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ABSTRACT

Seismic imaging employing integral-equation type of migration is revisited. To further improve the
resolution of the reconstruction of both reflections and diffractions, we propose to employ ideas taken
from Fresnel-aperture migration which uses low-frequency stationarity to select that part of data that
coherently contribute to the final image. Thus, this technique offers an efficient way to window the
coherent seismic energy which if being aligned can be input to a window-steered MUSIC approach
with the potential of giving high-resolution seismic images.

INTRODUCTION

One major class of techniques employed to image seismic data is integral-equation (Kirchhoff type) mi-
gration (IEM) (Schleicher et al., 2007). Like other imaging techniques its resolution power is diffraction
limited. Moreover, the basic inherent assumption is that the larger migration aperture the better resolution.
In case of reflections, this is not true in general and the use of a too large aperture may lead to severe
degradation of the final seismic reconstruction. That part of the data which constructively contributes to an
image point, is denoted the Fresnel aperture. In case of both reflections and diffractions, we use a technique
introduced by Tabti et al. (2004) to identify the corresponding Fresnel apertures in an efficient manner. The
Fresnel apertures of diffractions are significantly larger reflecting their higher resolution capabilities. Such
windowed data can then be input to a standard IEM technique. However, in this paper we advocate for the
use of a windowed-MUSIC approach to imaging. This implies that the Fresnel-aperture selected data are
aligned or steered and combined with the high-coherency technique Multiple Signal Classification (MU-
SIC) introduced by Schmidt (1986).

FRESNEL APERTURE

If we consider the basic working principle of IEM, the image of a general subsurface point (acting either as
a scatterer or as part of a reflector) is formed by adding seismic data values along a time-diffraction curve
defining the migration operator. The concept is shown schematically in Fig.1 in case of a single reflector.
It is generally assumed that a large migration aperture, i.e. a migration operator acting on many traces
simultaneously, is a needed requirement. However, this is only partly true. In the simple analysis to follow
we will demonstrate that in case of seismic reflections, only a small area defined by the so-called Fresnel
aperture is needed. However, in case of diffractions, the corresponding Fresnel aperture is much wider.

Figure 2 shows a simple reflection experiment within the zero-offset limit (coinciding source and re-
ceivers), where the time-diffraction curve corresponding to reflection point R is ’tangent’ to the zero-offset
reflected energy in a region surrounding the point of emergence of the corresponding specular ray at the
receiver array. We will denote this tangential contact the Fresnel aperture. Thus the envelope of the cluster
of seismic traces receiving a contribution from a common point on the reflector forms what we call here the
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Figure 1: Schematics of the scattering traveltime (time-diffraction curve) representing the migration oper-
ator.

Figure 2: Definition of the Fresnel aperture (ZO case)

Fresnel aperture. It is important to stress that the Fresnel aperture is a result of considering several distinct
Fresnel zones belonging to different specular reflection points surrounding the actual one (i.e. around R in
Fig.2 for instance). All these Fresnel zones have in common the actual specular reflection point. This is
the only condition to include a neighboring Fresnel zone’s trace in the Fresnel aperture. If one considers a
fixed scattering point in the subsurface, only that part of the migration operator which is represented by the
Fresnel aperture will contribute constructively to its image. In the following we will introduce an efficient
way to isolate that part of the operator, thus we will window the operator. To illustrate this procedure, con-
sider the simple zero-offset (ZO) synthetic data set as shown in Fig.3. It consists of a dipping reflector (20
degree) and a nearby scatterer, both embedded in a homogeneous background with a velocity of 2000m/s.
A Ricker wavelet with a center frequency of 20Hz was used as the pulse. Fairly strong white-noise with a
STD of about 10% of the maximum signal strength was added.
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Figure 3: Synthetic ZO data set

Consider now the solid vertical line in Fig.3 and let it represent the output position of a migrated trace
(note, it also represents the lateral location of the scatterer in this example). Thus for each point along
this line, the corresponding migration operator is calculated. If the data that falls along each operator are
plotted horizontally for each image point along this line, a migration-operator panel is formed as shown in
Fig.4a. Stacking the traces in this panel gives the corresponding image or migrated trace. This stacking
process can be regarded as a low-pass filtering of the data. Thus if the data corresponding to each operator
are correspondingly low-pass filtered before stacking, the final migrated trace should virtually not change.
In Tabti et al. (2004) a triangular smoothing filter is applied, and it is demonstrated using synthetic and field
data that the final migrated image is virtually unchanged if such smoothening is applied or not. We apply
the same smoothening approach to the operator panel in Fig.4a and obtain the filtered panel as shown in
Fig.4b. This filtering can be regarded as a low-frequency stationarity process, leaving only that part of the
migration operator that represents coherent contributions. But such contributions are simply equivalent to
the Fresnel apertures. This can be easily seen from Fig.4 b where the Fresnel aperture for both the reflected
event and the diffracted event are now enhanced. We can also see the difference between the aperture
lengths, with that of a diffraction being much wider as expected. Since the Fresnel aperture associated with
diffractions is considerably larger, it is another demonstration of the well-known fact that diffractions carry
higher-resolution information than reflections.

By considering the full set of migration-operator panels after filtering, and by analogy with a velocity-
analysis, the Fresnel apertures can be identified by coherency measures. For more details the reader is
referred to Tabti et al. (2004).

(a) (b)

Figure 4: Migration-operator panel. (a) Raw data and (b) after filtering
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WINDOWED-MUSIC APPROACH TO IMAGING

We assume in the following that accurate migration velocities are available. For such a case, both reflections
and diffractions are (near) horizontalized inside the corresponding Fresnel aperture in the filtered migration
operator panel (cf. Fig.4b). Define now a data window surrounding the aligned event in the operator panel
with the length of the Fresnel aperture (Nr traces) and a width of Nt time samples (cf. red rectangle
in Fig.4b in case of the reflection). The corresponding aligned or steered data D inside this window can
formally be decomposed in three different contributions (all matrices having dimension Nt ×Nr)

D = A + ∆A + N = mT
avu + ∆A + N , (1)

where A represents the average-trace contribution, ∆A the residual traces and N the noise (cf. Fig.5).

Figure 5: Decomposition of steered data matrix D

In Eq.(1), mav is the average measurement vector associated with this window and u is a column vector
of ones. The covariance matrix can now be calculated as

R =
1

Nt
DTD . (2)

Assuming incoherency between the residual traces (each of them having an energy ε) and white noise with
a variance σ2

n, this latter expression can be further simplified (also combined with Eq.(1))

R =
‖mav‖2

Nt
uuT +

(
ε

Nt
+ σ2

n

)
I . (3)

It is now straightforward to show that the vector u/
√
N is an eigenvector of the matrix R.

Singular-value decomposition of the correlation matrix R, when computed from the actual data window,
gives formally

R = VsΣsV
T
s + VnΣnVT

n , (4)

where Vs and Vn are, respectively, the signal and nil subspace singular matrices, while Σs and Σn are the
corresponding singular-value matrices.

MUSIC is a sparsity technique that requires a larger number of observations than features to be resolved.
If this requirement is fulfilled, the correlation matrix can be decomposed into two orthogonal spaces (re-
spectively, signal and nil spaces). In the case of steered MUSIC as discussed here, we have Nr multiple
measurements of the same single horizontal event (reflection or diffraction within the Fresnel aperture).
Thus, the fundamental requirement is well satisfied. Since, the normalized vector, u, is an eigenvector
of the correlation matrix R, this corresponds to the use of a horizontal steering vector and thus implying
frequency independency. This allows us to handle wideband seismic data as discussed by Kirlin (1992),
who applied the concept of window-steered MUSIC to further improve the velocity analysis.

We are now in the position to construct the MUSIC coherency measure (pseudo-spectrum) at a given
time t0 and trace position m0

I(m0, t0) =
uTu

uTPnu
wsb , (5)

where Pn = Vn VT
n is the nil-space projection matrix and wsb is a so-called semblance-balancing factor

taking into account that MUSIC yields values (pseudo-spectra) of arbitrary values Asgedom et al. (2011).
For further details the reader is referred to Gelius et al. (2013).
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SIMPLE DEMONSTRATION OF PRINCIPLES

In order to demonstrate the main principles, we will employ the same simple test data (cf. Fig.3) as before,
but image the reflection and the diffraction separately. This will often be the case in practice, since the
diffracted energy is quite low and normally masked by the stronger reflections. However, diffractions
can be imaged separately after application of a diffraction-enhancement technique (Fomel et al., 2007;
Berkovitch et al., 2009; Asgedom et al., 2012). As discussed before (cf. Fig.4b), the Fresnel aperture of
a diffracted event is significantly larger than in case of a reflection. Thus quite a large migration aperture
(operator) is needed if a good image is to be obtained employing migration. In the example shown here,
we used a Fresnel aperture width corresponding to the reflected event in Fig.4b, thus far too short. The
corresponding migrated image obtained is shown in Fig.6a. The focus of the scattering energy is seen
to be rather poor as expected due to the limited aperture. In addition, the effect of the noise is quite
prominent since the migration operator is rather short. Next, employing the windowed MUSIC approach
with data input again limited to the same aperture, gave the image shown in Fig.6b. The effect of noise has
been virtually eliminated and the focus is now well reconstructed. For further discussions about imaging
of diffractions the reader is referred to Gelius et al. (2013) and Gelius and Asgedom (2011). In these
works, a resolution beyond the classical diffraction limit of Rayleigh has been demonstrated employing the
windowed MUSIC approach.

(a) (b)

Figure 6: (a) Kirchhoff migration and (b) MUSIC imaging.

Now, we continue with the reflected event. Reflections do not carry the same potential resolution as the
diffracted events, since they represent an ensemble response of a series of infinitesimal scatterers. However,
use of the windowed MUSIC technique can still improve the S/N as well as the sharpness of the reflector.
This is demonstrated in Figs.7a and b, where the MUSIC image is seen to be quite superior in quality and
resolution.

(a) (b)

Figure 7: (a) Kirchhoff migration and (b) MUSIC imaging.
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CONCLUDING REMARKS

This paper has demonstrated that the resolution power of standard wave-equation imaging of seismic data
can be further enhanced if combined with techniques adapted from the signal processing community. More
specifically, recovering the Fresnel apertures corresponding to stationarity in the seismic data makes it
possible to reduce distortions during the reconstruction process. In particular, when combined with the
high-coherency technique MUSIC considerable improvements in the seismic resolution can be obtained.
This observation applies for both reflections and diffractions, but with the latter ones being superior when
it comes to the finer details.

RELATION TO PRIOR WORK

Improving the resolution of seismic images, has been an area of research for many years. Various ap-
proaches have been introduced and investigated, among them 1-D deconvolution techniques (Yilmaz,
2001), 2-D deconvolution techniques (Gelius et al., 2002; Takahata et al., 2013) and Least-Squares mi-
gration (Nemeth et al., 1999). Combination of wave-theory and high-resolution techniques like MUSIC
has been investigated by several groups (Devaney et al., 2005; Miwa and Arai, 2004; Solimene et al., 2012;
Aliyaziciogl et al., 2008) where the problem in common has been to image a sparse set of scatterers. The
work presented here (in combination with other recent publications (Gelius et al., 2013; Gelius and Asge-
dom, 2011) can be regarded as an extension of these works to cover the case of seismic data. For such data,
the scattering contributions are not sparse and reflections are major information carriers. The key to success
has been to introduce a windowed-MUSIC approach to imaging. This ensures that the sparsity condition is
fulfilled. The idea of window-steered MUSIC was first investigated by Kirlin (1992). However, his area of
application was not within seismic imaging but velocity analysis.
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