193

APPLYING A DIAGONAL HESSIAN APPROXIMATION FOR
PRECONDITIONING IN 3D ELASTIC FULL WAVEFORM
INVERSION

S. Butzer, A. Kurzmann and T. Bohlen

email: simone.butzer @kit.edu
keywords: full waveform inversion, elastic, 3D, adjoint, gradient, preconditioning, diagonal Hessian

ABSTRACT

Full waveform inversion has the potential to recover high resolution models for multiple parameters.
Our approach is based on the gradient method, in which gradients are calculated from forward and
adjoint wavefields. Due to the geometrical amplitude decay of these wavefields, we observe high
amplitudes in the gradients around source and receiver positions. Thus, a successful inversion re-
quires a good preconditioning. Here, we apply the inverse of a diagonal Hessian approximation for
preconditioning, which is a physically founded approach. However, its calculation is computation-
ally expensive, as it requires one additional forward simulation for each receiver, and we therefore
calculate it only once for each frequency range. We show the preconditioning for two examples, a
transmission geometry example and a surface acquisition example. In transmission geometry, source
and receiver artefacts were removed sufficiently and the inversion was successtully performed. Still,
the effects are much more profound in the surface geometry example. Here, the gradient in shallow ar-
eas is emphasised by the acquisition geometry and the presence of surface waves while its amplitude
rapidly decays with depth. The application of our preconditioning approach mitigates these effects
and allows a meaningful model update in deeper areas.

INTRODUCTION

Full waveform inversion (FWI) aims to resolve structures of the subsurface in high resolution by min-
imising the misfit between modeled and observed data. To solve this optimisation problem, we use the
conjugate gradient approach (e.g. Tarantola, 1984; Mora, 1987), which uses the gradient of the misfit func-
tion to approach its minimum. This approach can be implemented very efficiently with the adjoint method
(e.g. Mora, 1987; Plessix, 2006) and is thus realisable for large model and dataset applications. Another
class of optimisation methods, the Newton methods, take into account the second derivative of the misfit
function, the so-called Hessian matrix. The use of the Hessian can significantly improve the performance
of FWI, by speeding up convergence and improving resolution. The Hessian matrix can account for geo-
metrical amplitude effects in the gradient due to source receiver coverage and for limited-bandwidth effects
and can thus focus and sharpen the image (Pratt et al., 1998; Brossier et al., 2009). The full-Newton and
Gauss-Newton methods explicitely calculate the Hessian or in the latter case the approximate Hessian.
However, these methods are computationally very expensive and thus not attractive for realistic problem
sizes (Pratt et al., 1998). Quasi-Newton methods, such as the L-BFGS method (Byrd et al., 1995) and the
truncated Newton method (Métevier et al., 2012) are computationally more feasible, as they do not calcu-
late the Hessian matrix directly. The L-BFGS method uses changes in gradients and models from recent
iterations to approximate the Hessian, whereas the truncated Newton formula is based on second-order
adjoint equations.
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Another approach, which includes information about the Hessian, is the use of an approximation of the
diagonal of the Hessian for preconditioning in the conjugate gradient method (Shin et al., 2001; Brossier
et al., 2009). Generally, the gradient shows high amplitudes near sources and receivers due to the geomet-
rical spreading of the forward and adjoint wavefields. Thus, a thorough preconditioning of the gradients is
required for a successfull inversion. This can be done by Gaussian tapering around sources and receivers.
Still, a more physical and sophisticated approach is the use of the diagonal of the Hessian, which can cor-
rectly account for the geometrical amplitude effects in the gradient. In this report we will discuss the theory
and implementation of the gradient method with Hessian preconditioning for 3D elastic FWI and show its
performance for two simple examples.

THEORY AND IMPLEMENTATION
Newton and conjugate gradient methods

Full waveform inversion (FWI) aims to minimise the misfit beween observed and modeled data. We use
the Lo-norm based misfit function F given as

1
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sources receivers

with the i-th component of the displacement residual du; = u; — u; ops at source position X, and receiver
position x,.. Different optimisation approaches can be used for minimizing the misfit and a good discussion
about different Newton methods and gradient methods can be found in Pratt et al. (1998). We will give a
short overview here.

A Taylor expansion of the misfit function E around the model parameters m = (my, ..., m,)” up to second
order leads to:

1
E(m+ ém) = E(m) + 6m”'V,, E(m) + §6mTH6m + O(|ém|?). )
Hereby H is defined as the second derivative of the misfit with respect to the model parameters, i.e.,
0?FE(m)
Hj;,=——7F"—+ i =1,... j=1,..n). 3

The index n is the total number of model parameters. To find the minimum of the misfit function the
deviation of equation 2 with respect to the model perturbation dm is set zero. This gives us the following
model update:

om=-H'V,,E. 4)

The Newton method uses this model update for an iterative solution and updates the model in iteration
k + 1 with
m = my — H, 'V, Ej. (5)

The use of the Hessian leads to a good convergence. However, the calculation and inversion of the large
n X n Hessian matrix is highly expensive. The gradient method thus uses the following simplified update:

my = my — o, PV, Fy. (6)

In this case, the model is updated in gradient direction using an appropriate step length «. In this case, the
gradient is not scaled and preconditioned by the inverse Hessian. Consequently, a preconditioning operator
P and a the estimation of « are required for the inversion to succeed. The corresponding convergence
is lower. A slight improvement in convergence of the gradient method is gained by using the conjugate
gradient c as search direction (Mora, 1987), which is given by

¢, =PV, By + Brek-1, (7
where the scalar [ is calculated as given by Mora (1987). This gives as the following model update:

my 1 = My — QpC. (8)
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The preconditioning operator used in the gradient method is the replace of the Hessian operator. Thus, it
is natural to use some approximation of the Hessian for preconditioning, which can lead to improvements
in the gradient method.

Gradient calculation

We use the adjoint-state method to calculate the gradients (e.g. Tarantola, 1984; Mora, 1987; Pratt
et al., 1998; Plessix, 2006). Hereby we use a time-frequency approach (Sirgue et al., 2008), where the
forward propagation is done in time domain and the gradients are calculated for few discrete frequencies
in frequency domain. To transform the wavefields from time to frequency domain, a discrete Fourier
transform is performed on the fly. A detailed introduction of our implementation can be found in Butzer
et al. (2013). For forward modeling, we use the 3D viscoelastic finite-difference code (SOFI), which is
based on a velocity-stress formulation (Bohlen, 2002). The following steps are performed to calculate the
gradient direction in each iteration k:

1. forward propagation of source wavefield across themedium
2. calculate residual between modeled and observed seismograms

3. backpropagation of residual wavefield from receivers across the medium with time-reversed residuals
acting as source-time function

in step 1) and 3): discrete Fourier transformation on the fly
steps 1)-3): these steps are performed for each source

4. gradient (V,,, E) calculated as multiplication of forward wavefield and conjugate backpropagated
wavefield in frequency domain and summed up over all frequencies and sources

Afterwards, a preconditioning operator is applied to the gradients and the conjugate gradient direction cg,
(equation 7) is calculated. To estimate an optimal step length o, we use the misfit value of zero steplength
and of two additional test steplengths calculated for a subset of shots. The model can then be updated
according to equation 8.

The main computational time in FWI is spent for wavefield modelings. In the gradient method the number
of forward modelings is 2x (number of shots) + 2x (number shots steplength calculation).

Calculation of the diagonal Hessian approximation

In this section, we will introduce how the diagonal Hessian approximation Hp, that we use for precon-
ditioning, is calculated. Detailed discussions about the calculation of the Hessian matrix can be found in
Sheen et al. (2006) and Pratt et al. (1998). The Hessian (equation 3) can be calculated as

H =Re(J'J*) +R. )

The second term R is generally small (Pratt et al., 1998), and we only use the first term, known as the
approximate Hessian. J is the Jacobian matrix, which is defined as

B 8m]’

Jij i=1,2,.w, j=1,2, ....n. (10)

The indice ¢ runs over all wavefield parameters w and the indice j runs over all model parameters n. For
preconditioning the calculation of H is restrained to the diagonal elements of the approximate Hessian,

with S Bt
Hjj =Y (11)

ij 8mj '
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The full Hessian is very large with n x n elements, whereas the diagonal Hessian only consists of n
elements. The Jacobian matrix is not explicitely calculated in the gradient method and additional computa-
tions are required to calculate it for the diagonal Hessian. The following steps describe, how the Jacobian
matrices are constructed and how the diagonal Hessian approximation Hp, is calculated.

1. forward propagation from each source into medium; this is already done for gradient computation

2. backpropagation of delta functions from each receiver into media to find the Green’s receiver func-
tions

in step 1) and 2): discrete Fourier transforms on the fly

3. calculation of Jacobian matrices for each source-receiver combination by multiplication of forward
wavefield and conjugate receiver Green’s functions in frequency domain

4. calculate diagonal Hessian approximation Hp as multipliaction of the complex Jacobian matrices
with their conjugate, summed up over all frequencies and source-receiver combinations

The calculation of Jacobian matrices for each source-receiver combination is required. Hence, either the
Green’s receiver functions or the forward propagated wavefields need to be stored. In our implementation,
the Hessian calculation is performed in frequency domain, which means, that these wavefields are stored
only for few discrete frequencies.

In the gradient calculation, the backpropagated wavefield is generated at all receivers simultanously. For
the calculation of Hp we need the Green’s receiver functions. Thus, one forward propagation for each
receiver is performed additionally to the gradient calculations. Depending on the number of receivers, this
can be very time consuming.

To compute the full diagonal approximate Hessian, the Green’s receiver functions are calculated for each
spatial direction, which requires 3x (number receivers) modelings in step 2. We use only the component
which dominates the forward wavefield.

Application of Hessian preconditioning

After calculation of Hp, as described in the last section, we use this operator to precondition the gradients.
The preconditioning operator is then given by:

P=(Hp+ )™t (12)

I is the identity matrix. Hereby a water level € is added to Hp to stabilise the inversion. At the moment,
we estimate this water level empirically. The inversion of Hp is straightforward, because we use only the
diagonal part of the Hessian.

The Hessian is calculated only once for each frequency stage, because its calculation might become quite
expensive. Then the same P is applied within this frequency stage.

EXAMPLES
Example 1 - Box in transmission geometry

Model and inversion setup Even though the implementation of the Hessian preconditioning is of main
interest for its application to FWI of complex models, we choose a relatively simple test to show its effects
on the gradients and to prove its performance in the inversion. We consider a transmission geometry test
of a box model with the size of 160x 160X 184 grid points corresponding to 128 mx 128 mx 147.2m in z-,
y- and z-direction. The true models for the seismic velocities are shown in Figure 1, the density model is
chosen constant and known with 2800 kg/m>. The seismic velocity models contain a box, which is divided
into four differently-sized parts with different positiv and negativ velocity variations. The v,/v, ratio is not
constant. The model does not contain a free surface. As a starting model, the homogeneous background
velocities outside the box are used.

Sources and receivers are arranged within x-y-planes, as indicated in Figure 1. We use 12 (3x4) sources
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in 88 m depth and 169 (13 x 13) receivers in 24 m depth. The sources are vertical directed point forces with
sin3-wavelets as source time functions and a dominant frequency of 200 Hz.
In total, we performed 75 iterations, divided into 4 different frequency stages ranging from 160 Hz to
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Figure 1: Real box model of v, (a) and v, (b) with indication of source and receiver plane.

290 Hz. In each stage five discrete frequencies in 10 Hz intervals were used for inversion and frequencies
increased from stage to stage.

For the general gradient method 30 forward modelings are calculated within each iteration. 169 additional
forward modelings are required for the calculation of the Green’s receiver functions, needed for the
diagonal Hessian preconditioning matrix Hp. This matrix was calculated only once for each frequency
stage and used for the whole stage. Thus, for the full inversion 667 forward modelings are added to the
2250 forward modelings of the general gradient approach, which is an increase of about 30% of runtime
in this example.

Hessian preconditioning Figure 2 shows the effects of the diagonal Hessian preconditioning on the
gradients of v, and v, for the first iteration, and thus for the first frequency stage. The gradients before
preconditioning, normalised to their maximum are shown in Figure 2a) for v, and b) for vs. The high
amplitudes around sources and receivers are clearly visible. Without preconditioning, the model update is
only significant within these areas, and the inversion fails. Figure 2c) and d) shows the logarithm of the
normalised diagonal Hessian approximation Hp for v, and v,. The Hessian matrix covers several orders
of magnitude and, like the gradient, it shows extremly high values at source and receiver positions. The
influence of the geometric amplitude decay of the wavefield is clearly visible. Areas with no or very low
wavefield coverage show very low values. This is for example visible in the blue areas of the v,, Hessian.
The application of the inverse Hessian in such areas would thus lead to an enormous enhancement of the
gradient, even though we have no or very little information in our data. To avoid this, the water level is
added to the Hessian, which, at the moment, we determine manually.

Hp is used as preconditioner according to equation 12 and applied to the gradient. The normalised
preconditioned gradient is shown in Figure 2e) and f) for v,, and v, respectively. The high amplitudes at
the sources are corrected. Most of the high amplitudes around the receivers also vanished, however, some
receiver artefacts are still visible. The reason for this is probably the approximation we do by calculating
only Green’s receiver functions from delta functions applied as vertical forces. Hence, some additional
damping at receiver positions might be required. The highest amplitude in the gradient now concentrates
on the box area. Some effects of the preconditiong are also visible within the box area, where amplitudes
of the preconditioned gradient are higher in the middle part of the box. However, for transmission
geometry, these effects are low. Unfortunately, some artefact below the source plane are increased after
preconditioning in the gradient of v,. However, the inversion results show, that these artefacts in the
gradients have no significant impact on the final inversion result.
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Figure 3: Seismograms of vertical component for observed, starting and final inverted data for few repre-
sentative traces.

Inversion results Figure 3 shows the data fit of observed, starting and final inverted data for some repre-
sentative traces for the vertical component. The data is lowpass-filtered with a corner frequency of 290 Hz,
which is the maximum frequency used for the inversion. It is visible, that the seismograms of the homoge-
neous starting model are already relatively close to the data. The final inverted data and the observed data
show a nearly perfect fit.

The final inverted models of v, and v, are shown for two slices: a horizontal slice in Figure 4 and a ver-

tical slice in Figure 5. For comparison, the real models are plotted. Overall, the box could be successfully
reconstructed by the FWI. In the horizontal slice of the final inverted models in Figure 4 b) and d) the three
sub-boxes are successfully resolved. Due to the smaller wavelengths of the shear wave, the shape of the
sub-boxes is clearer in v, copared to vp,.
The results plotted in the vertical slice are not as well resolved. The high velocity anomalies on the right
side could not be distinguished by the inversion. This is not unexpected when looking at the minimum
wavelengths of 21 m for v, and 35 m for v, within this high velocity zone, which is only 12 m thick. The
resolution of FWI for transmission geometry is about a wavelength and we would therefore require higher
frequencies for a better reconstruction.

Example 2 - Surface acquisition geometry

Model and inversion setup The effects of Hessian preconditioning are more profound in surface geom-
etry experiments. We consider a 3D layered onshore surface model as shown in Figure 6 for v, (a) and v,
(b). The model consists of sedimentary layers over a basin-shaped homogeneous halfspace. The size is of
320x320x 160 grid points which corresponds to 256 mx256 mx 128 m. At z = Om, the model contains a
free surface. The density is homogeneous with 2900 kg/m?® and remains constant during inversion. For the
compressional and shear wave velocities we use a smoothed version of the real model as starting model
(see Figure 6 b) and d)). We used 49 (7x7) sources and 81 (9x9) receivers equally distributed along the
surface. As source time function, we use a sin® function with a dominant frequency of 20 Hz applied as
vertical point force.

In this work we will show a preliminary investigation of the effects of Hessian preconditioning on the
gradient in the first iteration. The gradient and the diagonal Hessian approximation are calculated for five
discrete low frequencies from 8 Hz to 12 Hz.

Figure 7 shows a seismogram section of the vertical component for one exemplary shot lowpass-filtered
with 12 Hz. The data is plotted for the real model and the starting model. The wavefield is dominated by
surface waves. For these low frequencies, the starting model can already explain the data quite well and
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Figure 4: Results box model for horizontal slice at z = 64 m with a) real model v}, b) inverted model vy,

¢) real model v, and d) inverted model v,.
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Figure 6: a) Real surface model vy, b) starting model v,, ¢) real surface model v, and d) starting model
Vs.

it is obvious, that no cycle skipping will occur in the inversion. Thus, this frequency range is adequate to
start the inversion.

Hessian preconditioning We calculated the gradients and the diagonal Hessian approximation for this
frequency range. Hereby, 81 additional forward modelings were required for the calculation of Hp. The
results are plotted in Figure 8. The gradients for v, and v are shown in Figure 8 a) and b). The gradients
are normalised to their maximum value, and the colorbar is strongly clipped. The highest gradient values
are found in shallow areas, while they decrease significantly with depth. A model update without good
preconditioning of the gradients would therefore focus on the uppermost part of the model. Figure 8 ¢) and
d) shows the logarithmic diagonal Hessian approximation Hp for v,, and v,, respectively. The colorbar is
clipped and minimum logarithmic values amount to -19, so that Hp covers several orders of magnitude.
Here, the fast decrease of amplitudes with depth is also visible.

We determined a water level and applied the inverse diagonal Hessian approximation to the gradients. The
normalised preconditioned gradients can be seen in Figure 8 e) and f) for v, and v,. The highest amplitudes
now occur in the middle and deeper structures of the basin. High amplitudes near the surface vanished and
the amplitude variation due to geometric wave propagation effects could be corrected. Thus, the inversion
will now be able to update the deeper layers of the model.

CONCLUSIONS AND OUTLOOK

A thorough preconditioning is required for gradient based full waveform inversion. We apply a pre-
conditioning operator to the gradients in 3D FWI, which is based on the inverse diagonal Hessian
approximation. The calculation of this preconditioning matrix is performed only once for each frequency
stage and requires one additional forward simulation for each receiver. We showed its application for a
box model in transmission geometry. High amplitudes at sources and receivers could be well corrected.
However, the impact of the Hessian preconditioning in the remaining area is low. A successfull inversion
was performed. For comparison, the effects of the diagonal Hessian approximation on the gradients of
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Figure 7: Seismograms of vertical component for observed and starting data for one representative shot
lowpass-filtered with 12 Hz.

a surface model were shown. The seismograms of this model are dominated by a surface waves. This
leads to gradients and diagonal Hessian matrices which are strongly concentrated near the surface. After
preconditioning, however, the gradients concentrate on deeper parts of the model.

In future tests, we will test the performance of Hessian preconditioning in the inversion of the surface
model introduced in this work. Additionally we will implement and test the performance of the L-BFGS
method which, combined with Hessian preconditioning, should lead to an even better performance.
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