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ABSTRACT

A major cause of diffracted seismic waves in the subsurface are nonsmooth structures of sizes in the
same order of the wavelength. Since the wavefield can be meaningfully affected by the these nons-
mooth structures, many important model features can be inferred from the diffracted wavefield which
can help to improve the seismic image. We derive a methodology for migration velocity improve-
ment and diffraction localization based on a moveout analysis of over- or undermigrated diffraction
events in the depth domain. The method does not depend on any requirements apart from a fairly
arbitrary initial velocity model as input. We demonstrate that the method can be applied in both the
pre- or post-stack domains. For each iteration, the method provides an update to the velocity model
and consequently to the diffraction locations. The algorithm is based on the focusing of remigration
velocity rays from uncollapsed migrated diffraction curves. These velocity rays are constructed from
a ray-tracing like approach applied to the image-wave equation for velocity continuation. After each
pre-stack migration, the method has a very low computational cost, and the diffraction points are lo-
cated automatically. We demonstrate the feasibility of our method using two synthetic nonzero-offset
data examples.

INTRODUCTION

The potential of seismic diffraction for seismic processing is well-known. Many recent publications make
use of diffractions for velocity estimation (Sava et al., 2005; Novais et al., 2008; Landa and Reshef, 2009),
hydrocarbon reservoir interpretation (Tsingas et al., 2011) and super-resolution (Khaidukov et al., 2004).
Even though many studies have been dedicated to investigate the role of diffraction signatures in seismic
processing, many challenges still exist and must be overcome. Recently, Landa (2012) has raised some im-
portant questions related to the potential of diffraction signatures in seismic processing and interpretation.
Although most of time, diffraction signatures show a signal weaker than most reflections, methods capable
to separate diffractions from reflections exist (see, e.g., Fomel et al., 2007) and can be valuable for further
development in seismic diffraction imaging. We agree with Landa (2012), who states that “if diffraction
receives the attention it deserves, we will be able to see the invisible”.

One particularly important point is that diffraction events contain more direct information on the seismic
velocities than reflection events. While from the latter, velocity information can only be extracted making
use of data redundancy, the focusing of a single diffraction event, once identified in the data or made visible
with diffraction/reflection separation, already provides access to a velocity estimate.

In this work, we propose a method for velocity improvement and diffraction-point localization based
on the choosing and picking of residual moveout of incorrectly migrated diffraction events in the depth
domain. Coimbra et al. (2011) derived the post-stack version of this method and successfully applied it to
a simple zero-offset data set. Coimbra et al. (2012) demonstrated that the method is capable of extracting a
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high-quality velocity model from the realistic SIGSBEE 2B data set. Here, we extend their analysis to the
prestack case using diffraction curves for nonzero-offset depth-migration. At low computational cost, the
method uses an approximate velocity model as an input and provides an update.

We propose two algorithms for the use of the residual diffraction moveout for velocity updating. They
are based on depth remigration (Hubral et al., 1996a,b; Tygel et al., 1996; Schleicher et al., 1997, 2004)
and give rise to an automated method for diffraction location that relies on the picking of uncollapsed
diffractions in the pre-stack migrated image. The feasibility of our method is shown through its application
in two numerical examples.

METHOD AND THEORY

We extend the diffraction-imaging and velocity-updating method of Coimbra et al. (2011) to the prestack
domain. Since the method makes use of the moveout of an incorrectly migrated diffraction in the depth
domain, we start with deriving its expression for nonzero-offset.

Residual diffraction moveout

Consider a diffraction point at (xd, zd) in a constant-velocity medium with velocity vd. Since a diffraction
event migrated with the true velocity vd focuses at the true position (xd, zd), its location after migration
with a wrong velocity v0 must be smeared over the Huygens image-wave (Hubral et al., 1996b). The
Huygens image-wave is the curve or surface of all points where a possible (reflection or diffraction) event
at a single image point might be placed when the migration velocity is changed. Fomel (2003) derives
a short-offset approximation in the time domain. Substituting the vertical traveltime by 2z/v, it can be
represented in the depth domain as
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For h = 0, these expressions reduce to the zero-offset versions of Coimbra et al. (2011).
As we can see from equation (2), when the migration velocity is smaller than the medium velocity,

s = −1, i.e., the undermigrated diffraction event follows a hyperbola. On the other hand, when the
migration velocity is higher than the medium velocity, we have s = 1, i.e., the overmigrated diffraction
event follows an ellipse.

Basic velocity updating strategy

Whenever the local velocity distribution at the diffraction point is reasonably well approximated by a
constant average velocity, we can use the theoretical description in equation (2) to pick the incorrectly
migrated diffraction events. As described in Coimbra et al. (2011, 2012), we use the least-squares method
to find the best-fitting hyperbola to describe an undermigrated diffraction event or the best-fitting ellipse for
an overmigrated diffraction event. This provides estimates for the half-axes a and b as well as for horizontal
coordinate of the apex, xd.
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Once we have estimates for a, b, and xd, we can find corresponding estimates for the average medium
velocity and diffractor depth. Solving equation system (3) for vd and zd, we find
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2

b2
and zd =

√
v2
d

v2
0

(h2 + b2)− h2 . (4)

In practice, however, the curves are no perfect ellipses or hyperbolas. Therefore, the results depend on
the size of the aperture in which the hyperbolae or ellipses are fitted to the migrated diffraction event. In
our implementation, we chose the aperture that provided the best fitting.

Moreover, incorrectly migrated diffraction events in an environment with a very strong velocity gradient
exhibit a strong tilt. For a better description of the residual moveout in this case, we modify equation (2).
We use a mixed perturbation term ε(x−xd)z to allow for a rotation of the ellipse or hyperbola, i.e., equation
(2) becomes

z2

b2
+ s

(x− xd)2

a2
= 1 + ε(x− xd)z . (5)

The perturbation parameter ε is adjusted together with the other parameters of the ellipse or hyperbola in
the least-squares procedure. Its value is not used in our present version of the velocity updating strategy.

Velocity updating using remigration trajectories

The above velocity-updating procedure has a practical drawback. It provides, for each identified and picked
diffraction event, a single velocity estimate that is strongly dependent on the quality of the ellipse or hyper-
bola fitting, but gives no clue about the quality of the constant-velocity assumption or the velocity estimate.

There is a more sophisticated way of using the information contained in the residual diffraction moveout
for a velocity updating procedure, which allows some quality control. It is based on the velocity contin-
uation method, also known as image-wave equation for remigration. This is an imaginary continuation
operation in which the seismic image is transformed continuously in the post-migration domain (Fomel,
1994, 2003; Hubral et al., 1996b; Sava and Fomel, 2003; Schleicher et al., 2004) as a function of velocity.
Mathematically, it is described by a so-called image-wave equation. In the depth domain, this equation is
given by

∂2I
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where I = I(x, z, v) is an image-wave function representing the seismic image to be transformed, x, z are
the space variables, v is the average velocity at an image point (x, z) and

α(h, z) =
√

1 + h2/z2 (7)

is an offset-depth dependent factor that reduces to one for zero offset. By applying a ray-theory-like
approach to the remigration image-wave equation, ray-like trajectories can be found. These remigration
trajectories are the set of positions where a selected reflection point can be found in a migrated image as a
function of migration velocity.

Remigration trajectory tracing

In order to describe the kinematic part of depth remigration, we use an WKBJ or ray-theory-type approxi-
mation

I(x, z, v) = A(x, z)F (v − V (x, z)) (8)

to represent the seismic image. In equation (8), F is the seismic wavelet, amplitude factor A represents
the dynamic behavior, and V is image-wave eikonal describing the kinematic behavior of the image un-
der variation of the migration velocity. Substituting expression (8) in image-wave equation (6) for depth
remigration, we find that V must satisfy the image-eikonal equation(

∂V

∂x

)2

+ α(h, z)2

(
∂V

∂z

)2

− V

z

∂V

∂z
= 0 . (9)



Annual WIT report 2013 47

This image-eikonal equation is a nonlinear partial differential equation that can be solved by means of
the method of characteristics (Courant and Hilbert, 1989). This method provides us with the characteristic
trajectories along which image propagation takes place from one point (x, z) in the depth domain to another
point (x∗, z∗), associated with a different migration velocity. It is these trajectories that we refer to as
remigration trajectories.

In analogy to the development for the zero-offset case (Coimbra et al., 2011), we write equation (9) as
a hyper-surface G given by

G(x, z, V, p, q) = p2 + α(h, z)2q2 − V

z
q = 0 , (10)

where p = ∂V/∂x and q = ∂V/∂z are new variables. The method of characteristics then consists of
transforming this hypersurface into the following system of ordinary differential equations
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In the first five equations of system (11), v could be any monotonously increasing variable along the
trajectory. The actual meaning of this variable is defined by the last equation in the above system. For
convenience, we have imposed the meaning of the independent variable to be the (average) velocity by
setting the derivative of the image-eikonal V with respect to v to one. This choice defines the scale factor
λ as

λ =
(
p2 + α(h, z)2q2

)−1
. (12)

System (11) describes the remigration trajectories the image wave follows under variation of v. In other
words, all variables involved in the propagation process are parameterized in terms of v, i.e., as x = x(v),
z = z(v), p = p(v), q = q(v), and V = V (v). For zero-offset (h = 0), the solution to system (11) are
circular arcs (Schleicher et al., 1997). For non-zero-offset, they can be found using numerical ray tracing.

To make use of system (11) for the tracing of remigration trajectories, we need initial conditions for
all of the involved variables. Let us assume that a remigration trajectory starts at an image-point (x0, z0)
in an image I0 obtained with velocity v0. This defines the initial values for image-wave ray tracing as
x(v0) = x0 , z(v0) = z0 and V (v0) = v0. We still need the initial values p(v0) = p0 and q(v0) = q0.
These can be found in analogous way as in the zero-offset case (Coimbra et al., 2011). For one, these
values satisfy the image-eikonal equation (10) at v = v0, i.e.,

p2
0 + α2q2
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q0 = 0 , (13)

where α0 = α(h, z0). Equation (13) is equivalent to the elliptic expression
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Introducing a parameter θ, we can thus represent the relationship (14) between p0 and q0 as

p0 =
v0 sin(θ)

2z0α0
and q0 =

v0(cos(θ) + 1)

2z0α2
0

. (15)

The value of parameter θ that defines the correct trajectory at the initial point (x0, z0) in the original seismic
event I0(v0) is determined as follows. Along the initial seismic event, the image-wave eikonal must satisfy
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Figure 1: (a) Pre-stack migrated section (h = 200 m) with remigration trajectories (red lines) starting
at an undermigrated hyperbolic diffraction curve (blue line). The black circle indicates the true diffractor
position. (b) Pre-stack migrated section (h = 200 m) with remigration trajectories (red lines) starting at
an overmigrated elliptic diffraction curve (blue line). (c) Superposition of center sections of parts a and b.
The focusing of the remigration trajectories (red lines) at the correct point is independent of the original
(wrong) migration velocity. The quality of the focussing is an indication for the quality of the velocity
estimate. (d) Same as part c for half-offset h = 600 m.

V (x, z(x)) = v0 or dV/dx = 0. Implicit derivation with respect to the horizontal coordinate x and solution
for dz/dx yields

D0 =
dz

dx
= −∂V

∂x

(
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)−1

= −p0

q0
= − α0 sin(θ)

cos(θ) + 1
, (16)

whereD0 is the dip of the migrated event at the initial point (x0, z0) of the remigration trajectory. Equation
(16) can be inverted to yield the correct value of θ in dependence on the event dip,

θ = − arcsin

(
2D0α0
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)
. (17)

Substituting these expressions back in equations (15) yields
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These two equations complete the set of initial conditions needed for the tracing of the remigration trajec-
tories using system (11).

Figures 1 show examples of remigration trajectories (thin red lines) for an incorrectly migrated diffrac-
tion event. The trajectories focus at a point close to the true diffractor position. The point on each trajectory
closest to the focus point (in the figure, the trajectories end at the focus point) provides an associated ve-
locity value for that point. In this way, the residual moveout of the incorrectly migrated diffraction events
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Figure 2: (a) Velocity model with constant diagonal gradient v(x, z) = 2000 + 0.4x + 0.4z m/s. (b)
Common-offset time section for h = 200 m. (c) Depth migrated image and undermigrated hyperbolas
(blue lines) and focusing remigration trajectories (red lines). A constant velocity of 2000 m/s was used for
migration. (d) The inverted interval velocity model. (e) Relative velocity error. (f) Migrated image using
this interval velocity model.

can be used to update the migration velocity model. The focus-point scatter provides an indication for the
quality of the velocity estimate.

RESULTS FOR TWO SYNTHETIC DATA SETS

Small offset

To investigate the quality of our method in the presence of lateral inhomogeneity, we applied it to data from
a model with three diffraction points, buried in a constant-gradient velocity background with vertical and
lateral variation, given by v(x, z) = 2000 + 0.4x + 0.4z m/s (Figure 2a). It also contains two horizontal
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reflector elements with endpoints in the center of the model. We used Kirchhoff modeling with a Ricker
wavelet of dominant frequency 20 Hz to generate a common-offset dataset for a half-offsets h = 200 m.
The acquisition geometry consisted of 300 source-receivers pairs spaced at 10 m, covering an extension of
3000 m. Figure 2b shows the resulting common-offset data.

We then depth-migrated these data using a constant velocity of 2000 m/s (Figure 2c). Of course, the
reflectors are in wrong positions and the diffractions are not focused at all. We then fitted hyperbolas to the
undermigrated diffractions (blue lines in Figure 2c) and traced the corresponding remigration trajectories
(red lines in Figure 2c). The remigration trajectories focus almost exactly at the true diffractor positions.
In this example, even under rather strong lateral and vertical velocity gradients, the method was capable
of localizing all diffraction points with an error of ±0.4% in the vertical direction and up to ±0.5% in the
horizontal direction.

We interpolated the resulting average velocity values using a linear least-squares fit to obtain a mean-
velocity model given by Vm(x, z) = 2044 + 0.38x + 0.18z m/s. To invert this mean velocity model
for interval velocity, we use that depth remigration averages the slowness (Schleicher et al., 2004). The
resulting inverted interval velocity model is Vr(x, z) = 2044 + 0.38x + 0.37 m/s. Figure 2d shows this
inverted velocity model, and Figure 2e shows its relative error. The error amounts to less than 2% at the
top of the model and is much lower in the center and at the bottom, where the actual velocity information
is located.

Finally, Figure 2f shows a depth migrated section using the velocity model in Figure 2d. The migrated
image focuses all three diffractions points in the model and correctly positions the two straight reflector
elements. Note that for this small offset, a single iteration was sufficient to construct a suitable velocity
model.

Larger offset

Next we repeated this experiment with a larger half-offset of h = 600 m, keeping all other parameters the
same. With the same velocity model depicted at Figures 2a and again using zero-order Kirchhoff modeling,
we generated a second common-offset panel for a half-offset of h = 600 m. Again, we migrated this panel
using a constant velocity model of 2000 m/s. The result is shown in Figure 3a, which also depicts the fitted
undermigrated hyperbolas (blue lines) and the corresponding remigration trajectories (red lines).

The first interval model from the inversion of the resulting average velocities is shown in Figure 3b, with
its error depicted in Figure 3c. As we can see, the larger offset led to a larger error, amounting to almost
12% at the bottom of the model. This insufficient model reflects in the quality of the associated migrated
image (Figure 3d). While the reflector elements are already quite well imaged, only the diffraction at the
left-hand side looks acceptable. The diffractions at the right-hand side and bottom of the image are still out
of focus, indicating that further model improvement is called for.

Consequently, we applied our method again to these uncollapsed diffractions. The fitted hyperbolas
(blue lines) and focusing remigration trajectories (red lines) are shown in Figure 3e. The updated velocity
values led to a new interval velocity model of Vr(x, z) = 2035 + 0.42x + 0.39 m/s (see Figure 3f). This
model is now rather close to the true velocity model, as we observe from its relative error in Figure 3g,
which remains below 2.5%.

Finally, the result of a depth Kirchhoff migration using this inverted velocity model is shown in Fig-
ure 3h. As we can see, the reflector elements are correctly positioned in depth and all diffractors are nicely
focused at their true positions (compare to Figure 2a). Thus, even for a rather strong velocity gradient and
a larger offset, the method converges to an acceptable velocity model in only two iterations.

CONCLUSIONS

We have extended the remigration-trajectories method of Coimbra et al. (2011, 2012) to the nonzero-offset
domain. The method uses the moveout of unfocused diffraction events in a prestack migrated seismic
section. The focusing of remigration trajectories originating from these events is used to determine the
correct location of the diffractor and the associated velocity value. Our methodology does not require any
information apart from a fairly arbitrary initial velocity model for an initial depth migration. Except for the
migrations involved, the processing time of the method is very fast. Once the diffraction events are selected
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Figure 3: (a) Depth migrated image with constant velocity of 2000 m/s and with undermigrated hyperbolas
(blue lines) and focusing remigration trajectories (red lines). (b) First interval velocity model resulting in
Vr(x, z) = 2055 + 0.35x+ 0.19 m/s. (c) Relative velocity error for first iteration. (d) The migrated image
using the first interval velocity model. (e) The migrated image using the first interval velocity model and
with undermigrated hyperbolas (blue lines) and focusing remigration trajectories (red lines). (f) Second
interval velocity model. (g) Relative velocity error for second iteration. (h) The migrated image using the
second interval velocity model.
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and picked, the necessary computations are executed in a matter of seconds. We have tested the technique
in a numerical model with a diagonal constant gradient. The method has worked satisfactorily. For a near
offset (h = 200 m), only one iteration was required to obtain an acceptable velocity model with an error
of less than 2%. All diffraction points were positioned with an error of less than 0.5%. For far-offset data
(h = 600 m), two iterations were necessary to achieve the same quality.
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APPENDIX

DERIVATION OF THE IMAGE-WAVE EQUATION

In this appendix, we derive the short-offset image wave equation (6) for remigration from equation (1). The
procedure follows closely the lines of the zero-offset case of Hubral et al. (1996b). For simplicity, let us
denote the ratio between the true and migration velocities by M = v0/vd. Then, we can rewrite equation
(1) as

z2 + h2 = M2(z2
d + h2)− M2(x− xd)2

M2 − 1
. (19)

To derive the image-wave equation (6), we need to eliminate the unknown constants in equation (19) and
replace them by derivatives. For this purpose, we have to assume that M is a function of x and z. Taking
the derivatives of equation (19) with respect to x and z yields

0 = (z2
d + h2)

∂M

∂x
+

(x− xd)2

(M2 − 1)2

∂M

∂x
+
M(xd − x)

M2 − 1
(20)

and
z

M
= (z2

d + h2)
∂M

∂z
+

(x− xd)2

(M2 − 1)2

∂M

∂z
, (21)

respectively. Combining equations (20) and (21), we obtain the auxiliary equation

M2

M2 − 1
(x− xd) = z

∂M

∂x

(
∂M

∂z

)−1

. (22)

Together, these equations can now be used to eliminate xd and zd from equation (19). We find

z

M

∂M

∂z
=

(
z2 + h2

M2

)(
∂M

∂z

)2

+

(
z

M

∂M

∂x

)2

. (23)

Substituting M = V/vd, where V = V (x, z) is the image-wave eikonal, we arrive at the image-eikonal
equation (

∂V

∂x

)2

+

(
1 +

h2

z2

)(
∂V

∂z

)2

− V

z

∂V

∂z
= 0 . (24)

This equation justifies the image-wave equation (1), because that equation can be interpreted as the simplest
second-order differential equation the kinematics of which is described by equation (24) upon the ansatz
I(x, z) = A(x, z)F (v − V (x, z)).


