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ABSTRACT

Most of Finite Difference (FD) methods used in seismic modeling are based on fixed length spatial
operators. These operators are chosen observing computacional cost, stability and dispersion criteria.
In this work we analyse a FD scheme with an adaptive spatial operator which reduces the computa-
tional cost but not the accuracy. The idea is to use long operators in low velocity regions and short
operators in high velocity ones. The analysis is made in the one- and two-dimensional cases, but the
results can be extended for 3D models.

INTRODUCTION

Seismic modeling simulates the wave propagation in subsurface. One of the fundamental basis of seismic
modeling is the acoustic wave equation which requires, with rare exceptions, efficient numerical methods to
be solved. Due to their simple implementation, algorithms based on Finite Differences (FD) are preferred to
solve the acoustic wave equation (Liu and Sen, 2009, 2011; Dablain, 1986; Kelly et al., 1976). In addition,
if a FD method satisfies all the criteria of stability and dispersion, the numerical solution is of excelent
quality.

If we are not concerned with computacional costs, we can use a spatial grid based on the the minimum
velocity. As the source usually is fixed in the modeling, its main frequency is also fixed and then the
wavelength in the region with low velocity is smaller than in the region with high velocity. Therefore,
the accuracy is greater in the high velocity regions. There are many variants of FD method to increase
efficiency without decreasing accuracy, or to increase accuracy without decreasing efficiency or to increase
both efficiency and accuracy. See, e.g., Virieux (1984), Virieux (1986), Finkelstein and Kastner (2007) and
Bartolo et al. (2012).

For fixed spatial and time steps, when we use the same length for the spatial operator of the FD scheme,
we reach greater accuracy in higher velocity regions than in lower ones. Therefore, it would be more
efficient if we could choose the length of the spatial operator according to the velocity. In this work we
analyse one approach introduced by Liu and Sen (2011), based on a FD scheme with an adaptive spatial
operator. The length of the spatial operator is chosen based on the analysis of the stability and dispersion in
each velocity region, in such a way that the length decreases with increasing velocity. Numerical examples
illustrate the approach.

Let x ∈ IRn (n = 1, 2, 3) be the space variable, t ∈ IRn be the temporal variable and c(x) be the wave
propagation velocity in the acoustic model. The acoustic wave equation is given by

1

c(x)2
Utt(x, t)−∆U(x, t) = F (x, t), (1)

where U(x, t) is the scalar wavefield, ∆ denotes the Laplacian operator, and F (x, t) is the source term.
For n = 1 we will consider x = x and for n = 2, x = (x, z).
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ONE-DIMENSIONAL MODELING

We first analyse the one-dimensional case (n = 1) and describe the FD scheme and the method that will
be used to choose the length of the space operator, according to the velocity. Applying a second-order FD
operator in time and a (2M )th-order FD operator in space, we get

Utt(xj , tk) ≈ 1

∆t2
[
−2ukj + (uk−1

j + uk+1
j )

]
, (2)

∆U(xj , tk) = Uxx(xj , tk) ≈ 1

∆x2

[
a0,ju

k
j +

M∑
m=1

am,j(u
k
j−m + ukj+m)

]
, (3)

where ukj = U(xj , tk), xj = x0 + j∆x, tk = k∆t, with j = 0, 1, . . . , J and k = 0, . . . ,K. The
coefficients am,j are given by (Liu and Sen, 2009; Finkelstein and Kastner, 2007)

am,j =
(−1)m+1

m2

M∏
n=1,n6=m

∣∣∣∣∣ n2 − r2
j

n2 −m2

∣∣∣∣∣ , m = 1, 2, . . . ,M, (4)

and

a0,j = −2

M∑
m=1

am,j , (5)

where rj = c(xj)∆t/∆x are the Courant numbers. Substituting equations (2) and (3) into equation (1),
we obtain the following recursion formula,

uk+1
j = 2ukj − uk−1

j + r2
j

[
a0,ju

k
j +

M∑
m=1

am,j(u
k
j−m + ukj+m)

]
+ [c(xj)∆t]

2F (xj , tk). (6)

Stability Analysis

The stability of the method can be obtained by the Von Neumman analysis (Strikwerda, 1989). Taking

ukj = Akei(jξ∆x), (7)

where ξ is the wavenumber and A is the amplification factor. The FD scheme is stable if the amplification
factor is such that |A| ≤ 1. Substituting equation (7) into equation (6), without considering the source
term, we have

A2 − βjA+ 1 = 0, (8)

where

βj = 2 + 2r2
j

M∑
m=1

am,j(cos(mξ∆x)− 1). (9)

Solving the above equation for A, we find

A =
βj ±

√
β2
j − 4

2
. (10)

Therefore, if |βj | ≤ 2 we have |A| ≤ 1, and then the FD scheme is stable. Assuming that, in general,
the error increases with the wavenumber, we can consider the Nyquist wavenumber ξNyq = π/∆x as the
maximum value for ξ. Computing βj for ξ = ξNyq we obtain

βj = 2 + 2r2
j

M∑
m=1

am,j(cos(mπ)− 1) = 2− 4r2
j

M∑
m=1

a2m−1,j , (11)
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Figure 1: Variation of σ with r for different values of the length operator M , in the one-dimensional case.

where M is the integer part of the half of M . Now, since from equation (4), a2m−1,j > 0, the method is
stable if

rj ≤
( M∑
m=1

a2m−1,j

)−1/2

≡ σ(rj). (12)

In Figure 1 we show the behaviour of σ(rj) for different values of M . From that figure, we can conclude
that relation (12) is satisfied if rj ≤ 1.

Dispersion Analysis

The condition rj ≤ 1 guarantees the stability of the FD scheme, but not prevent it for numerical errors due
to dispersion. The dispersion occurs when the phase velocity vj and propagation velocity cj = c(xj) are
different. The difference is measured by the ratio between them, given by

ψj =
vj
cj

=
ϕj/ξ

cj
, (13)

where ξ is the wavenumber and ϕj is the dispersion angular frequency determined by plane wave theory
applied to the recursion formula (6). Taking

ukj = ei(ξxj−ϕjtk), (14)

and substituting it into equation (6), we find

ϕj =
2

∆t
arcsin

√√√√r2
j

M∑
m=1

am,j sin2
(mγ

2

)
, (15)

where γ = ξ∆x. Therefore,

ψj =
2

rjγ
arcsin

√√√√r2
j

M∑
m=1

am,j sin2
(mγ

2

)
. (16)

If ψj is far from 1, the FD scheme is very dispersive. Therefore, we want some condition that makes
ψj ≈ 1. Figure 2 depict the dispersion curves, i.e., the variation of ψj with γ, in the cases M = 2 and
M = 12 for some values of rj in the interval (0, 1). We can observe that the region for γ that makes ψ ≈ 1
increases with the increasing of M .
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Figure 2: Dispersion variation with γ for different values of r and M = 2 (left) and M = 12 (right).

The Choice for ∆x, ∆t and M

Before presenting the method that chooses the length operator M , we will explain why ∆x can be fixed
without loss of accuracy or stability. Based on Figure 2, given ε > 0 and M ≥ Mmin ≥ 1, there exist
γmax and rmax such that,

|ψ − 1| ≤ ε if γ ≤ γmax and r ≤ rmax. (17)

Denoting by λ the wavelength and f the frequency, we can write

γ = ξ∆x =
2π∆x

λ
=

2πf∆x

c
. (18)

Assuming that the maximum frequency is fmax and the minimum velocity is cmin, we have that

γ ≤ γmax if ∆x ≤ γmaxcmin
2πfmax

. (19)

Once ∆x is chosen, ∆t can be given by

∆t ≤ ∆x rmax
cmax

, (20)

where cmax is the maximum velocity. Remember that for the FD scheme to be stable is necessary that
rmax < 1. For example, let us consider the case of fmax = 30 Hz, cmin = 1.5 km/s, cmax = 5 km/s, and
the tolerance for the dispersion ε = 0.05. For Mmin = 2, from Figure 2 we can choose γmax = 2 and
rmax = 0.5. Therefore, we can take ∆x ≈ 15 m and ∆t ≈ 1.5 ms.

Now, let us explain how to choose the length operator Mj according to the velocity cj . For a fixed M
the error in the FD scheme can be measured by the difference between FD and exact propagation times,

µ(M, cj) =

∣∣∣∣∆xvj − ∆x

cj

∣∣∣∣ =
∆x

cj

∣∣∣∣ 1

ψj
− 1

∣∣∣∣ , (21)

where ψj is given by equation (16) with

γ =
2πfmax∆x

cj
. (22)

Therefore, for a fixed maximum error η > 0, we choose Mj as the minimum M ≥Mmin such that

µ(M, cj) ≤ η. (23)

Following the numerical example above, in Figure 3 we show the values of Mj according to equation (23)
for different values of cj and η.
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Figure 3: Variation of the length operator M with the velocity c for different values of η.

TWO-DIMENSIONAL MODELING

The analysis of the two-dimensional case is very similar to what we have done in the previous section. For
n = 2 we consider the following FD scheme,

Utt(xj , z`, tk) ≈ 1

∆t2

[
−2ukj,` + (uk−1

j,` + uk+1
j,` )

]
, (24)

Uxx(xj , z`, tk) ≈ 1

∆x2

[
a0,j,`u

k
j,` +

M∑
m=1

am,j,`(u
k
j−m,` + ukj+m,`)

]
, (25)

Uzz(xj , z`, tk) ≈ 1

∆z2

[
a0,j,`u

k
j,` +

M∑
m=1

am,j,`(u
k
j,`−m + ukj,`+m)

]
, (26)

where ukj,` = U(xj , z`, tk), xj = x0 + j∆x, z` = z0 + `∆z, tk = k∆t, with j = 0, 1, . . . , J , ` =
0, 1, . . . , L and k = 0, . . . ,K. We will consider a regular grid, i.e, ∆x = ∆z, and the coefficients am,j,`
are given by the solution of the followig Vandermonde linear system (Liu and Sen, 2009; Finkelstein and
Kastner, 2007)

M∑
m=1

m2nam,j,` =
r2n−2
j,`

fn(θ)
, n = 1, 2, . . . ,M, (27)

a0,j,` = −2

M∑
m=1

am,j,`, (28)

where rj,` = c(xj , z`)∆t/∆x are the Courant numbers, fn(θ) = cos2n(θ) + sin2n(θ), and θ is the propa-
gation angle. Observe that am,j,` ≡ am,j,`(θ) and that function fn is periodic, i.e., fn(θ) = fn(bπ/2± θ),
with b an integer. Substituting equations (24)–(26) into equation (1) with n = 2, we obtain the following
recursion formula,

uk+1
j,` = 2ukj,`−uk−1

j,` +r2
j,`

[
2a0,j,`u

k
j,` +

M∑
m=1

am,j,`(u
k
j−m,` + ukj+m,` + ukj,`−m + ukj,`+m)

]
+F (xj , z`, tk).

(29)

Stability Analysis

Similar to the one-dimensional, we use the Von Neumman Analysis. Taking,

ukj,` = Akei(jξx∆x)ei(`ξz∆x), (30)
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Figure 4: Right: Variation of σ with r for different values of the length operatorM , in the two-dimensional
case. Left: Dispersion variation with the propagation angle.

where ξx and ξz are the wavenumbers in x and z,respectively, andA is the amplification factor. Substituting
equation (30) into equation (29), we find

A2 − βj,`A+ 1 = 0, (31)

where

βj,` = 2 + 2r2
j,`

M∑
m=1

am,j,`(cos(mξx∆x) + cos(mξz∆x)− 2). (32)

Solving the above equation for A, we obtain

A =
βj,` ±

√
β2
j,` − 4

2
. (33)

Again, if |βj,`| ≤ 2, we have |A| ≤ 1, and then the FD scheme is satble. Using the same argument as
in the one-dimesnsional case, i.e., that the error increases with the wavenumber, we can take the Nyquist
wavenumber, ξNyq = π/∆x = π/∆z, as the maximum values for ξx and ξz . Computing βj,` for ξ = ξNyq ,
we find

βj,` = 2 + 4r2
j,`

M∑
m=1

(cos(mπ)− 1) = 2− 8r2
j,`

M∑
m=1

a2m−1,j,`. (34)

Since from equation (27), a2m−1,j,` > 0, the method is stable if

rj,` <
(

2

M∑
m=1

a2m−1,j

)−1/2

≡ σ(rj,`). (35)

In Figure 4 we can observe the behaviour of σ(rj,`) for differente values of M . From that figure, we can
conclude that relation (35) is satisfied if rj,` ≤ 0.7.

Dispersion Analysis

Similarly to the one-dimensional case, we define

ψj,` =
vj,`
cj,`

=
ϕj,`/ξ

cj,`
, (36)

where ξ is the wavenumber and ϕj,` is the dispersion angular frequency determined by plane wave theory
applied to the recursion formula (29). Taking

ukj,` = ei(ξxxj+ξzz`−ϕj,`tk), (37)
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Figure 5: Source wavelet in time (left) and frequency (right) domain.

where ξx = ξ cos θ, ξz = ξ sin θ, θ is the propagation angle, and substituting it into equation (29), we find

ϕj,` =
2

∆t
arcsin

√√√√r2
j,`

M∑
m=1

am,j,`

[
sin2

(m cos(θγ)

2

)
+ sin2

(m sin(θγ)

2

)]
, (38)

where γ = ξ∆x. Therefore,

ψj,` =
2

rj,`γ
arcsin

√√√√r2
j,`

M∑
m=1

am,j,`

[
sin2

(m cos(θγ)

2

)
+ sin2

(m sin(θγ)

2

)]
. (39)

Observe that ψj,` ≡ ψj,`(θ) = ψj,`(π/2 ± θ), and then we can compute ψj,` only for θ ∈ [0, π/4]. In
the right of Figure 4 we can observe the dispersion curves ψj,` in the case of M = 10, c = 3 km/s,
∆x = 0.01 km, ∆t = 0.001 s, for different values of the propagation angle. We can observe that θ = π/4
is the value for which ψj,` ≈ 1, and it is this value that we are going to use in the numerical experiments.

The Choice for ∆x, ∆z, ∆t and M

The choice of parameters ∆ = ∆x = ∆z and ∆t is as in the one-dimensional case. For a fixed maximum
error η > 0, we choose Mj,` as the minimum M ≥Mmin such that

µ(M, cj,`) =

∣∣∣∣ ∆

vj , `
− ∆

cj,`

∣∣∣∣ =
∆x

cj,`

∣∣∣∣ 1

ψj,`
− 1

∣∣∣∣ < 1. (40)

NUMERICAL EXPERIMENTS

In this section we presente the numerical simulations for the one- and two-dimensional cases, for a source
term given by F (x, t) = δ(x − xS)g(t), where δ is the Dirac’s delta function, xS is the source position,
and g is a Ricker wavelet, with peak frequency of 20 Hz,

g(t) = (1− 2(20πt)2)e−(20πt)2 . (41)

as illustrated in Figure 5. For the discretization, we have

F (xj , tk) =
1

∆x
δj,jSs(tk) or F (xj , z`, tk) =

1

∆2
δj,jSδ`,`Sg(tk), (42)

where jS and `S are the indices for the source position and δp,q denotes the Kronecker delta. Regarding
the boundary conditions, we used a time window [0, Tmax] and a large box in the space domain to avoid
unwanted reflections from the boundary.
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One-Dimensional Modeling

We used the following parameters: ∆x = 10 m, ∆t = 1 ms, η = 10−3, xS = 0, and the velocity profile
depicted in Figure 6. Figure 7 shows the solution of the adaptive FD schemes for some time values, and in
Figure 8 we show the full seismogram.

We compare the solutions for different choices of the length operator: (i) M computed in the adaptive
way, (ii) M fixed and based on the lowest velocity (long), (iii) M fixed and based on the highest velocity
(short), and (iv) M = Mmin = 2 (since depending on the velocity, M may not reach Mmin).

In Figures 9 and 10 we compare the solutions from the adaptive scheme and the ones computed with a
conventional FD scheme with long and short spatial operators. We can observe that there is no significant
dispersion, as expected, whereas in Figure 11, which depicts the solution using M = Mmin, the dispersion
is significant. Figure 12 shows the value of the length operator chosen by the method (23).

To validate our algorithm, we also compared the solution from the FD schemes with the analytical
solution of the wave equation with constant velocity (negative x in the model). The results, for two different
times, are shown in Figures 13 and 14. To compare the computational effort of the algorithms, in Figure 15
we show the computational times for the algorithms, for different values of η.

Two-DimensionalModeling

For the two-dimensional modeling we used the following paramenters: ∆x = 10 m, ∆t = 0.001 ms,
η = 10−4, xS = (0, 0), and with the velocity model shown in Figure 16. The snapshots for the adptive
scheme are show in Figures 17 and 18, and Figure 19 depicts the variation of the length operator M with
the velocity.

Figures 20 and 21 show the solutions from the adaptive scheme and the ones computed with a conven-
tional FD scheme with long and short spatial operators. Figure 22 exhibit the computational time for the
algorithms only for η = 10−4.

CONCLUSIONS

We tested the adaptive FD scheme for the acoustic wave equation proposed by Liu and Sen (2011). The
advantage of the new approach is that it is possible to have a better accuracy than the conventional method
with the same discretization. We presented dispersion and stability analysis, with sopme numerical exper-
iments.
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Figure 16: Two-dimensional velocity model, where the ∗ indicates the source position. The colorbar
indicates de velocity in km/s.
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Figure 17: Snapshots for the two-dimensional solution computed with the adaptive FD scheme.
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Figure 18: Snapshots for the two-dimensional solution computed with the adaptive FD scheme.
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Annual WIT report 2013 173

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1

0

1

2
x 10

−6

z (km)

U

(a)

 

 

adaptive
long

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−5

0

5

10

x 10
−8

z (km)

D
iff

e
re
n
ce

(b)

Figure 20: (a) Comparison of the solutions be-
tween adaptive FD and conventional FD with a
long spatial operator. (b) Difference.
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Figure 21: (a) Comparison of the solutions be-
tween adaptive FD and conventional FD with a
short spatial operator. (b) Difference.
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