth interval over which the Li correction is applied. The angles θ and φ are
the propagation angles for each wavenumber vector component.

After inverse Fourier transform in kx and ky , we obtain

Pcorr(x, y, z, ω) =

∫
dkxdkyP (kx, ky, z, ω)ei

ω
cr
E∆zeikxx+ikyy. (7)

To find a computationally more economic correction procedure, we apply certain approximations to this
expression for the case of a homogeneous medium, i.e., where cr is the constant reference velocity.
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Approximation by convolution

Expressing the wavefield P (kx, ky, z, ω) in the wavenumber domain by means of the Fourier transform,
we obtain

Pcorr(x, y, z, ω) =

∫
dkxdky

∫
dx′dy′ P (x′, y′, z, ω)

×ei
ω
cr
E∆zeikx(x−x′)+iky(y−y′)

=

∫
dx′dy′ P (x′, y′, z, ω)

×
∫
dkxdkye

i ω
cr
E∆zeikx(x−x′)+iky(y−y′)︸ ︷︷ ︸
C(x−x′,y−y′)

, (8)

where we have changed the order of integration to arrive at the final expression. Note that the operation
described by this equation is a convolution with the operator C resulting from the internal integration.

Stationary phase To simplify the convolutional operator C, we approximate its integral expression by
means of the stationary-phase method. This leads to

C(x− x′, y − y′) =

∫
dkxdky e

i ω
cr
E∆zeikx(x−x′)+iky(y−y′)

≈
√

cr
ω det E∆z

ei
ω
cr
E∗∆zeik

∗
x(x−x′)+ik∗y(y−y′), (9)

where E denotes the Hessian matrix of second derivatives of E with respect to kx and ky , and E∗ denotes
the value of E at the stationary point. This point is defined by the stationary values k∗x e k∗y , which in turn
are defined by

∇k
(
ω

cr
E∆z + kx(x− x′) + ky(y − y′)

)∣∣∣∣
k∗x,k

∗
y

=

(
ω

cr
∆z∇kE + ∆~x

)∣∣∣∣
k∗x,k

∗
y

= ~0 , (10)

where ∇k = (∂kx , ∂ky ) denotes the gradient in the horizontal wavenumber components and ∆~x = (x −
x′, y − y′). The assumption of a homogeneous medium leads to the second expression in equation (10).

Stationary directions. To calculate the derivatives ∂E/∂ki (i = x, y), we make use of the dependency
of the components ki on the propagation angles φ and θ. By means of the chain rule, we can write

∂E

∂ki
=

∂E

∂θ

∂θ

∂ki
+
∂E

∂φ

∂φ

∂ki
. (11)

Differentiating E of equation (6) with respect to θ and φ, we find

∂E

∂θ
= − sin θ +

cos2 φ sin θ cos θ√
1− cos2 φ sin2 θ

+
sin2 φ sin θ cos θ√
1− sin2 φ sin2 θ

, (12)

∂E

∂φ
= − cosφ sinφ sin2 θ√

1− cos2 φ sin2 θ
+

sinφ cosφ sin2 θ√
1− sin2 φ sin2 θ

. (13)

The derivatives of the propagation angles with respect to the components of the wavenumber vector can be
found from the equations relating these quantities, i.e.,

kx =
ω

cr
sin θ cosφ , (14)

ky =
ω

cr
sin θ sinφ . (15)
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Differentiating these equations with respect to kx and ky , respectively, we find

1 =
ω

cr

(
cos θ cosφ

∂θ

∂kx
− sin θ sinφ

∂φ

∂kx

)
, (16)

0 =
ω

cr

(
cos θ cosφ

∂θ

∂ky
− sin θ sinφ

∂φ

∂ky

)
, (17)

0 =
ω

cr

(
cos θ sinφ

∂θ

∂kx
+ sin θ cosφ

∂φ

∂kx

)
, (18)

1 =
ω

cr

(
cos θ sinφ

∂θ

∂ky
+ sin θ cosφ

∂φ

∂ky

)
. (19)

Multiplication of equation (16) with cosφ and of equation (18) with sinφ and summation of the resulting
equations leads to

cosφ =
ω

cr
cos θ

∂θ

∂kx
. (20)

Correspondingly, multiplication of equation (17) with cosφ and of equation (19) with sinφ and summation
of the resulting equations leads to

sinφ =
ω

cr
cos θ

∂θ

∂ky
. (21)

By exchanging in these operations sinφ by cosφ and cosφ by − sinφ, we find analogously

− sinφ =
ω

cr
sin θ

∂φ

∂kx
, (22)

cosφ =
ω

cr
sin θ

∂φ

∂ky
. (23)

Combining these equations, the searched-for derivatives of the propagation angles with respect to the
wavenumber components can be represented as

∂θ

∂kx
=

cr
ω

cosφ

cos θ
, (24)

∂θ

∂ky
=

cr
ω

sinφ

cos θ
, (25)

∂φ

∂kx
= −cr

ω

sinφ

sin θ
, (26)

∂φ

∂ky
=

cr
ω

cosφ

sin θ
. (27)

Substitution of these expressions, together with equations (12) and (13), in equation (11), yields

∂E

∂kx
=

cr
ω

cosφ tan θ

(
cos θ√

1− cos2 φ sin2 θ
− 1

)
, (28)

∂E

∂ky
=

cr
ω

sinφ tan θ

(
cos θ√

1− sin2 φ sin2 θ
− 1

)
. (29)

Upon using these equations in the stationary-phase equation (10), the propagation angles that define the
stationary direction are given by the equation system

x− x′ = − cosφ sin θ

(
1√

1− cos2 φ sin2 θ
− 1

cos θ

)
∆z, (30)

y − y′ = − sinφ sin θ

(
1√

1− sin2 φ sin2 θ
− 1

cos θ

)
∆z. (31)
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Figure 1: Stationary value of sin θ as obtained
by solving system (33-34) by means of Newton’s
method.
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Figure 2: Stationary value of the difference φ − ψ
as obtained by solving system (33-34) by means of
Newton’s method.

Propagation direction. Representing the displacement vector ∆~x in polar coordinates, i.e.,

x− x′ = r cosψ and y − y′ = r sinψ , (32)

we can recast system (30-31) into the form

cosφ sin θ

(
1√

1− cos2 φ sin2 θ
− 1

cos θ

)
∆z + r cosψ = 0 , (33)

sinφ sin θ

(
1√

1− sin2 φ sin2 θ
− 1

cos θ

)
∆z + r sinψ = 0 . (34)

It is easy to verify that this system is satisfied in the following horizontal dislocation directions ψ

ψ = 0◦ : φ = 0◦ , (35)
ψ = 90◦ : φ = 90◦ , (36)
ψ = 45◦ : φ = 45◦ . (37)

For other directions ψ, system (33-34) needs to be solved numerically. Since this system does not depend
on ω or cr, it can be solved independently of the actual migration problem to be solved, with the stationary
values of the directions stored in a table.

When solving system (33-34) for a number of directions ψ and distances r, we noted that the stationary
point only exists for rather small distances r. Moreover, the value of sin θ is very close to 1 for a great
part of the domain under consideration (Figure 1). This means that the stationary direction is close to the
horizontal, and the angle φ is always relatively close to the dislocation angle ψ, with differences below
4◦ (Figure 2). This motivated us to abandon the convolutional approach for a even simpler one, discussed
below.

Single-point approximation of the correction

Because of these characteristics of the solution to system (33-34), we assume that in the correction equation
(7), a single propagation direction is mainly responsible for the outcome. For simplicity, we assume this
direction to be well-approximated by the direction parallel to the propagation vector. Apart from the above
discussed fact that the deviation between these directions is small for most points in the medium, this
direction has also the advantage of being rather easily determined from the wavefield. Thus, the correction
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factor E is approximated by its value in this direction, i.e., E ≈ Ep = E(θ = θp, φ = φp). As a
consequence, equation (7) can be approximated by

Pcorr(x, y, z, ω) ≈ ei
ω
cr
Ep∆z

∫
dkxdkyP (kx, ky, z, ω)eikxx+ikyy

≈ ei
ω
cr
Ep∆zP (x, y, z, ω) . (38)

In this way, we arrive at an approximate correction directly in space, the application of which is much
simpler than the full Li correction (4) and which does not require the execution of a convolutional operation
like equation (8). Please note, however, that this approach is rather crude. An approximate solution of
system (33-34) might provide better values of θ and φ for each ∆z and ψ, even if r is small. Such a
procedure will still allow the application of the multiplicative correction (38) with better values for the
propagation angles and might thus lead to a better correction than our crude procedure.

Extraction of the propagation angle

The application of the simplified correction (38) demands the knowledge of the present propagation angle
of the wavefield to be corrected at a point (x, y). In a homogeneous medium, this angle can be determined
from the relative position of the point with respect to the source location. However, in a heterogeneous
medium, the angle ψ must be extracted from the wavefield at (x, y). To achieve this extraction, we use the
identities

∇(h)P (x, y, z, ω) = ∇(h)
[
P0(x, y, z)eiωτ(x,y,z)

]
≈ P0(x, y, z)eiωτ iω∇(h)τ(x, y, z) , (39)

where ∇(h) represents the horizontal components of the gradient vector, i.e., ∇(h) = (∂/∂x, ∂/∂y). In
this way, the horizontal slowness vector is given by

~p (h) = ∇(h)τ(x, y, z) ≈ 1

iωP (x, y, z, ω)
∇(h)P (x, y, z, ω) . (40)

Since this vector also has to satisfy

~p (h) =
1

cr

(
cosψ
sinψ

)
, (41)

we can conclude that (
cosψ
sinψ

)
≈ cr
ω
=
{
∇(h)P (x, y, z, ω)

P (x, y, z, ω)

}
. (42)

We stress that this is a high-frequency approximation. For lower frequencies, the propagation angle ex-
tracted in this way might not correctly represent the true propagation direction of the wavefield under
consideration.

NUMERICAL RESULTS

We tested the approximate correction (38) for wave propagation in a homogeneous model. Figure 3 shows
four horizontal slices through the impulse response of FD migration in a homogeneous medium without Li
correction. The same slices after conventional Li correction at every 6th depth level are shown in Figure 4.
Note the improvement of the circular shape, particularly at the intermediate depth levels.

The corresponding results using the approximate Li correction of equation (38) are shown in the next
figures. First, we show the result when the wavefield-propagation angles are calculated from the position of
the grid point where the correction is performed (Figure 5). We see that the wavefronts were well corrected,
resulting in an almost perfectly circular shape. The correction is of at least the same quality as that of the
conventional Li correction (compare to Figure 4). Note, however, that this procedure is only possible in the
homogeneous case, where the propagation direction is always in radial direction from the source. We have
included these figures to demonstrate the potential of the approximate correction.
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Figure 3: Horizontal slices through the impulse response of FD migration without Li correction in a
homogeneous medium at the depths (a) 480 m, (b) 960 m, (c) 1920 m, and (d) 2880 m.

When we extracted the propagation direction directly from the wavefield, frequency by frequency, we
obtain the corrected result shown in Figure 6. We note that the quality of the achieved correction is reduced
as compared to the result of the grid-position angles (Figure 5). Still, the quality is superior to the result
without applying any correction (Figure 3).

We have experimented with various modifications of the algorithm used to extract the propagation
angles from the wavefield, notably working with selected frequencies and smoothing over adjacent fre-
quencies. The best result that was obtained by application of such techniques is presented in Figure 7. In
this case, the phase extracted from the wavefield was averaged over six adjacent frequencies, while the hor-
izontal gradient field was smoothed over 10 neighboring points. We observe an improvement compared to
the results of Figure 6, but even smoothing could help to not reach the same quality as in Figure 5. We note
specifically that the smoothing created some artifacts inside the wavefront at greater depth (see Figure 7d).

As another way of improving the extracted propagation angles, we experimented with different imple-
mentations of the numerical derivative. The best quality was achieved with a Gaussian derivative or with
the centered derivative of the mean between adjacent field values. Moreover, we chose at each point in
the image the angle that was extracted from that frequency component which had the highest amplitude at
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Figure 4: Corresponding slices to Figure 3 after conventional Li correction.

that point. This reduces the sensitivity of the wavefield derivative on numerical noise in the data. The best
correction obtained with angles extracted from these tests is depicted in Figure 8. While the circular shape
is almost as well recovered as by the correction with the grid angles (see Figure 5), the artifacts are even
stronger than in Figure 7.

These tests, particularly the one with the grid angles, indicate that approximation (38) is of acceptable
quality. However, further tests to improve the extraction of the propagation angle, particularly in inhomo-
geneous media, are required to make sure the best possible correction is achieved. We cannot rule out the
possibility that the numerical realization of approximation (42) does not have enough quality to determine
the propagation angle with the necessary precision for the wavefield under consideration, particularly when
applied to noisy data.

Computational cost

The elimination of the back-and-fourth Fast Fourier transform for each application of the Li correction leads
to a significant reduction in computation time needed for the wavefield correction. In our experiments, we
compared the application of the conventional Li correction at every 8th depth level with the application
of the approximate spatial Li correction at every depth level. In our implementation and under these
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Figure 5: Corresponding slices to Figure 3 after approximate Li correction (38) using the angles calculated
from the grid position.

conditions, the approximate spatial Li correction was about a factor of 4 times faster than the conventional
correction. The different types of extracting the propagation angle did not result in significant differences
in the required computation time.

CONCLUSIONS

It is well-known that the implementation of three-dimensional migration by means of the directional-
splitting technique causes numerical anisotropy. The most widely used method to reduce this effect is
called Li correction (Li, 1991). However, the Li correction is a technique that still has a relatively high
computational cost due to the need of applying multiple Fourier transforms and their inverses. To see if it
is possible to reduce this cost, we have tried to find an approximate correction that has roughly the same
effect as the Li correction. For this purpose, we investigate the theoretical expression of the latter in order
to approximate the involved Fourier transforms. For this analysis, we utilized the method of stationary
phase applied to the Li correction in a homogeneous medium.

We found a convolutional operator of small support that could be used to make an approximate correc-
tion. However, its implementation involves finding the directions of the stationary-phase correction through
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Figure 6: Corresponding slices of Figure 3 with approximate Li correction (38) using angles extracted
from the propagating wavefield at every frequency.

a system of equations that has no analytical solution. Since these equations do not depend on the signal
frequency and the value of the supposedly constant velocity, the system could be resolved in principle once
and for all, saving the stationary directions for each direction in a table.

However, the correction operation would still be a somewhat expensive convolution. To further simplify
and cheapen the correction process, we chose to reduce the convolution operator to a single pointwise
application of an approximate phase-correction factor in space. From a trial solution of the stationary-
phase equations, we know that the stationary angles are close to the dominant propagation direction of
the wavefield. Numerical experiments with the exact propagation angle calculated from the grid position
show that the approximate correction achieved by this operator has acceptable quality and can achieve
a considerable reduction in computational cost. However, the application of this approximate correction
factor in inhomogeneous media requires the extraction of the propagation angle directly from the wavefield.
In our numerical tests, the correction with angles obtained by such an extraction did not reach the same
quality as obtained by the exact angles. This suggests that if a better extraction technique can be found, the
approximate correction can become an interesting alternative to a full Li correction. Because of its lower
computation cost, it can be applied at each depth level, avoiding the accumulation of errors over a larger
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Figure 7: Corresponding slices of Figure 3 with approximate Li correction (38) using angles extracted
from the propagating wavefield at 6 frequencies with smoothing.

depth interval.
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