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ABSTRACT

We revisit ray-based approaches to stacking and time migration of seismic data, and investigate the
role of the smooth-velocity condition normally attached to such techniques. It is demonstrated that the
smooth velocity field plays the role of a replacement medium which ideally should have the following
characteristic: the one-way analogues of the stacking and time-migration operators can be approxi-
mated in a paraxial sense by means of its impulse responses. In order to link the intrinsic properties
of this smooth medium to the data-driven velocities, an incremental ray propagator system has been
introduced. Based on this system, it is shown how stacking and time-migration velocities can be re-
garded as paraxial quantities which can be mapped to intrinsic properties representing information
sampled along the central or mapping ray of the paraxial impulse responses considered.

INTRODUCTION

Extraction of stacking and time-migrating velocities from field data are routine procedures in seismic pro-
cessing with the aim of producing reliable images and geological attributes from the subsurface. Because
such (time-domain) velocities are directly estimated from the data, one may refer to them as data-driven
velocities. A next, much more complicated task is to invert, from the data-driven velocities, correspond-
ing depth-domain velocities, which somehow capture the intrinsic properties of the subsurface medium.
Within acceptable limits, the inverted velocities must be such that: (a) The seismic wave propagation in
depth honor the observed data; (b) the images produced with the help of the the inverted velocities are
consistent with the available geological content of the illuminated subsurface. The construction of depth
velocities with the above characteristics is a far from solved problem. An account of the state-of-the art
approaches and results to velocity model building can be found in Jones (2010) with a comprehensive
literature therein.

In the following, we use the imaging tool of time-to-depth conversion of time migration data, to gain
a better insight to the concept and role of data-driven and depth velocities in that process. As it is the
case of ray-based time migration approaches, our formulation assumes a smooth velocity medium in which
the image-ray concept represents a valid mapping between time and depth. As established in Cameron
et al. (2007), a key relation exists between time-migration velocities (i.e., data-driven velocities) and their
corresponding smooth velocities in depth.

A more unified analysis is presented here, where both ray-based stacking and time-migration tech-
niques are considered in a parallel manner. Smoothing of velocity fields is routinely applied in connection
with both stacking and migration of seismic data. The construction of such fields is often rather ad hoc
and mainly based on visual inspection and performance (e.g., enough smoothness to avoid apparently ar-
tificial events). We demonstrate that the ideal smooth velocity field associated with ray-based techniques
can be regarded as a replacement medium with well-defined characteristics. Thus, not only the image-ray
concept is valid, but also the normal-ray concept in case of stacked data. This implies that data-driven
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Figure 1: Time-to-depth mapping. (a) Stacked section and normal ray. (b) Time-migrated section and
image ray.

velocities, such as NMO-velocities and time-migration velocities, are both ray-mapped to intrinsic prop-
erties (velocities) of the same smooth model. The mapping rays play the role of central rays of paraxial
impulse responses associated with common scatterer points (CSP) in case of time-migration, and common
reflection points (CRP) in case of stacking. These impulse responses are again closely linked to the cor-
responding operators of time migration and stacking. To properly describe the information content of a
paraxial impulse response of a smooth medium, we introduce a special version of paraxial raytracing based
on an incremental ray-propagator system.

SMOOTH VELOCITIES AND RAY-BASED APPROACHES TO STACKING AND
TIME-MIGRATION

In this section we discuss ray-based approaches to stacking (e.g., Common Reflection Surface (CRS) tech-
nique (Jäger et al., 2001)) and time-migration (integral equation or Kirchhoff type (Schleicher et al., 2007)).
For both techniques, smooth velocities are assumed, however without a clear understanding of what such
velocities do represent. From velocity analysis, stacking velocities are obtained after smoothing of high-
coherency velocity picks. However, such smoothing is carried out in a rather ad hoc manner. Similarly,
migration velocities are typically derived from such smooth stacking velocities, with possible updating
based on coherency measures. Again, the construction of the final smooth velocity field is designed by
more or less subjective criteria.

In the analysis presented here, it will be clear what characteristics this smooth velocity field ideally
should have. Moreover, it will be seen that this ideal field represents a replacement medium, in such a way
that the stacking and migration operators are closely related to the paraxial impulse responses calculated
along the corresponding time-to-depth mapping rays. In case of a stacked section, the mapping ray from
time-to-depth is defined by the normal ray as shown in Fig.1a. In case of a time-migrated section, the
mapping is governed by the image ray as shown in Fig.1b. In both cases, the velocity model is assumed
smooth and equal. From the above understanding, it follows that stacking and time-migration velocities
have much in common and are closely linked to the smooth velocity field. We will see that the underlying
assumption is that the one-way version of the stacking and time-migration operators can be locally approx-
imated by impulse responses, if the smooth or replacement velocity field is ’correctly’ chosen. Thus, in
case of stacking, there is an underlying assumption of a CRP scenario (cf. Fig.2a) and correspondingly, in
case of time-migration, a CSP scenario (cf. Fig.2b).
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Figure 2: Paraxial-ray impulse description of (a) stacking operator and (b) time-migration operator.

Common Reflection Surface (CRS) stacking

In its simplest form, the Common Reflection Surface (CRS) method (see, e.g., Jäger et al., 2001) uses as
stacking moveout the generalized hyperbolic traveltime in offset-midpoint (y, h) coordinates as a paraxial
approximation around the (central) zero-offset (ZO) normal ray. In 2D, and assuming a straight seismic
line, such moveout reads (t0 is the two-way traveltime along the central ray and y0 is the central midpoint)

t2(y, h) = [t0 +A(y − y0)]2 +B(y − y0)2 + Ch2 , (1)

with

A =
2 sinβ

v0
, B =

2t0 cos2 β

v0RN
, C =

2t0 cos2 β

v0RNIP
. (2)

In equation (2), β is the take-off angle of the central/normal ray, v0 is the surface velocity and RNIP is the
radius of curvature (paraxial sense) associated with a point source at the normal-incidence point (NIP) of
the central ray at the reflector segment and measured at the surface in ray-centered coordinates. Similarly,
RN is the radius of curvature of a local exploding reflector wave initiated around the same NIP. Equation
(1) can be interpreted as a paraxial approximation of a reflection traveltime surface that originates from a
reflector element surrounding the NIP. By considering data sorted in common midpoint (CMP) gathers (i.e.
with y = y0), equation (1) reduces to the same form as the well-known normal moveout (NMO)-equation:

t2(y = y0, h) = t20 + Ch2 , (3)

in which we readily relate the coefficient C to the NMO velocity, vNMO,

C =
4

v2
NMO

. (4)

Within the CRS formulation, equation (3) can be interpreted as a paraxial approximation of a reflection
traveltime or NMO curve that originates from an unknown CRP (located at NIP). Alternatively, it can be
interpreted as a diffraction curve associated with a scatterer at NIP. The point (y0, t0) specifies the apex of
the NMO-curve. Thus, the normal ray that starts at the NIP hits the seismic line at y0 and traveltime t0/2.
Equivalently, the normal ray that propagates backward in time hits the NIP when the (one-way) traveltime
t0/2 is consumed (cf. Fig.2a). Note also that the wavefront along the normal ray from NIP to y0 makes
an angle β with the seismic line. For each sample point (y0, t0), the parameter C can be determined from
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Figure 3: (a) Stacking operator and (b) its one-way analogy assuming reciprocity and local symmetry.

a two-step procedure: (i) a standard velocity analysis is first carried out to define guide functions (initial
approximation of the velocity curve) and (ii) the guide functions with a user defined spread are then used
to compute the C = C(y0, t0) value at the given sample point. Note that, since there is an underlying
paraxial approximation, only smaller offsets should be considered. Figure 3a shows schematics of the rays
defining the local CRS stacking operator as approximated by a CRP response (i.e. ideal smooth velocity
field). Note that the kinematics of this operator is based on two-way traveltimes. Its one-way traveltime
equivalent can be approximated by the operator shown in Fig.3b, assuming reciprocity and local symmetry.
Note, that the one-way traveltime now is measured along the new axis y′ = q (local ray coordinate), being
perpendicular to the central ray at y0. The kinematics of this one-way operator analogy of the stacking
operator is governed by the equation (cf. equation (3) with the coordinate transformation q = h cosβ and
half traveltimes T = t/2 and T0 = t0/2):

T 2(y = y0, q) = T 2
0 +

C

4 cos2 β
q2 . (5)

In the framework of Fig. 3b, and well known from ray theory, the time-wavefront curvature, MNIP =
(v0RNIP )−1, satisfies the relationship

MNIP =
d2T

dq2

∣∣∣∣
q=0

. (6)

As a consequence, twice differentiation of equation (5) with respect to q, and also use of equation (4)
readily yields

MNIP =
C

4T0 cos2 β
=

1

T0 v2
NMO cos2 β

. (7)

Prestack time migration

In the following, midpoint and half-offset coordinates in the time-migration domain will be denoted by
(m,h). The two-way time-migrated traveltime is denoted τ . Of course, such coordinates will be always
considered in the vicinity (paraxial) to the central midpoint and half-offset coordinates, m0 and h0 = 0,
and central traveltime,τ0. If one can assume that the time-migration velocity is offset independent (e.g., by
using, in the migration, smaller offsets only), the moveout equation for prestack migration can be written
as

τ2(m,h) = τ2
0 +

4

v2
M

[(m−m0)2 + h2] , (8)
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where vM = vM (m0, τ0) denotes the time-migration velocity. One possible implementation of equation
(8) is to first introduce a so-called asymptotic effective offset, denoted by heff and given by

h2
eff = (m−m0)2 + h2 , (9)

which transforms the prestack time-migration moveout (8) into an NMO-like expression

τ2(m,h) = τ2
0 +

4

v2
M

h2
eff . (10)

This formulation can be regarded as an asymptotic version of the effective-offset approach to pre-stack
migration denoted Equivalent Offset Migration (EOM) (Bancroft et al., 1994). To see that, EOM starts
with the double-square-root (DSR) equation for migration (Yilmaz, 2001)

τ(m,h) =

√{
(m−m0)− h

vM

}2

+
(τ0

2

)2

+

√{
(m−m0) + h

vM

}2

+
(τ0

2

)2

. (11)

Squaring equation (11) twice and reorganizing, gives the alternative form (Li et al., 1997)

τ2(m,h) = τ2
0 +

4

v2
M

[
(m−m0)2 + h2

]
− 4

v2
M

4(m−m0)2h2

v2
Mτ

2(m,h)
. (12)

The effective offset now takes the general form

h2
eff = (m−m0)2 + h2 − 4(m−m0)2h2

v2
Mτ

2(m,h)
. (13)

If we assume larger traveltimes the last term in equation (13) can be neglected, and the effective offset is
given by its asymptotic representation. A practical implementation of equation (10) involves two steps:
(i) mapping to effective-offset and (ii) followed by ’NMO-type’ correction in the effective-offset domain.
We will now briefly discuss in more detail how the mapping step can be implemented. At each location
m = m0 a so-called CSP gather is formed that will replace the classical CMP-gather associated with the
same midpoint location. The spatial axis of a CSP-gather will be effective offset. Unlike the CMP-gather,
which will be vulnerable to reflector dip (reflector smearing), the CSP-gather will ideally represent data
from same scatterer locations (dip-moveout is inherent). Each CSP-gather is constructed from a family
of CMP-gathers representing a range in midpoints from m0 to mmax, with the latter being the migration
aperture (cf. Fig.4). Each trace is only mapped along the spatial axis and the time-coordinate is not
changed. Since this transformation is nonlinear, a binning procedure is applied along the effective offset
axis. For each CSP-gather, multiple traces can be present at a given effective offset (fold). Such traces are
stacked together and normalized with the fold. There is also a need to introduce an amplitude weight factor
by analogy with Kirchhoff migration. Li et al. (1997) propose two different possible scale factors:

scale1 = 1− (m−m0)

heff
and scale2 = 1−

(
(m−m0)

heff

)2

. (14)

After all the CSP-gathers are constructed employing the mapping procedure, the final step involves a
NMO-type of correction followed by stacking of each gather (cf. Fig.2b). This CSP-stacked section gives
now the time-migrated result.

The migration operator associated with each CSP gather is defined by two-way travetime moveouts as
governed by equation (10). By analogy with the CRS stacking case, we introduce the one-way traveltime
equivalent, T(m,h) = τ(m,h)/2, of this operator, as described by Fig.5 in case of ZO (i.e. paraxial
impulse response with secondary source at CSP and central ray equal to image ray)

T2(m,h) ≡ τ2(m,h)

4
= T2

0 +
1

v2
M

h2
eff . (15)
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Figure 4: Mapping to effective offset: forming a CSP-gather from a family of CMP-gathers.

where T0 = τ0/2. The time-wavefront curvature associated with the moveout in equation (15) is given by

M =
d2T

dh2
eff

∣∣∣∣
heff=0

=
1

T0 v2
M

. (16)

From equations (7) and (16), it readily follows that the scaled time-wavefront curvature of the paraxial
impulse response of the smooth velocity medium is inversely proportional to the square of the data-driven
velocities (i.e. stacking and time-migration velocities). The scale factor is equal to the one-way traveltime
along the mapping (normal or image) ray. The additional angular factor present in equation (7) reflects
the fact that the ray coordinate, q, makes an angle with the actual measurement (e.g. offset) axis. In
order to unravel the link between the data driven velocities and that of the smooth medium, we need to
establish an expression for the time-wavefront curvature associated with a paraxial impulse response of the
smooth velocity model. This observation has motivated the development of the incremental ray propagator
approach presented in the next main section.

However, before concluding this chapter, we also demonstrate how NMO (stacking) velocities and
time-migration velocities are closely connected within a ray approach formulation.

Linking NMO-velocities to time-migration velocities

The 2D diffraction curve employed in time-migration (referred to as a time-migration stacking moveout)
can also be formulated within a CRS parametrization. Consider Fig.6 which shows schematics of a ZO
(stacked) section with a reflection response measured associated with an arbitrary reflector in depth together
with the corresponding ZO time-migration operator. This reflection falls at sample t0 for the trace with
midpoint y0. If this event is traced backward along the normal ray in the depth domain until the one-way
traveltime t0/2 is consumed, the local reflector segment will be orthogonal to the ray at this point (map
migration). This termination point is denoted NIP (normal incidence point). From the CRS analysis it
follows that at each data point (y0, t0) in the ZO section three parameters are estimated: A, B and C (cf.
equation (1)). The question is now how to construct the corresponding diffraction response from knowledge
of the CRS reflection response at (y0, t0). This operator will correspond to a point scatterer placed at NIP.
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Figure 5: Interpretation of the one-way version of the time-migration operator as a paraxial-wave impulse
response, with the image ray serving as the reference ray (ZO case or post-stack migration shown here).

Such a scatterer can be regarded as the limiting case when a reflector element shrinks to a point. This
implies that RN = RNIP or B = C. From equation (1) it then follows that this time diffraction operator
can be written formally as (considering the prestack case and with offsets being not too large)

T 2(y, h) = [t0 +A(y − y0)]2 + C[(y − y0)2 + h2] . (17)

In time migration we assume that the scatterer is located vertically in time below the current trace location
being imaged. Let us denote this location m0. We now assume prestack time migration employing the
equivalent-offset approach, where the time-migration stacking curve is given by equation (10). The apex of
this operator corresponds to heff = 0, which again implies m = m0 and h = 0. Imposing this condition
in equation (17) gives the following constraint

dt

dy

∣∣∣∣
y=m0,h=0

⇒ At0 +A2(m0 − y0) = 0⇒ m0 = y0 −
A

A2 + C
t0 . (18)

Inserting equation (18) into equation (8) and equating equations (8) and (17) gives (also using equations
(2) and (7))

v2
M =

[
1

v2
NMO

+
sin2 β

v2
0

]−1

, (19)

and

τ2
0 = t20 −

(
vM t0 sinβ

v0

)2

. (20)

where vM = vM (m0, τ0), β = β(y0, t0) and vNMO = vNMO(y0, t0). Based on equation (20), we can
revise equation (18) as follows

m0 = y0 −
v2
M t0 sinβ

2v0
. (21)

Similar expressions have been derived earlier by Mann et al. (2000) considering the ZO limit but using
a slightly different parametrization (RNIP instead of vNMO). We think that the mapping formulation
introduced here gives a clearer idea of how NMO-velocities and time-migration velocities relate.

In case of a stratigraphic earth model (β = 0), it follows from equation (19) that

vM (m0, τ0) = vM (y0, t0) = vNMO(y0, t0) [= vRMS(y0, t0)] . (22)
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Figure 6: Mapping from stacking domain to time-migration domain (post-stack migration case shown
here).

THE 2-D INCREMENTAL RAY PROPAGATOR

In this section, a naive approach to paraxial raytracing in a 2-D model is derived. The overall goal is
to obtain simple analytical expressions describing the main characteristics of the impulse response of a
smooth velocity model. By means of such information, we can link the data-driven velocities to intrinsic
properties of the smooth velocity field (replacement field).

Incremental tracing

The starting point is the paraxial dynamic ray-tracing system in ray-centered coordinates, which in a 2D
medium reads (Červený, 2001)

dQ

dT
= v2 P,

dP

dT
= −v−1vqq Q , (23)

where T is the traveltime along the central ray, v is the medium velocity (measured along the central or
reference ray) and vqq is the second derivative of the velocity with respect to the ray centered coordinate q
(i.e. along a direction orthogonal to the central ray direction). Taking the time derivative of the above two
equations gives

d2Q

dT 2
= 2v

dv

dT
P + v2 dP

dT
= 2v

dv

dT
P − v vqq Q ,

d2P

dT 2
= − d

dT

(
v−1vqq

)
Q− v−1vqq

dQ

dT
= −v−1vqq

d ln
(
v−1vqq

)
dT

Q− v vqq P .

(24)

Consider now two nearby points xi and xi+1 (not end points) along the central ray representing an incre-
mental traveltime difference δT (cf. Fig.7) and introduce the following Taylor expansions to second order
in traveltime (employing the notation Qi ≡ Q(xi) and similarly for Pi, vi and vi,qq)

Qi+1
∼= Qi +

dQi
dT

δT +
1

2

d2Qi
dT 2

δT 2 =

(
1− 1

2
vi vi,qq δT

2

)
Qi + (v2

i δT )Pi ,

Pi+1
∼= Pi +

dPi
dT

δT +
1

2

d2Pi
dT 2

δT 2 = [−v−1
i vi,qqδT ]Qi +

(
1− 1

2
vi vi,qq δT

2

)
Pi .

(25)
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In equation (25) we have neglected the time derivatives in equation (24) and assumed constant values within
each time step. As usual practice, the system in equation (25) can be conveniently recast in matrix form[

Qi+1

Pi+1

]
= ↑∆πi

[
Qi
Pi

]
, (26)

where ↑∆πi is the ray-propagator matrix along the incremental ray segment from xi to xi+1, given by

↑∆πi =

[
↑∆Q1 ↑∆Q2

↑∆P1 ↑∆P2

]
=

[
1− 1

2vi vi,qqδT
2 v2

i δT
−v−1

i vi,qqδT 1− 1
2vi vi,qqδT

2

]
. (27)

In analogy with the usual definition of the propagator matrix (Červený, 2001), the columns
(↑∆Q1, ↑∆P1)T and (↑∆Q2, ↑∆P2)T of the matrix ↑∆πi represent the incremental plane-wave (tele-
scopic) and point-source solutions of the dynamical ray-tracing system along the incremental ray that
connect the nearby points xi and xi+1. In the same way, ↑∆πi fulfills the symplectic condition (Červený,
2001) (within 2nd order time perturbation)

(↑∆πi) J (↑∆πi)
T = J , with J =

[
0 1
−1 0

]
(28)

from which |↑∆πi| = 1.
The time-reversed version of equation (26) will formally read[

Qi
Pi

]
= (↑∆πi)

−1

[
Qi+1

Pi+1

]
≡ (↓∆πi)

[
Qi+1

Pi+1

]
(29)

Note that the equality between the inverse and the time-reversed incremental ray propagator holds because
we are not considering the complete ray propagation from source to receiver. From the symplectic condi-
tion, together with the definition of the ray centered coordinates, we have (Červený, 2001)

↓∆πi = (↑∆πi)
−1 = JT (↑∆πi)

TJ =

[
↓∆Q1 ↓∆Q2

↓∆P1 ↓∆P2

]
=

[
↑∆P2 −↑∆Q2

−↑∆P1 ↑∆Q1

]
. (30)

Figure 7: Incremental paraxial raytracing.

Cascaded system

Based on equations (26) and (27), corresponding cascaded solutions can be constructed. Assume a total
of N time steps (corresponding to a total traveltime T = NδT ). Then we can write, in case of forward
propagation in time (assuming either point or telescopic source initial condition),[

↑Qfin
↑Pfin

]
= (↑∆πN ) · · · (↑∆π2)(↑∆π1)

[
↑Qini
↑Pini

]
= ↑π

[
↑Qini
↑Pini

]
, (31)
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where ↑π represents the ray-propagator matrix along the full ray

↑π = (↑∆πN ) · · · (↑∆π2)(↑∆π1) =

[
↑Q1 ↑Q2

↑P1 ↑P2

]
(32)

The telescopic and point-source components of the propagator matrix are found to be

↑Q1 = 1−
N∑
i=1

{
N∑
k=1

v2
k δT −

3v2
i δT

2

}
v−1
i vi,qq δT ,

↑P1 = −
N∑
i=1

v−1
i vi,qq δT ,

↑Q2 =

N∑
i=1

v2
i δT ,

↑P2 = 1−
N∑
i=1

{
N∑
k=1

v2
k δT −

3v2
i δT

2

}
v−1
i vi,qq δT ,

(33)

The corresponding cascaded system in case of time-reversed propagation reads[
↓Qfin
↓Pfin

]
= (↓∆π1)(↓∆π2) · · · (↓∆πN−1)(↓∆πN )

[
↓Qini
↓Pini

]
= JT (↑∆π1)T (↑∆π2)T · · · (↑∆πN−1)T (↑∆πN )TJ

[
↓Qini
↓Pini

]
=

(
JT ↑π J

)T [ ↓Qini
↓Pini

]
= ↓π

[
↓Qini
↓Pini

]
. (34)

which, in combination with equation (31), gives the well-known relationships between forward and reverse
time-propagated ray matrices (by analogy with equation (30)) (Červený, 2001)

↓π =

[
↓Q1 ↓Q2

↓P1 ↓P2

]
= JT (↑π)TJ

= JT
[
↑Q1 ↑Q2

↑P1 ↑P2

]T
J =

[
↑P2 −↑Q2

−↑P1 ↑Q1

]
. (35)

It follows from equation (35) that, if the dynamic quantities, Q and P , of the forward propagation in time
are known, the corresponding quantities for the reverse time solution can be easily deduced (and vice versa).
The forward-propagated solutions represent physical responses. Nevertheless, as later demonstrated, indi-
rect quantities, such as the wavefront curvature (or its inverse), of the non-physical, time-reversed telescopic
solutions can provide useful information about the local (interval) velocities. As a consequence, such so-
lutions are bound to play an important role in velocity mapping, where the transformation is represented
by tracing along normal or image rays. We observe, in passing, that these types of rays are telescopic in
nature in a paraxial sense, since the wavefront is linear at the takeoff for an image ray (traced backward in
time) and linear at the reflector for a normal ray (traced forward in time.

Special case of smooth velocity model

Consider now the special case of a smooth velocity model. This type of assumption is commonly employed
both in stacking and migration of seismic data as discussed earlier. As demonstrated then, both the stacking
and migration operators within a ray-based approach are closely related to the impulse response of such a
smooth medium. Moreover, this smooth velocity field is not representing the true velocities of the subsur-
face but plays the role of a replacement medium. By imposing a smooth velocity condition, equations (33)
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take the form
↑Q1
∼= 1− T 2v2

RMS(0, T )〈v−1 vqq〉+ T 〈v−1 vqq〉w ,

↑P1
∼= −T 〈v−1 vqq〉 ,

↑Q2
∼= T v2

RMS ,

↑P2 = 1− T 〈v−1 vqq〉w ,

(36)

in which we have employed the time averages

〈v−1 vqq〉 =
1

T

∫ T

0

v−1(T ′) vqq(T
′) dT ′ ,

〈v−1 vqq〉w =
1

T

∫ T

0

T ′ v2
RMS(0, T ′) v−1(T ′) vqq(T

′) dT ′ .

(37)

In equations (36), the notation vRMS(Ta, Tb) implies an RMS-velocity calculated along the central ray
between propagation times Ta and Tb. We also adopted the simplifying notation vRMS(0, T ) = vRMS .

RELATIONSHIP BETWEEN THE DATA DRIVEN VELOCITIES (TIME-WAVEFRONT
CURVATURES) AND THE INTRINSIC PROPERTIES OF THE SMOOTH VELOCITY MODEL

We start by summarizing the main observations made up to now:

• Time-wavefront curvature of paraxial impulse response of smooth velocity model describes one-way
version of ray-based operator for both stacking and time-migration.

• Application of operators to data determines time-wavefront curvatures (maximizing coherency mea-
sures).

• To link time-wavefront curvatures or data driven velocities (’observations’) to intrinsic medium prop-
erties, need to compute paraxial impulse response of such a smooth medium.

Recovering intrinsic properties

The paraxial impulse response is calculated from equations (31) and (32) with propagation matrices corre-
sponding to the smooth model as given by equations (36) and the following initial condition (vi being the
local or interval velocity at the source location):

Qini = 0, Pini =
1

vi
. (38)

Since the incremental raytracing system is calculated in local ray-coordinates, we use a subscript q on
each quantity defined, as a reminder. If Mq represents the time-wavefront curvature of a paraxial impulse
response of the smooth velocity model, we define the following ’observables’ (i.e. determined from data
employing appropriate operators and coherency criteria):

• Paraxial NMO-velocity:
v2
qNMO = (T Mq)

−1 (39)

• Paraxial Dix-velocity:
v2
qDix = dM−1

q /dT , (40)

where T represents the (one-way) traveltime along the central or mapping ray.
In the limit of infinitesimal time stepping and smooth model, the following main result was obtained

from the incremental raytracing system

Mq =
d2T

dq2

∣∣∣∣
q=0

=
(
T v2

qRMS

)−1
.ℵ ≡

(
T v2

qNMO

)−1
, (41)
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with

v2
qRMS =

1

T

∫ T

0

v2(T ′) d T ′ , ℵ = 1−
∫ T

0

T ′v2
qRMS(0, T ′) v−1(T ′) vqq(T

′) dT ′ . (42)

In equation (42), vqRMS represents the RMS-velocity calculated along the central or mapping ray and ℵ
is a stretch factor. Based on equations (41) and (42) and from knowledge of the wavefront-curvature, the
intrinsic properties of the smooth velocity model (i.e. local velocity v) can be recovered as follows:

v =

√√√√d
(
T v2

qRMS

)
dT

, v2
qRMS = v2

qNMO.ℵ , (43)

if the stretch factor is known. Hence, both in case of ray-based stacking and time-migration, the data-driven
velocities determined (i.e., represented by time-wavefront curvature in equations (7) and (16)) can now be
linked to the local intrinsic velocity, v.

Cameron et al. (2007) were the first to link time-migration velocities to the intrinsic properties of the
smooth velocity model. The work presented here represents a more generalized approach to the same
problem, by considering ray-based stacking and time-migration within a unified approach. Thus, a more
complete understanding of data-driven velocities in general and their link to intrinsic properties are ob-
tained. The unified approach also makes it clear what ideal characteristics the smooth velocity field should
have (i.e. underlying paraxial assumptions). The main task has been to unravel the close relationship be-
tween the paraxial impulse response in the smooth medium and the corresponding stacking and migration
operators. The impulse responses are paraxial approximations with the proper mapping rays acting as the
central rays. In this paper, the concept of incremental ray propagator has been introduced. In their work,
Cameron et al. (2007) employed a different solution strategy based on a perturbed-source approach (cf.
Fig.8). In case of time-migration they arrived upon the main result

v2 =
d
(
M−1

)
dT

.ℵ2 =
d
(
T v2

qNMO

)
dT

≡ v2
qDix.ℵ , (44)

Thus, they used the paraxial Dix-type of velocity as data input to estimate the local velocity. This involves
the use of a time-differentiated time-wavefront curvature.

Figure 8: Perturbed-source approach employed to analyze intrinsic mapping.

When mapping data driven velocities (or time-wavefront curvatures) to intrinsic properties the follow-
ing observation can be made: we measure quantities in a paraxial sense but want to transform them to
quantities describing central ray (intrinsic properties, cf. Table1).
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Paraxial-sense quantity Central/mapping-ray quantity (intrinsic)

NMO-velocity: v2
qNMO = M−1/T v2

qRMS = v2
qNMO.ℵ, v =

√
d
(
T v2

qRMS

)
/dT

Dix velocity: v2
qDix = d

(
M−1

)
/dT v2 = v2

qDix.ℵ

Table 1: Mapping to intrinsic properties.

The stretch factor

The stretch factor ℵ in equation (42) can be computed from time-reversed paraxial raytracing along the
mapping rays employing a telescopic solution (Cameron et al., 2007). The time-reversed version of the
incremental raytracing system is given by equations (34) and (35). From this system it readily follows that

↓Q1 = ↑P2 = v0.ℵ . (45)

Equation (45) gives an alternative interpretation of the stretch factor, namely that it is proportional to the
geometrical spreading factor, G = ↓Q1, of a telescopic paraxial ray computed backward in time along the
mapping ray acting as the central ray. Figure 9 shows an example of such a ray tracing in case of an image
ray.

Figure 9: Time-reversed tracing of telescopic solution along image ray as its central ray.

We can now summarize the role of the elementary paraxial solution of the smooth velocity model:

• Paraxial point-source (impulse response) solution: links the paraxial type of velocity information
(time-wavefront curvatures) to intrinsic quantities (e.g. local time-domain velocities).

• Time-reversed telescopic solution:

– estimates stretch factor

– provides mapping from time-to-depth.

Time-to-depth mapping

In the original work of Cameron et al. (2007), time-to-depth mapping of data-driven velocities to smooth
intrinsic velocities in depth was the main goal. They suggested to solve for stretch factor and time-to-depth
mapping jointly through inversion. Possible problems with this strategy can be:

• The quantityM at each sample has to be estimated from the data. One has to have ’reliable’ estimates
so as to compute dM/dT at every sample point;

• Estimates of M can be only trusted at points of high coherency;

• Instability can be expected.
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An alternative strategy could be to decouple the problem:

• Use smooth macro-velocity field in depth obtained from tomography to estimate stretch and time-to-
depth mapping

• Use only reliable values of M (samples with high-coherency) followed by ’smart’ interpolation and
time differentiation to recover v.

CONCLUSIONS

An incremental ray-propagator system has been introduced as a possible tool to more easily analyze the
medium information carried by different elementary earth responses (point and telescopic type). This sys-
tem is not to be regarded as a practical paraxial ray-tracing system, but serves the purpose of an analyzing
tool. The concept is also well tailored for analyzing the so-called velocity stretch problem, i.e. how to
recover local (interval) velocities from either time-migration or stacking velocities. Finally it should be
noted that the generalization to the 3D case is rather straightforward.
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