
37

ENABLING LARGE DATA PROCESSING WITH THE
3D ZO CRS STACK SOFTWARE

E. Borin, A. Novo, I. Rodrigues, J. Sacramento, J. H. Faccipieri, and M. Tygel

email: edson@ic.unicamp.br
keywords: 3D ZO CRS Stack software, large data processing, HPC

ABSTRACT

The 3D ZO CRS Stack software, provided by the WIT consortium, leverages the CRS method to stack
seismic data. In this work, we provide an overview of the 3D ZO CRS Stack software, including its
parallel execution model, and an analysis of the performance of the software when executing large data
sets (1TB). We show that the current implementation of a key procedure, makeGeometry, executed
during the CRS processing, uses an inefficient algorithm that hinders the processing of large data sets.
We present a new algorithm for the makeGeometry procedure that reduces its execution time from
20 000 seconds to just 30 seconds in our infrastructure.

INTRODUCTION

Stacking may be considered one of the most important steps in seismic processing providing an approx-
imate zero-offset (ZO) section with an enhanced signal-to-noise ratio. Conventionally, these sections are
obtained with the Common Midpoint (CMP) method, which depends only on Normal moveout (NMO)
velocity. The Common Reflection Surface (CRS) method represents a natural generalization of the CMP
method, where an ensemble of CMPs is considered for stacking. CRS employs a moveout equation in
which source-receiver pairs are allowed to be arbitrarily located around the CMP position.

The CRS moveout is a second-order approximation of the squared travel time in the vicinity of the
normal ray. For the 2D situation, it is given by

t2(m,h) = [t0 +A(m−m0)]2 +B(m−m0)2 + Ch2 , (1)

where m0 is the midpoint position, m is the midpoint of a source-receiver pair in the vicinity of m0,
h is the half-offset, and A, B and C are stacking (scalar) parameters that define the stacking surface to be
estimated. In the present 2D case, three stacking parameters are to be estimated. In 3D, eight parameters
are required to be estimated.

The search for the stacking parameters for each midpoint and time samples can be performed in parallel,
since there are no dependencies between the searches. Besides allowing the acceleration of the search
through parallel computing, this property enables the execution time to scale linearly with respect to the
number of midpoints. In fact, we conducted several experiments increasing the number of midpoints
to be processed and showed that, up to 22GB of pre-stacked input data, the execution time increased
linearly with respect to the input file size. However, we noticed a super linear execution time increase
when experimenting with a 44GB data set, which took four times longer to load than the 22GB data set.

Our preliminary analysis shows that the current implementation of the makeGeometry procedure
has quadratic execution time growth, and we estimate that the software would take about 115 days just to
execute the makeGeometry procedure when processing a 1TB input data file in our infrastructure. The
main contributions of this work are:

38 Annual WIT report 2013

• We provide an overview of the 3D ZO CRS Stack software, including its source code organization
and its parallel execution model.

• We analyze the performance of the software when executing large data sets and show that the cur-
rent implementation of the makeGeometry procedure has quadratic execution time growth, which
hinders the processing of large (1TB) data sets.

• We designed and implemented new algorithms to improve the time complexity of the
makeGeometry procedure, which reduced its execution time from 20 000 to 30 seconds when
processing a 44GB input dataset.

This report is organized as follows. First we provide an overview of the 3D ZO CRS Stack software,
including its organization and the parallel execution model. Then, we discuss the performance issues and
solutions for the makeGeometry procedure.

3D ZO CRS Stack SOFTWARE

The 3D ZO CRS Stack software leverages the CRS method to stack seismic data. This software, provided
by the WIT consortium, is implemented in C++, using the object-oriented programming paradigm, and the
MPI library (Gropp et al., 1994), which allows it to be executed with multiple processes on a single host
or on a distributed memory system. The next sections provide an overview of the source code organization
and the parallel execution model.

Source code organization

The 3D ZO CRS Stack software has 68 126 lines of code and it is organized in four modules, as shown in
Figure 1: mpi3dcrs.v2, libfparse, libsio e libcrs. Follow a brief description of each module.

• mpi3dcrs.v2: The mpi3dcrs.v2 module has 52 888 lines of code, approximately 78% of the total,
containing the main structure of the software. It is responsible for initializing the MPI library; parsing
command line parameters; coordinating execution of master and slaves processes and writing results
back to the disk.

• libfparse: The libfparse module has 938 lines of code, approximately 1% of total. It contains generic
classes for describing and parsing command line parameters.

• libsio: The libsio module has 3248 code lines, approximately 4% of total. It contains classes to read
and write seismic data in various formats. The supported standard formats are SEG-Y REV-0 (Barry
et al., 1975) and SU (Seismic Unix Data Format) (Stockwell, 1999).

• libcrs: The libcrs module is the core of the application and has 11052 lines of code, approximately
17% of total. It contains classes that model an abstract CRS method that is agnostic with respect to
the search method, coherence method and interpolation method. It also contains concrete implemen-
tations of the CRS: a sequential search that determines the velocity first, emergence angle second
and curvature third; a CRS Stack; and Simulated Annealing search/stack.

In order to execute the software on a distributed memory system, with multiple computers, the imple-
mentation requires the existence of a distributed file system, e.g. Network File System (NFS), to allow
the input and output data files to be shared among the MPI process. The input data file, read by all the
processes, may be replicated in each cluster node in order to avoid the need for a distributed file system.
However, the partial output data files, produced by all the slave processes and consumed by the master
process, need to be shared between these processes.

Annual WIT report 2013 39

Figure 1: 3D ZO CRS Stack software files organization.

Parallel execution model

The 3D ZO CRS Stack software uses the Bag of Tasks parallel execution model to search for the stacking
parameters. In this model, a master worker distributes tasks to slave workers. Whenever a slave concludes
the task, it informs the master, which in turn sends another task to the slave. This process continues until
all the tasks are finished.

A task consists in searching the best stacking parameters for a given midpoint (CMP gather). Each
midpoint is associated with a set of seismic data traces that are read from the input files. The results of the
search are written to a partial results file (one for each slave) and, after all the tasks are finished, the master
worker concatenates all partial results files in a single result file. The overall computation is performed in
three stages: setup, search, and combine.

During the setup stage, the master and slave workers read the input data file in order to construct a data
structure that associates seismic data traces with midpoint identifiers. The master uses this information to
define the set of tasks to be computed (one for each midpoint), while the slaves use it to identify the seismic
data traces associated with a given midpoint. All slaves and master workers perform this stage in parallel.
At the end of the stage, the slave workers send messages to the master informing that they are ready to
work.

The search stage starts whenever the master worker finishes the setup stage. In this stage, the master
distributes tasks to the slave workers. Whenever a slave receives a task, it reads the seismic data traces
associated with the task midpoint and performs the search. At the end of the search, the slave writes the
result to a partial results file and informs the master that it is ready to work on another task. The search
stage finishes whenever all tasks are concluded.

At the combine stage, the master worker combines all the partial results files into a single results file.
The slaves do not perform any work during this stage. Figure 2 illustrates the parallel execution of the
master and slave workers during the three stages.

The master and slave workers are implemented as processes and the communication between them is
performed through the MPI library and a shared file system. The MPI library is used by the master to
distribute tasks to the slave workers and by the slaves to inform the master that they are ready for a new
task. The shared file system is used to store partial results and to store the input files, which are read by all
workers.

The task is identified by the midpoint identifier, which in turn is an unsigned number defined during
the setup stage. This means that very little information is transmitted between the master and the slave
processes when communicating via the MPI library. But this also means that every slave process must have
access to the input file in order to retrieve the seismic traces associated with the midpoint.

40 Annual WIT report 2013

time

master

Search

1

n

2

. . .

n-1

CombineSetup

Process CDPs sent from master

Figure 2: Parallel execution of the master and slave workers during the three stages. Gray areas indicate
active time and white areas indicate idle time.

SCALABILITY ANALYSIS

In order to evaluate the scalability of the 3D ZO CRS Stack software, we carried out several experiments
varying the size of the input seismic data. Our experiments were conducted in a cluster with 15 nodes,
each one featuring two AMD Opteron 2376 processor with 4 cores and 16 GB of RAM. The network
interconnection is a gigabit star topology model with a central Extreme Networks Summit X44-48p switch.

Our preliminary results indicated that, for input files larger than 22GB, the execution time grows in a
faster rate than the input data size. In fact, the software took 20 000 seconds just to read the 44GB data file,
as opposed to 5 000 seconds when reading the 22GB data file.

By profiling the application, we were able to identify one of the main sources of overhead, the
makeGeometry procedure. Figure 3 indicates that the execution time of the makeGeometry proce-
dure has quadratic growth with the size of the input file.

We had fit a parabola with a very good approximation on the performance data and estimated that the
procedure would take more than 115 days just to process a 1TB input data file. The next sections present
an analysis of the makeGeometry procedure and our solution to the problem.

The makeGeometry procedure

The makeGeometry procedure organizes the input seismic traces into gathers. Each gather contains a set
of traces with similar properties. First, it gathers traces with common shots. Then, the procedure gathers
traces with common midpoints, and, finally, it gathers the traces with similar zero offsets. Our profiling
analysis indicated that the main cause of overhead is the gathering process.

The algorithm for the gathering process works as follows: for each trace, the algorithm scans a list of
gathers searching for one that contains the same properties of the trace (e.g., a common shot). If a gather
is found, the trace is inserted into the gather, otherwise, a new gather is created, featuring the properties of
the trace, and the trace is inserted into this gather. The pseudocode for the common-shot gathering process
is provided in Algorithm 1. The pseudocodes for the other two gathering processes are similar.

Let n be the number of seismic traces at the input data file and m be the number of distinct common
shot, the time complexity of the algorithm is given by O(nm).

The number of distinct common shots (m) is typically proportional to n, since the acquisition geometry

Annual WIT report 2013 41

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0

In p u t Da ta Size (MB)

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Figure 3: Execution time of makeGeometry procedure for different input data sizes.

Algorithm 1 Common Shot Gathering

for t in traces; do

gather_found = false;

/* Search for a Common Shot Gather to insert trace t */

for csg in CSGs; do
if csg.sx == t.sx and csg.sy == t.sy then

csg.insert(t)
gather_found = true;

end
end
/* If not found, create a new Common Shot Gather and insert trace t */

if gather_found == false then
csg = createNewCommonShotGather(t.sx,t.sy)
CSGs.append(csg)
csg.insert(t)

end

end

(number of receivers) can be considered constant for a given data set. Hence, the time complexity of the
algorithm is O(n2). In order to improve the execution time, we modified the algorithm to sort the traces
before organizing them. By doing so, we are able to perform the search for the correct gather in constant
time, which reduces the loop time complexity to O(n). The overall time complexity is reduced from
O(n2) to O(n log n), since the sorting procedure is O(n log n). Algorithm 2 shows the pseudocode for
the optimized algorithm.

The execution times for the optimized makeGeometry procedure are shown at Figure 4. Notice that
the execution time was reduced from more than 20 000 seconds to just 30 seconds when processing the
44GB seismic data. In order to estimate the time the makeGeometry procedure would take to process a

42 Annual WIT report 2013

Algorithm 2 Optimized Common Shot Gathering

/* Sort traces by common shot source */

sort(traces)

for t in traces; do

/* Search for a Common Shot Gather to insert trace t */

csg = CSGs.last()

if csg.sx == t.sx and csg.sy == t.sy then
csg.insert(t)

else
csg = createNewCommonShotGather(t.sx,t.sy)
CSGs.append(csg)
csg.insert(t)

end

end

1TB input file we fit a n log n curve to the performance results. The result indicates that the time to process
a 1TB input data file would be reduced from 115 days to just 15 minutes.

0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0

In p u t Da ta Size (MB)

0

5

1 0

1 5

2 0

2 5

3 0

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Figure 4: Execution times for the optimized makeGeometry procedure.

CONCLUSIONS

Stacking is an important step in seismic processing that provides an approximate zero-offset section with
an enhanced signal-to-noise ratio. This process can be performed by the 3D ZO CRS Stack software, a tool
provided by the WIT consortium. In this work, we provided an overview of the 3D ZO CRS Stack software,
including its parallel execution model and its source code organization, and we analyzed the performance
of the software when executing large data sets (1TB).

Our results indicate that the current implementation of the makeGeometry procedure, which is ex-
ecuted during the CRS processing, has a quadratic execution time growth that hinders the processing of

Annual WIT report 2013 43

large data sets. In fact, our estimates indicate that the software would take about 115 days just to execute
the makeGeometry procedure when processing a 1TB input data file in our infrastructure.

Finally, we proposed a new O(n log n) algorithm for the makeGeometry procedure and showed that
it reduces the procedure execution time from 20 000 seconds to just 30 seconds when processing a 44GB
data set in our infrastructure. Moreover, our estimates indicate that the new procedure would take only 15
minutes to process a 1TB input data file.

All modifications and codes for this experiment were uploaded in time of subscription of this report and
should be available in the WIT repository.

ACKNOWLEDGMENTS

This work was kindly supported by the sponsors of the Wave Inversion Technology (WIT) Consortium.

REFERENCES

Barry, K. M., Cavers, D. A., and Kneale, C. W. (1975). Recommended standards for digital tape formats.
Geophysics, 40(2):344–352.

Gropp, W., Lusk, E., and Skjellum, A. (1994). Using MPI: portable parallel programming with the
message-passing interface. MIT Press Scientific And Engineering Computation Series.

Stockwell, J. W. (1999). The cwp/su: Seismic unix package. Computers & Geosciences, 25(4):415–419.

