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ABSTRACT

Redatuming aims at correcting seismic data for effects of an acquisition at an irregular surface and for
the effects of complex geological structures in the overburden and low velocity layer. Interferometric
techniques can be used to relocate sources to positions where only receivers are available and have
been used to move acquisition geometries to the ocean bottom or transform data between surface-
seismic and vertical seismic profiles. By combining modeling with interferometry and correlating
the modeled direct wavefield with seismic surface data, we can relocate the acquisition system to
any datum in the subsurface to which the propagation of direct waves can be modeled with sufficient
accuracy. In this way, we can carry the seismic acquisition geometry from the surface to geologic hori-
zons of interest. Specifically, we show the derivation and approximation of the seismic interferometry
equation, conveniently using Green’s theorem for the Helmholtz equation with density variation. We
demonstrate theoretically and numerically that reflections from deeper interfaces are repositioned with
satisfactory accuracy.

INTRODUCTION

In recent years there has been a growing interest to improve petroleum exploration and processing of
seismic data using interferometric techniques. Seismic interferometry is a technique based on optical
physics. It allows the use of parts of the information contained in the seismic data that are not taken
into account in conventional processing. Its basic principle allows us to generate new seismic responses or
virtual sources where only receivers were placed (Wapenaar et al., 2010). In seismic exploration, authors
like Claerbout (1968) and Scherbaum (1978) were the first to make use of interferometric techniques.
Claerbout (1968) showed that the Green’s function for reflections recorded at the Earth’s surface could be
obtained by the autocorrelation of the data generated by buried sources in a 1D medium, while Scherbaum
(1978), using information of microquakes, constructed geological structure based on the properties of the
Green’s functions.

Interferometric redatuming techniques have been studied, e.g., by Xiao and Schuster (2006), Schuster
and Zhou (2006), Dong et al. (2007), Lu et al. (2008), van der Neut et al. (2011) and many others. They
attempt to use the techniques with the objective of improving the seismic sections and reducing the un-
certainty in hydrocarbon exploration in regions of high structural and sedimentological complexity. The
redatuming technique’s principal applications are the correction of seismic data for effects of an acquisi-
tion at an irregular surface and for the effects of complex geological structures in the overburden and low
velocity layer. The objective is to focus the seismic data processing at a specific subsurface region.

Interferometric redatuming can be used to relocate sources to positions where only receivers are avail-
able and allows to carry the seismic acquisitions from the surface to geologic horizons of interest. In this
work, we correlate the modeled direct wavefield with seismic surface data to relocate the acquisition sys-
tem to any datum in the subsurface to which the propagation of direct waves can be modeled with sufficient
accuracy.
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The derivation starts from a convenient approximation of the seismic interferometry equation using
Green’s theorem on the Helmholtz equation with density variation. It proceeds to the general redatuming
equation and the specific approximation discussing the correlation of acquired seismic data with modeled
direct waves. In the numerical results section, we apply the new redatuming method to synthetic surface
data from a simple earth model in order to redatum sources and receivers to the ocean bottom.

METHOD

In this section we describe the basic theory of interferometry for acoustic media with density variation. We
deduce the reciprocity theorem, interferometry principle and the Green’s function approximation. We start
at the Helmholtz equation for variable-density media, which is written as follows

ρ(x)∇ ·
[

1

ρ(x)
∇ψ̂(x, ω)

]
+

ω2

v2(x)
ψ̂(x, ω) = −F̂ (x, ω) . (1)

Here, ρ(x) is the variable density, ψ̂(x, ω) is the pressure field, ω is the angular frequency, v(x) is the wave
velocity, and F (x, ω) is a source term.

In the particular case of a temporal and spatial point source at position xA, i.e., when the source term
F (x, ω) is given by a delta function δ(x − xA), the pressure field is represented by the Green’s function
Ĝ(x, ω;xA), so that the Helmholtz equation reads

ρ(x)∇ ·
[

1

ρ(x)
∇Ĝ(x, ω;xA)

]
+

ω2

v2(x)
Ĝ(x, ω;xA) = −δ(x− xA). (2)

The basis for all seismic interferometry is Gauss’s theorem, which relates an integral over a closed
surface ∂E of an arbitrary vector field to an integral over the enclosed volume E of the divergence of the
vector field. Choosing the vector field appropriately, this theorem can be written as (Green, 1828)

©
∫
∂E

∫
1

ρ(x)
(ψ̂∇Ĝ− Ĝ∇ψ̂) · n̂dS =

∫∫∫
E

∇ ·
(

1

ρ(x)
ψ̂∇Ĝ− 1

ρ(x)
Ĝ∇ψ̂

)
dV, (3)

where n̂ is the unit vector normal to the surface ∂E pointing into the outward direction of the volume E.

Reciprocity theorem

Figure 1: Sketch of a source at position xA with a receiver at position xB , where c is the representation of
a wave path from xA to xB .

To derive the reciprocity theorem for variable-density media, we consider the situation in Figure 1.
Upon the use of equation (3), we deduce the reciprocity theorem for wave propagation between points xA
and xB . We start from equations (1) and (2). For simplicity, we write ψ̂ = ψ̂(x, ω) and ĜA = Ĝ(x, ω;xA).
Multiplying equation (1) by ĜA, we obtain

ρ(x)ĜA∇ ·
[

1

ρ(x)
∇ψ̂
]

+
ω2

v2(x)
ĜAψ̂ = −F̂ (x, ω)ĜA, (4)

and multiplication of equation (2) by ψ̂ yields

ρ(x)ψ̂∇ ·
[

1

ρ(x)
∇ĜA

]
+

ω2

v2(x)
ψ̂ĜA = −δ(x− xA)ψ̂. (5)
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Subtracting equations (4) and (5) after division by ρ(x), integrating over an arbitrary volume E, and ap-
plying Green’s theorem (3), we find

©
∫
∂E

∫
1

ρ(x)

(
ψ̂∇ĜA − ĜA∇ψ̂

)
· n̂dS =

∫∫∫
E

1

ρ(x)

[
F̂ (x, ω)ĜA − δ(x− xA)ψ̂

]
dV. (6)

Using the Sommerfeld radiation condition, is possible demonstrate that the left-hand-side integral of the
above equation tends to zero when the radius of the closed surface tends to infinity, i.e.,

lim
r→∞

©
∫

∂E(r)

∫
1

ρ(x)

(
ψ̂∇ĜA − ĜA∇ψ̂

)
· n̂dS = 0. (7)

This results in the following equation for the solution to equation (1) at a point xA,

ψ̂(xA, ω) = ρ(xA)

∫∫∫
R3

1

ρ(x)
F̂ (x, ω)ĜAdV. (8)

Considering the source of equation (1) to be a point source at xB , i.e., F̂ (x, ω) = δ(x− xB), we have

Ĝ(xA, ω;xB) = ρ(xA)

∫∫∫
R3

1

ρ(x)
δ(x− xB)Ĝ(x, ω;xA)dV, (9)

which results in the identity
Ĝ(xA, ω;xB)

ρ(xA)
=
Ĝ(xB , ω;xA)

ρ(xB)
, (10)

relating the Green’s functions for propagation from xA to xB and from xB to xA. From equation (10), we
see that the Green function between points xA and xB is not reciprocal, if the values of the densities at
these points are different. However, a density-scaled Green’s function (Bleistein et al., 2001) is reciprocal.
This can be seen by multiplying each side of equation (10) by a density factor[

Ĝ(xA, ω;xB)

ρ(xA)
=
Ĝ(xB , ω;xA)

ρ(xB)

]√
ρ(xA)ρ(xB) , (11)

which yields √
ρ(xB)

ρ(xA)
Ĝ(xA, ω;xB) =

√
ρ(xA)

ρ(xB)
Ĝ(xB , ω;xA) . (12)

Let us define the density-scaled Green’s function as

ĝ(x, ω;xs) =

√
ρ(xs)

ρ(x)
Ĝ(x, ω;xs), (13)

where xs is the source position. Then, the original Green’s function can be recovered from its density-
scaled version by

Ĝ(x, ω;xs) =

√
ρ(x)

ρ(xs)
ĝ(x, ω;xs). (14)

Note that in the case of constant density the density-scaled Green’s function ĝ(x, ω;xs) reduces to the
Green’s function Ĝ(x, ω;xs) itself.

With definition (13), the reciprocity relation (12) reads

ĝ(xA, ω;xB) = ĝ(xB , ω;xA). (15)
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Figure 2: Sketch of two sources at positions xA and xB inside a volume E with receivers along the closed
surface ∂E of E. Indicated at position x are the propagation directions of the incoming waves from xA
and xB , and their angles θA and θB with respect to the unit normal vector n̂ to the surface.

Interferometry

Let us now review the basic interferometry equation (see, e.g., Wapenaar et al., 2010). We consider the
case where we have a closed surface with receivers located on it. Inside the enclosed volume, we have two
sources located in positions xA and xB (see Figure 2).

We start from the complex conjugate of the Helmholtz equation (1) with a point source at xB . With
the simplified notation G∗B = Ĝ∗(x, ω;xB), where the asterisk denotes the complex conjugate, the corre-
sponding equation reads

ρ(x)∇ ·
[

1

ρ(x)
∇Ĝ∗B

]
+

ω2

v2(x)
Ĝ∗B = −δ(x− xB). (16)

Multiplying equations (2) and (16) by Ĝ∗B and ĜA, respectively, and subtracting the results after division
by ρ(x), we find

∇ ·
[

1

ρ(x)

(
ĜA∇Ĝ∗B − Ĝ∗B∇ĜA

)]
=

1

ρ(x)

(
δAĜ

∗
B − δBĜA

)
. (17)

Integration over an arbitrary volume E, application of Green’s theorem (3), and consideration of the reci-
procity relation (10) leads to

©
∫
∂E

∫
1

ρ(x)

(
ĜA∇Ĝ∗B − Ĝ∗B∇ĜA

)
· n̂dS =

−2i

ρ(xB)
Im
[
Ĝ(xB , ω;xA)

]
. (18)

This is the fundamental relationship for all interferometry techniques, because it proves that the Green’s
function of the propagation from xA to xB can be obtained with information about the wavefield propagat-
ing from xA and from xB to (all) receivers on the closed surface. This only is possible if xA and xB are
located inside the closed surface.

Green’s function approximation

For practical purposes, equation (18) is inadequate, because it is extremely rare that data on closed surfaces
are available. Moreover, the Green’s functions’ gradients generally are unknown. Therefore, the quantities
in equation (18) need to be approximated by practically available data. For the following considerations,
we refer again to Figure 2.

In the high-frequency situation, we can replace the Green’s functions by their asymptotic WKBJ ap-
proximations,

Ĝ(x, ω;xs) ≈ L(x;xs) exp [−iωT (x;xs)] . (19)

There, T is the traveltime from xs to x which satisfies the eikonal equation ‖∇T (x;xs)‖2 = 1
v2(x) and

L(x;xs) is the amplitude, principally determined by geometrical spreading. Also in high-frequency ap-
proximation, the Green’s function’s gradient can be approximated by

∇Ĝ(x, ω;xs) ≈ −iωĜ(x, ω;xs)∇T. (20)
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Figure 3: Sketch of two receivers inside a volume E at positions xA and xB and sources along the closed
surface ∂E of E.

The product of the traveltime gradient with the surface normal yields∇T · n̂ = cos θ/v(x), where θ is the
incidence angle of the wavefield under consideration. Thus, substituting equations (19) and (20) in (18)
and defining the obliquity factor

Θ(x;xA, xB) =
cos θA + cos θB

2v(x)
, (21)

we obtain
−ωρ(xB)©

∫
∂E

∫
1

ρ(x)
ĜAĜ

∗
BΘ(x;xA, xB)dS ≈ Im

[
Ĝ(xB , ω;xA)

]
. (22)

If the surface is sufficiently far away from the points xA and xB , the angles θA and θB between the ray
paths and the surface normal approximately vanish, so that Θ ≈ 1

v(x) . Thus, in far-field approximation, we
can write

−ωρ(xB)©
∫
∂E

∫
1

ρ(x)v(x)
ĜAĜ

∗
BdS ≈ Im

[
Ĝ(xB , ω;xA)

]
. (23)

Considering equations (13) and (15), we can recast equation (23) into the form

−ω©
∫
∂E

∫
1

v(x)
ĝ(xA, ω, x)ĝ∗(xB , ω;x)dS ≈ Im [ĝ(xA, ω;xB)] . (24)

Equation (24) shows that the situation of Figure 2 can be exchanged for one where instead of sources
inside the volume, there are receivers, and instead of receivers at the surface, there are sources. This is the
reciprocity principle (see Figure 3).

Direct-wave redatuming

As the next step, we understand the surface ∂E in Figure 2 as divided into two surfaces α and γ (see
Figure 4). The surface α contains the sources and receivers of a conventional seismic array, and γ is a
surface part that is needed to close it.

We suppose that seismic data have been acquired for sources at points xA and receivers along the
seismic array at α, and that a velocity model is known for the medium between surface parts α and γ, so
that the direct wave from all points xB on the datum to all points xA on α can be estimated by seismic
modeling. We will show in this section that cross-correlation of this modeled direct waves with the seismic
surface data allows to approximately redatum the acquisition array (sources and receivers) to reference
datum ∂Σ.

The total Green’s function for the wavefield at surface α can then be decomposed in a unique way as
Ĝ = Ĝi+ Ĝs (Bleistein et al., 2001), where Ĝi is the solution of the wave equation in the known reference
medium and Ĝs is the difference to the complete solution in the true medium. For a point source at xA,
ĜiA = Ĝi(x, ω;xA) must satisfy

L0Ĝ
i
A = −δ(x− xA), (25)
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Figure 4: Sketch of the surface parts α and γ of ∂E including points xA and xB . Also shown is the surface
∂Σ that is supposed to contain the unknown part of the medium.

where L0 is the Helmholtz operator for the reference medium, involving the density ρ0 and and velocity v0

instead of ρ and v.
The scattered field ĜsA = Ĝs(x, ω;xA) must then satisfy a perturbed wave equation that can be written

as
L0Ĝ

s
A = −V(x)

[
ĜiA + ĜsA

]
, (26)

where V(x) = L−L0 is the difference between the perturbed and unperturbed Helmholtz operators, called
the perturbation operator or scattering potential (Rodberg and Thaler, 1967).

In other words, the differences between the reference and true media are responsible for the existence
of the scattering potential V and thus for the existence of the scattered wavefield Ĝs. We assume that the
region where the true medium is not known, i.e., where the perturbations between the reference medium
and the true medium are located (indicated as ∂Σ in Figure 4), is outside ∂E.

Using equations (25) and (26), we can set up an equation similar to equation (17). For this purpose, we
multiply equation (26) with Gi∗B and the complex conjugate of equation (25) for a point source at xB with
GsA. Subtracting the results, we arrive at

∇ ·
[

1

ρ0(x)

(
ĜsA∇Ĝi∗B − Ĝi∗B∇ĜsA

)]
=

1

ρ0(x)

(
Ĝi∗BVĜA − δBĜsA

)
. (27)

After integration over a volume E containing xB and application of Green’s theorem, this yields

©
∫
α+γ

∫
1

ρ0(x)

(
ĜsA∇Ĝi∗B − Ĝi∗B∇ĜsA

)
· n̂dS =

∫∫∫
E

Ĝi∗BVĜA
ρ0(x)

dV − ĜsBA
ρ0(xB)

, (28)

where ĜsBA = Ĝs(xB , ω;xA). Here, we have written the closed surface ∂E as a sum of two parts, where
α represents the portion where seismic data are available and γ the remaining portion.

Since we suppose that we know the medium perfectly well between xA and xB , we can choose the
volume E such that V = L − L0 = 0 inside E (see figure 4). Thus, the volume integral in equation
(28) vanishes. After high-frequency approximations analogous to equations (19) and (20), equation (28)
therefore allows to approximately calculate the scattered field at xB as

ĝs(xB , ω;xA) ≈ −2iω

∫
α

∫
ĝsAĝ

i∗
BΘ(x;xA, xB)dS + ÎBA, (29)

where Θ(x;xA, xB) is the obliquity factor defined in equation (21). As before, we will take
Θ(x;xA, xB) ≈ 1/v in the far-field approximation. Moreover, ÎBA represents the integration over the
surface portion γ where no seismic data are available. It denotes an undesired scattering term that gives
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Figure 5: Sketch that shows the redatuming to a surface ∂Σ in two steps: (a) receivers and (b) sources.

rise to spurious events. Its contribution will be negligible if the differences between the true and reference
media are small.

Equation (29) is the principal theoretical result of this work. It states that it is possible to redatum
surface data by means of interferometry using direct-wave modeling. This equation allows to obtain the
Green’s function at xB for a point source at xA by cross-correlation of the modeled direct wave in xB with
the acquired wavefield in xA. To redatum the complete survey, equation (29) must be applied in two steps,
first redatuming the receivers and then the sources (see Figure 5).

Scattering term To better understand the physical significance of the scattering term ÎBA in equation
(29), let us analyze it in more detail. For this purpose, we substitute the high-frequency approximations
(19) and (20) to find

ÎBA =

∫
γ

∫ √
ρ0(xA)ρ0(xB)

ρ0(x)

(
ĜsA∇Ĝi∗B − Ĝi∗B∇ĜsA

)
· n̂dS

≈ −2iω

∫
γ

∫ √
ρ0(xA)ρ0(xB)

ρ0(x)
Ls(x;xA)Li(xB ;x) exp [iω(TB − TA)] Θ(x;xA, xB)dS. (30)

This result demonstrates that the event described by integral ÎBA is proportional to the amplitude Ls of
the wave GsA that was scattered at the differences between the true medium and the one used for modeling
of the direct wave. Thus, the smaller these differences are, the smaller will the spurious event become. In
practice, the main contributions to equation (30) will be from the region below the datum.

More importantly, the stationary directions for integral (30) are those where the wavepath connects
all three points x, xA and xB . For such wavepaths, the traveltime difference TB − TA that governs the
phase of integral (30) amounts to the traveltime TAB of the direct wave between xA and xB . We will
recognize in the numerical examples that the most important contribution of integral (30) appears at TAB
in the redatumed data.

NUMERICAL EXAMPLES

Synthetic data

To numerically validate redatuming interferometry equation (29), we applied it in a simple numerical ex-
periments, considering a seismic marine acquisition. The model had a width of 1 km and a depth of 750 m.
Synthetic seismic data were simulated considering three situations: (1) shots and receivers are located at
the surface (Figure 6a), (2) shots are located at the surface and receivers at 350 m depth (Figure 6b) and (3)
shots and receiver are located at 350 m depth (Figure 6c).

The seismic array at the surface consisted of 21 sources spaced at 40 m, located between coordinates
100 m and 900 m, and the same number of receivers for each shot, located at the same positions (Figure 6a).
In the second experiment, we kept the same source array at the top surface, but used 21 receivers at 350 m
depth at positions between 400 m and 600 m, spaced at 10 m (Figure 6b). Finally, in the third experiment
we modeled synthetic data with the sources and receivers at the latter positions in depth (Figure 6c). The
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Figure 6: Modeling seismic data considering: (a) array of sources and receivers at the surface, (b) array of
the sources at the surface and receivers at 350 m depth and (c) all array redatuming at 350 m depth.

wavelet used for the numerical modeling was a Ricker wavelet of 50 Hz peak frequency. To further simplify
things we considered the density in all layers constant.

Interferometry results

The first step of redatuming the complete seismic array from the surface to the datum consists of redatuming
the receivers, i.e., transforming the configuration of experiment 1 into that of experiment 2. Figure 7a
compares the results of redatuming the receivers using equation (29) to the synthetic data directly modeled
with the configuration of experiment 2 (Figure 7b).

To carry out the redatuming, we modeled all direct waves from all desired receiver positions at depth to
all true source positions at the surface and crosscorrelated them with the surface data according to equation
(29). Figure 7 shows the resulting common-receiver gathers at the new depth. We see that the kinematic
properties of the data are nicely matched. While the overall amplitude features of the scattered waves are
similar, we notice some differences.

For a more detailed analysis of the quality of the redatumed data, Figure 8 compares the redatumed trace
at the center of both the source and receiver arrays to the modeled one. We see that all events are correctly
positioned in time. Also, the amplitudes of the reflected events are comparable, while the waveforms are
slightly altered. The main reason for the different amplitudes of the scattered waves is the approximation
of the obliquity factor in equation (29). The principal difference between the traces is in the amplitude of
the direct wave. The reason is that the direct wave is not recovered by equation (29). This event is actually
described by the “scattering term” ÎBA, as explained above.
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Figure 7: Redatuming using seismic direct-wave interferometry with the numerical model of Figure 6. (a)
Redatumed data. (b) Modeled data.

The second step of full redatuming consists of repositioning the sources at depth, i.e., transforming the
configuration of experiment 2 into that of experiment 3. We used both data sets of Figure 7 as an input
to this second redatuming step. Figure 9 compares the resulting zero-offset sections to correspondingly
modeled data at depth. We see that both the redatumed surface and ocean-bottom-receiver data (Figure 9a
and b) resemble the modeled data (Figure 9c) quite nicely, with the three reflections events being correctly
positioned. The two-step redatuming of the surface data introduces some additional noise and weak spu-
rious events. These effects will probably reduce if more input data are available. Moreover, they can be
mitigated by using appropriate tapers.

For better appreciation of the quality of the obtained results, Figure 10 shows a trace-to-trace compar-
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Figure 8: Comparison of trace no. 400 of Figures 7a and b. (a) Redatumed data. (b) Modeled data.

ison at midpoint coordinate 500 m. Figure 10 reveals that positions and relative amplitudes of the three
reflections events are correctly recovered by both the one-step and two-step redatuming procedures. The
interferometric wavelet changes by the correlations, and some noise becomes visible in the two-step result
(Figure 10a), due to the low fold of the input data.

CONCLUSIONS

In this work, we have derived a new interferometric redatuming method combining acquired data with
modeling of the direct wavefield in an approximately known overburden of the new datum. We have
shown that a correlation of the modeled direct wavefield with seismic surface data permits to relocate the
acquisition system to any datum in the subsurface to which the propagation of direct waves can be modeled
with sufficient accuracy.

The derivation starts from a convenient approximation of the seismic interferometry equation using
Green’s theorem on the Helmholtz equation with density variation. It proceeds to the general redatuming
equation and the specific approximation discussing the correlation of acquired seismic data with modeled
direct waves. As with conventional redatuming, also interferometric redatuming proceeds in two steps,
independently relocating sources and receivers to the new datum.

To investigate the feasibility of the new interferometric direct-wave redatuming, we have applied the
method to synthetic surface data from a simple model in order to construct redatumed data for sources and
receivers at the ocean bottom. Our numerical example demonstrates that the redatumed reflections events
are repositioned correctly and keep the correct amplitude proportions as compared to data obtained from
seismic modeling at the datum level.

Moreover, we have discussed the most important spurious event resulting from the approximate proce-
dure. We have demonstrated theoretically and numerically that it will appear at the traveltime of the direct
wave between the redatumed source and receiver positions. It will be the smaller the more accurate the
model is that was used for the direct-wave modeling.
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tuming of the data of Figure 7a. (b) One-step redatuming of the modeled ocean-bottom data of Figure 7b.
(c) Modeled data.

Dong, S., Xiao, X., Luo, Y., and Schuster, G. (2007). 3D target-oriented reverse time datuming. SEG
Expanded Abstracts, 26:2442–2445.

Green, G. (1828). An eassy on the application of mathematical analysis to the theories of electricity and
magnetism. Privately published.

Lu, R., Willis, M., Chapman, X., Ajo-Franklin, J., and Toksöz, M. N. (2008). Redatuming through a salt
canopy and target-oriented salt-flank imaging. Geophysics, 73:S63–S71.

Rodberg, L. S. and Thaler, R. M. (1967). Introduction to the quantum theory of scattering. Academic Press.

Scherbaum, F. (1978). Seismic imaging of the site response using microearthquake recordings. Part II.
Aplication to the Swabian Jura, southwest Germany, seismic network. Bulletin of Seismological Society
of America, 77:1924–1944.

Schuster, G. and Zhou, M. (2006). A theoretical overview of model- based and correlation-based redatum-
ing methods. Geophysics, 71:SI103–SI110.

van der Neut, J., Thorbecke, J., Mehta, K., Slob, E., and Wapenaar, K. (2011). Controlled-source interfero-
metric redatuming by crosscorrelation and multidimensional deconvolution in elastic media. Geophysics,
76:SA63–SA76.

Wapenaar, K., Draganov, D., Snieder, R., Campman, X., and Verdel, A. (2010). Tutorial on seismic
interferometry: Part 1 - basic principles and applications. Geophysics, 75:75A195–75A209.



Annual WIT report 2013 65

0 0.2 0.4 0.6 0.8 1.0
Time (s)

0

1

2a

b

c
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data. (b) One-step redatuming of ocean-bottom data. (c) Modeled data.
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