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ABSTRACT

True-amplitude Kirchhoff depth migration is a classical tool in seismic imaging. In addition to a
focused structural image it also provides information on the strength of the reflectors in the model,
leading to estimates of the shear properties of the subsurface. This information is a key feature not
only for reservoir characterisation; it is also important for detecting seismic anisotropy. If anisotropy
is present, it needs to be accounted for also during the migration. True-amplitude Kirchhoff depth
migration is carried out in terms of a weighted diffraction stack. Expressions for suitable weight
functions exist in anisotropic media. However, the conventional means of computing the weights is
based on dynamic ray tracing, which has high requirements on the underlying model, in particular
if anisotropy must be considered. We suggest a method for the computation of the weight functions
that does not require dynamic ray tracing because all necessary quantities are determined from trav-
eltimes alone. In addition, the method leads to considerable savings in computational costs. This
so-called traveltime-based strategy was already introduced for isotropic media. In this work, we ex-
tend the strategy to incorporate anisotropy. Examples confirm the image quality and the accuracy of
the reconstructed reflectivities.

INTRODUCTION

True-amplitude prestack depth migration can be implemented as a specific form of Kirchhoff migration. In
addition to providing a focused structural image of the subsurface, information on the reflection strength
at the discontinuities in the medium is also available from such an image. This information can be used for
AVO studies, which play a key role in reservoir characterisation.

True-amplitude Kirchhoff depth migration is carried out in terms of a weighted diffraction stack. For
each subsurface location, the seismic traces are stacked along the diffraction time surface for that point.
Individual weight functions are applied during the stack to recover the reflection amplitude. These weights
depend on dynamic wavefield properties. They are usually computed by dynamic ray tracing, together
with the diffraction traveltimes.

So far, true-amplitude Kirchhoff depth migration has been almost exclusively applied to PP data
under the implicit assumption of isotropy. Since we are dealing with an anisotropic earth, however,
the application of isotropic methods leads to problems. Although anisotropy is generally recognised
as important in seismic data processing and imaging, it is commonly only considered with respect to
kinematic aspects but not to amplitudes. Even the kinematics are in most cases reduced to simple types of
media, e.g., media with transverse isotropy.
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Anisotropy can have several causes, as for example intrinsic anisotropy or layer-induced anisotropy.
Other possibilities are oriented fluid-filled crack systems, and, of course, a combination of these causes,
leading to an effective anisotropy. Generally, as soon as there exists an organised structure with a preferred
orientation, anisotropy shows if the wavelength of the investigation method is larger than the scale of
the structure. This problem of different scales has practical relevance if results from measurements on
different scales are to be combined, e.g., surface and bore hole seismics. If anisotropy is not considered,
these results will not coincide, i.e., leading to mis-ties etc. (Thomsen, 2002; Juhlin and Windhofer, 1992).

Anisotropic effects are not restricted to kinematics. They have considerable influence on the AVO-
or AVA-behaviour of geological interfaces. One example are shales and sands with a similar acoustic
impedance. The anisotropy of the shales can lead to a reversal in the polarity of the reflection coefficient
that does not occur for isotropy. Another possibility are amplitude changes assigned to the presence of
gas if a medium is assumed to be isotropic. In an anisotropic medium, this behaviour can be explained
without gas (de Hoop et al., 1999). Therefore, anisotropy must also be acknowledged where amplitudes
are concerned.

Several non-Kirchhoff migration techniques for anisotropic media have been suggested. For an
overview, see, e.g., Tsvankin et al. (2012). Most of these are, however, restricted to certain symmetries like
VTI or TTI media. Sena and Toksöz (1993) and de Hoop and Bleistein (1997) have introduced theoretical
representations of Kirchhoff migration in anisotropic media. Their comprehensive and complex theories
are, however, not very well suited for an implementation because they require dynamic ray tracing for the
generation of the Greens functions. This also applies to a paper on anisotropic true-amplitude migration by
Druzhinin (2003). A work by Gerea et al. (2000) gives an anisotropic example for amplitude-preserving
migration of multi-component data, but they use a simplified weight function and consider only a
horizontally layered VTI medium. Their approach is therefore not applicable to anisotropic media with
more complex structure and symmetry.

Even with existing expressions for anisotropic migration weights or Greens functions like those in
the works listed above, their computation is not always feasible. One of the purpose of the weights
is to countermand the effect of geometrical spreading. Since this is a dynamic wavefield property,
true-amplitude migration weight functions are conventionally generated with dynamic ray tracing. These
algorithms require smooth models with continuous first and second-order spatial derivatives of the elastic
parameters, whereas the output from model-building routines is often blocky. Furthermore, in anisotropic
media, ray methods can fail, e.g., in the presence of shear wave singularities.

In order to overcome these demands on the model, Vanelle et al. (2006) have introduced a true-
amplitude Kirchhoff migration strategy for isotropic media that employs only kinematic information,
i.e., traveltimes, for the generation of the weights. These traveltimes can be computed by kinematic ray
tracing, which has lower model requirements, or finite difference eikonal solvers in combination with a
perturbation approach (e.g., Ettrich and Gajewski, 1998; Soukina et al., 2003).

Furthermore, the requirements in computer storage are significantly reduced, as the only auxiliary
quantity required are the diffraction traveltimes, sampled on coarse grids. A fast and accurate interpolation
is then applied to obtain the stacking surfaces on the fine migration grid, where the interpolation coeffi-
cients are used for the computation of the weight functions.

In this paper, we suggest the extension of the traveltime-based true-amplitude migration strategy to
media with arbitrary anisotropy. The derivation of the weight functions is formally identical to that for the
isotropic case. However, in the presence of anisotropy, a different expression for the geometrical spreading
must be substituted. A corresponding formulation for geometrical spreading in media with arbitrary
anisotropy and heterogeneity was presented by Vanelle and Gajewski (2003), which is a key ingredient for
the new anisotropic migration weights.

After the derivation of the anisotropic migration weight function, we provide a brief description of
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the traveltime-based implementation before demonstrating the anisotropic true-amplitude Kirchhoff depth
migration with examples for PP and PS reflections1.

TRUE-AMPLITUDE KIRCHHOFF DEPTH MIGRATION

The displacement u(S,G, t) that results from an elastic wave generated by a source at the position S and
registered by a receiver at R in an arbitrarily anisotropic heterogeneous medium can be expressed by

u(S,G, t) =

√
ρ(S)V (S)

ρ(G)V (G)

RG(S, γ1, γ2)

L(G,S)
eiπ2 κ F

(
t− τR(G,S)

)
g(G) (1)

(Červený, 2001). In this expression, ρ(S), ρ(G), V (S), and V (G) are the densities and phase velocities
at the source and receiver. The quantity R contains the reflection coefficient and transmission losses. The
source signal has the temporal shape given by F (t), and τR(G,S) is the traveltime of the reflected event.
The radiation function G(S, γ1, γ2) at the source depends on the ray parameters γ1 and γ2 . The vector
g(G) denotes the polarisation at the receiver. The relative geometrical spreading factor is expressed by
L(G,S), and the factor eiπ2 κ describes phase changes from caustics.

As we wish to reconstruct the reflectivity R, we stipulate that the migration output I(M) for an imaging
point located at M is proportional to R. According to Schleicher et al. (1993) and Vanelle et al. (2006),
I(M) can obtained from the following integral,

I(M) =
−1

2π

∫∫
dξ1 dξ2W (ξ,M)

∂u(ξ, t)

∂t

∣∣∣∣
τD(ξ,M)

, (2)

where the vector ξ describes the source and receiver positions in the chosen acquisition geometry, e.g.,
CMP, single shot, or common-offset section. The integral 2 corresponds to a stack along the diffraction
traveltime surface τD(ξ,M), weighted with the function W (ξ,M).

Equation 1 describes the displacement vector, u(S,G, t) ≡ u(ξ, t), whereas the diffraction stack 2
uses the magnitude of the displacement, the scalar quantity u(ξ, t). This means that in the case of a three
component registration, wave field separation needs to be applied prior to the migration (Dillon et al., 1988).

After a transformation to the frequency domain, the stack integral 2 can be solved in the high frequency
limit by applying the method of stationary phase (e.g., Bleistein, 1984). This process is formally identical
for isotropic and anisotropic media. However, the geometrical spreading for both types of media is not
the same. For anisotropic media, we have according to Schleicher et al. (2001) and Vanelle and Gajewski
(2003),

L(G,S) =
1

V (S)

∣∣∣∣ cosϑs cosϑg
cosχs cosχg

detN−1

∣∣∣∣ 12 e−iπ2 κ , (3)

where ϑs and ϑg are the acute angles between the ray (group) velocity vectors v(S) and v(G) at the source
and receiver, respectively, and the vertical axis. The angles χs and χg are made by the respective ray and
phase velocities at the source and receiver. In isotropic media, the cosχI are equal to one because phase
and group velocities coincide. Finally, the 2×2 matrix N contains second-order traveltime derivatives with
respect to the source and receiver coordinates, i.e.,

NIJ = − ∂2t(S,G)

∂xs ∂xg
. (4)

Following Schleicher et al. (1993) and substituting the anisotropic geometrical spreading 3, we find that
the weight function

W (ξ,M) =

√
ρ(G)

ρ(S)

√
vz(G) vz(S)

V (S)

1

G(S, γ1, γ2)

|det
(
ΣTNr

s + ΓTNr
g

)
|√

|detNr
s| |detNr

g|
e−iπ2 (κs+κg) , (5)

1we use the designations PP and PS instead of the mildly cumbersome qPqP and qPqSV although it is well known that in aniso-
tropic media wave propagation generally does not occur in pure modes.
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leads to a reconstruction of the reflectivity in arbitrary anisotropic media if it is applied with the stack 2.

In the weight function 5, the configuration matrices Σ and Γ describe the relation between the trace
coordinates ξ and the source and receiver positions S and G. Examples can be found in Schleicher et al.
(1993). The radiation function at the source can be calculated after Gajewski (1993) or Pšenčík and Teles
(1996). The vz are the vertical components of the ray (group) velocities at the source and receiver. The
matrices Nr

s and Nr
g are second-order mixed derivatives of the traveltimes with respect to source/receiver

coordinates and the coordinates in the reflector tangent plane at the image point M , i.e.,

Nr
sIJ = − ∂2t(S,M)

∂xs ∂xm
and Nr

gIJ = − ∂2t(G,M)

∂xg ∂xm
. (6)

As we do not a priori know the orientation of the reflector surface, it is assumed for each source-
receiver combination that it corresponds to the stationary ray. Then the orientation can be obtained from
the slowness vectors of the two ray segments at the image point, as described in Vanelle et al. (2006).

Special case: 2.5D

To carry out the stack integral 2, data from a 3D coverage is required. Sometimes, though unfavourable in
the presence of anisotropy, data is only available for a single acquisition line. In the special case where the
medium is assumed to be invariant in the off-line (i.e. ξ2=y) direction, the so-called 2.5D symmetry (see,
e.g., Bleistein, 1986), true-amplitude migration can be carried out by applying a modified stack, which is
introduced below. In anisotropic media, this means that wave propagation is restricted to the ξ1 − z plane,
which is the case if the ξ1 − z plane is a symmetry plane of the anisotropic medium, like TI media or
orthorhombic media in a symmetry plane (see, e.g., Ettrich et al., 2001).

Under these conditions, the stack

I2.5D(M) =

√
1

2π

∫
dξ1W2.5D(ξ1,M) f

[
u
(
ξ1, t+ τD(ξ1,M)

)]
(7)

leads to a true-amplitude migrated trace (e.g., Martins et al., 1997). Here, f [u] is a filter operation corre-
sponding to a multiplication of u with

√
iω in the frequency domain (applied instead of the time derivation

of u in the 3D case). The 2.5D weight function is simpler than the 3D weight, asNr
I12

=Nr
I21

=0. Introducing
σI=1/Nr

I22
, the weight function becomes

W2.5D(ξ1,M) =

√
ρ(G)

ρ(S)

√
vz(G) vz(S)

V (S)

1

G(S, γ1, γ2)

|ΣNr
s + ΓNr

g |√
|Nr

s N
r
g |

√
σs + σg e−iπ2 (κs+κg) , (8)

where Nr
I is used as abbreviation for Nr

I11
.

In the 2.5D geometry, the orientation of the reflector can also be obtained from the slowness vectors of
the two ray segments at the image point, denoted by qs and qg . We find that

Nr
I = NIxx cosβ −NIxz sinβ , (9)

with the mixed second-order traveltime derivatives in the global Cartesian coordinate system,

Nsxx = − ∂2t(S,M)

∂xs ∂xm
Nsxz = − ∂2t(S,M)

∂xs ∂zm
,

Ngxx = − ∂2t(G,M)

∂xg ∂xm
Ngxz = − ∂2t(G,M)

∂xg ∂zm
. (10)

The indices s, g, and m denote the source, receiver, and image point, respectively. The angle β is given by

tanβ = − cos θ2 − cos θ1

sin θ2 − sin θ1
= − Vg qgz − Vs qsz

Vg qgx − Vs qsx
, (11)

where the VI are the phase velocities of the ray segments at the image point, and the θI are the correspond-
ing phase angles.
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The traveltime-based approach

In this section, we explain how the weight functions 5 and 8 can be computed from traveltimes only. We
use the following expression for the traveltime from a source S at the position s to a subsurface point M at
the position m (Vanelle and Gajewski, 2002):

t2(s,m) = (ts − ps∆s + qs∆m)
2 − ts (2 ∆s ·Ns∆m−∆s · Ss∆s +∆m ·Gs∆m) . (12)

Equation 12 is a hyperbolic expansion of the traveltime in source and subsurface point coordinates. The
traveltime ts is that from the source at s0 to the subsurface point at m0. We will refer to the combinations
of (s0,m0) as the expansion points that are represented by the coarse grid. The actual source and sub-
surface point coordinates s and m are represented by their respective distances to the expansion point by
∆s = s− s0 and ∆m = m−m0. The slowness vectors ps and qs are the first-order traveltime derivatives
at the source and subsurface point, i.e.,.

psi = − ∂t

∂si
, qsi =

∂t

∂mi
. (13)

Finally, the three matrices

Ssij = − ∂2t

∂si ∂sj
, Gsij =

∂2t

∂mi ∂mj
, Nsij = − ∂2t

∂si ∂mj
(14)

are the second-order derivatives of the traveltime.

Since the traveltimes are in any event required for the stacking surface, we assume that these are
available and sampled on coarse grids. As described in Vanelle and Gajewski (2002), the coefficients in
Equation 12 can be determined from the traveltime tables, with the exception of the vertical slowness at the
source. In isotropic media, this coefficient follows immediately from the eikonal equation. In anisotropic
media, it can be directly obtained following Červený and Pšenčík (1972) in the 2.5D case, or after Vanelle
and Gajewski (2009) for the 3D situation with arbitrary weak anisotropy. Once the slowness vector is
known, we can compute the components of the group velocity after Červený and Pšenčík (1972).

For the traveltime from a receiver G at the position g to the subsurface point M we use the correspond-
ing expression 12 with g instead of s.

The coefficients are then applied for the interpolation of the traveltimes onto the fine migration grid
and the weight function. If only first-arrival traveltimes are given, the KMAH indices are zero. If later
arrivals are considered, it is convenient to generate the tables for the individual arrivals with an algorithm
that outputs them sorted by KMAH, e.g., with the wavefront-oriented ray tracing technique by Coman and
Gajewski (2005), and its extension to anisotropic media by Kaschwich and Gajewski (2003).

EXAMPLES

We have applied the method to the simple anisotropic velocity model displayed in Figure 1. In both layers
we have chosen ε = δ = 0.1 and γ = 0.1 corresponding to elliptical symmetry because this symmetry
enables us to compute the PP and PS reflectivities analytically (Daley and Hron, 1979) for comparison with
the migration results. Ray synthetic seismograms were generated for an explosive source. The required
traveltime tables for the qP- and qSV-waves were computed analytically on grids with a 100 m spacing.
The distance between sources was also 100 m. These were the only input data needed for the computation
of the true-amplitude weight functions as well as for the interpolation of the diffraction traveltimes onto
the migration grid with 10 m spacing in x and z direction.

The depth-migrated PP section is shown in Figure 2a; the PS section in Figure 2b. As we have used
the correct elastic parameters for the generation of the traveltimes, the migration result shows the reflector
imaged in the correct location.
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Figure 1: The anisotropic velocity model. Thomsen’s parameters were chosen as ε = δ = 0.1 and γ = 0.1.

Since another aim of the true-amplitude migration is to recover the reflectivity, we have picked the
amplitudes from the image gathers. The results are shown together with the analytic solutions in Figure 3a
for the PP, and in Figure 3b for the PS reflection. As we can see, both reconstructed AVO curves coincide
with the analytic values. The deviations at higher offsets are caused by the limited extent of the receiver
line. Due to the asymmetry of the ray paths, the offset range is different for the PP and the PS case.

DISCUSSION

Although we have restricted our examples to a simple geometry, we can conclude that our new method
is equally suited for complex situations. This conclusion is supported by the complex isotropic synthetic
and field data migration examples presented in Vanelle et al. (2006). In that work, we have shown
that the structural information as well as the reflectivities are reconstructed with high accuracy by the
traveltime-based method.

Furthermore, in Vanelle and Gajewski (2003), we have demonstrated the determination of geometrical
spreading in heterogeneous anisotropic 3D media, down to examples with triclinic symmetry. Since the
coefficients used for the traveltime interpolation and the anisotropic weight functions suggested here are
the same that were used in the spreading determination in Vanelle and Gajewski (2003), our conclusion is
justified.

CONCLUSIONS

We have introduced a traveltime-based strategy for true-amplitude Kirchhoff depth migration in anisotropic
media. With this new method, the demands on traveltime engines can be significantly reduced by avoiding
dynamic ray tracing: the application of dynamic ray tracing requires continuous first- and second-order
spatial derivatives of the elastic parameters. Furthermore, ray methods can fail in in the vicinity of shear
wave singularities. Therefore, alternative traveltime algorithms are better suited for anisotropic media than
dynamic ray tracing. However, most of these implementations do not allow the computation of dynamic
wavefield properties, which are required for the true-amplitude weight functions. With the new method,
only traveltimes are used as input for the computation of the weights. Our examples demonstrate that the
method allows the reconstruction of the structures as well as the amplitudes with high fidelity.
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Figure 2: (a) The depth-migrated PP section, and (b) the depth-migrated PS section. Due to the asymmetry
of the ray paths, the considered offset range is different for the PP and the PS case.



Annual WIT report 2012 127

0 1 2
Offset [km]

0

0.1

Am
pl

itu
de

0 1 2
Offset [km]

0

0.1

Am
pl

itu
de

(a)

0 1 2 3
Offset [km]

0

0.1

Am
pl

itu
de

0 1 2 3
Offset [km]

0

0.1

Am
pl

itu
de

(b)

Figure 3: AVO for (a) PP reflections and (b) PS reflections: the reconstructed reflectivities (solid grey
lines) coincide with the analytic solution (dashed black lines). Due to the asymmetry of the ray paths, the
displayed offset range is different for the PP and the PS case.



128 Annual WIT report 2012

ACKNOWLEDGEMENTS

We thank the members of the Applied Seismics Group in Hamburg for continuous discussion. This work
was partially supported by the German Research Foundation (DFG; grants Va 207/1-3) and the sponsors of
the Wave Inversion Technology (WIT) consortium.

REFERENCES

Bleistein, N. (1984). Mathematical methods for wave phenomena. Academic Press.

Bleistein, N. (1986). Two-and-one-half dimensional in-plane wave propagation. Geophysical Prospecting,
34:686–703.
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