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ABSTRACT

Elastic full waveform inversion (FWI) of shallow seismic surface waves has the potential to recon-
struct lateral variations of the shallow subsurface which is important e.g. for geotechnical site char-
acterization. In order to make a 2D full waveform inversion algorithm applicable, shallow seismic
field recordings excited by a point source (usually a hammer blow) must be transformed to mimic
equivalent wavefields excited by a line source. Waves excited by a point source differ in geometrical
spreading, i.e. amplitude decay and phase delay of π/4 in the far field from waves excited by a line
source. In the first part of the report we discuss four different 3D/2D transfomation techniques. One
of them use a wave-theoretical approach (Fourier-Bessel expansion) and is exact for 1D subsurface
structures. The other transformation techniques are based on the ratio of the Fourier coefficients of the
2D and 3D Green functions for homogeneous fullspace (e.g. Direct Wave Transformation). However,
we show that they are applicable to 2D structures. In the second part of the report we investigate re-
construction tests of a 2D subsurface model. We apply the 2D full waveform inversion to line source
and corrected point source seismograms as observed data. The FWI to shallow seismic surface waves
with line source wavefields can reliably reconstruct the 2D subsurface structure. The Fourier-Bessel
Transformation produces strong artifacts due to the 2D characteristic of the subsurface. When using
the L2 norm as a measure of misfit a correction for the different decay of amplitudes is mandatory but
not sufficient to obtain reliable results. The most appropriate correction filter is the Direct Wave Trans-
formation as it is applicable to 2D structures and single traces and it corrects both the amplitude-decay
as well as the phase delay.

INTRODUCTION

The inversion of shallow seismic surface waves is very attractive for geotechnical site investigations. Sur-
face waves which are easily excited by a hammer blow. They have a high sensitivity to the shear wave
velocity in the first meters of the subsurface. A hammer blow as a source dominantly excites surface waves
and thus the signal to noise ratio of surface waves is very high compared to body waves. With surface waves
it is possible to investigate sites with low-velocity zones which cannot be done with refracted body waves.
There are established methods to invert surface waves (e. g. inversion of dispersion curves or wavefield
spectra (Forbriger, 2003)) but all these methods assume 1D subsurface structures. This assumption is not
valid in many applications of practical relevance. To overcome this limitation we want to apply an elastic
full waveform inversion (FWI) to shallow seismic surface waves. First successful applications of a FWI to
surface waves show the high potential of this method (Romdhane et al. (2011); Tran and McVay (2012)).
The application of a 3D FWI to surface waves unfortunately is still difficult due to excessive computational
requirements (Dunkl et al., 2012). Therefore we use a 2D inversion developed by Köhn (2011). It is based
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on the adjoint method and the forward modeling is done with the Finite Difference method (Bohlen, 2002).
Both are applied in the time domain.

With the objective to realize a 2D full waveform inversion of field data, we have to deal with the different
spreading of recorded and computed waves. Observed data are commonly gained with a point source such
as a hammer blow or an explosion which produces a wavefield with 3D geometrical spreading. However,
our inversion-code uses 2D forward modeling and assumes implicitly a line source. Due to unequal decay
of amplitudes and a phase shift of π

4 in the farfield point source and line source wavefields are different.
These residuals may result in model artifacts during a full waveform inversion and for this reason we want
to investigate the effects of geometrical spreading corrections for a 2D FWI of shallow seismic surface
waves. Therefore field data must be preprocessed to simulate the response of a line source. After the point
source wavefields are filtered, the wavefields are inverted by a 2D full waveform inversion. A simulation
of a line source in the field is to expensive due to a huge number of required shot locations. Therefore
we apply different numerical transformations to point source wavefields to simulate line source wavefields.
The testing model (Figure 7a)) was inspired from a transverse section of a vertical fault located on the
southern rim of the Taunus (near Frankfurt on the Main, Germany). Perpendicular to this fault a shallow
seismic measurement have taken place in summer of 2011. The present study is in preparation for inverting
this field data record.

The report is organized as follows. To investigate the significance of the different geometrical spreading
of line source and point source wavefields, we firstly investigate the accuracy of four different numerical
transformations and discuss the waveform fit of corrected point source wavefields with respect to reference
wavefields for a line source. We are using on the one hand an exact wave-theoretical approach for 1D
subsurface sturctures and on the other hand single-trace transformations. Secondly we use these trans-
formed point source wavefields in a 2D full waveform inversion as observed data to investigate the effects
of geometrical spreading corrections for a 2D FWI of shallow seismic surface waves.

3D/2D TRANSFORMATION TECHNIQUES FOR SHALLOW SEISMIC SURFACE WAVES

There are several 3D/2D transformation techniques known from literature. Some of them use a wave-
theoretical approach which requires a complete common source gather and other transformation techniques
have the benefit to be applicable to single traces. We calculated 3D and 2D wavefields, respectively with
a 3D and 2D Finite Difference forward modeling code in the time domain (Bohlen, 2002), on a 2D sub-
surface structure (see Figure 7a)). With regard to the FWI in the second part of the paper we have used 20
vertical point forces resembling hammer blows and recorded the wavefields with 88 receivers (vertical and
horizontal component) with 1 m spacing. We show examplary the vertical component of three shots at 5 m
distance (very left part of the model), at 50 m distance (middle of the model) and at 94 m distance (very
right part of the model). We have investigated following transformation techniques:

• Transformation 1 - amplitude-only Transformation: scaling with
√

2πr/k in time domain, but no
phase transformation,

• Transformation 2 - Fourier-Bessel Transformation: an exact transformation of amplitude and phase
for 1D media by using Fourier-Bessel-expansions (e.g., Wapenaar et al. (1992)),

• Transformation 3 - Direct Wave Transformation: spreading correction by convolution with t−1/2 in
Fourier domain, taper with t−1/2 and scale with offset r in time domain (Forbriger et al., 2012),

• Transformation 4 - Single Velocity Transformation: multiplication with
√

2πr/k · eiπ/4 in Fourier
domain (Forbriger et al., 2012).

Transformation 1 - amplitude-only Transformation

In a first step it is quite interesting to use hardly any correction. However, the amplitude-decay of waves
excited by a point and a line source differ strongly. When we use the L2 norm as a measure of misfit
during the inversion, true amplitudes are taken into account and therefore we have to correct the different
amplitude-decay with offset. To obtain an offset dependent correction factor we take the ratio of Green’s
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functions g2D
k (r) and g3D

k (r) for the acoustic wave equation in 2D and 3D after Forbriger et al. (2012),
respectively,

g2D
k (r)

g3D
k (r)

≈
√

2πr

k
· eiπ/4, (1)

with k = ω/α is the wavenumber, α the phase velocity of the wave, ω the angluar frequency and r is the
distance to the source. Thereby we can divide the first factor in two parts:

√
r accounts for the geometrical

spreading and
√

2π/k for the different energy-level of 2D and 3D wavefields. The second factor eiπ/4

indicates that waves excited by a point source differ in a phase delay of π/4 in the far field from waves
excited by a line source. With Transformation 1 we only apply an amplitude correction. Therefore we mul-
tiply the traces of the point source wavefields with

√
2πr/k to fit the energy-level and correct geometrical

spreading. An appropriate wavenumber k has to be approximated e.g. from an analysis of Fourier-Bessel-
expansion coefficients. For this example we have choosen a wavenumber k = 2π 30Hz / 280 m

s = 0.67 1
m .

With this approach it is possible to fit the energy-level and the amplitude-decay with offset. The amplitude
discrepancy between seismograms excited by a line and a point source and the enhancement of Trans-
formation 1 is illustrated in Figure 2, in which the normalized RMS amplitude values of a line source
seismogram, a point source seismogram and a corrected point source seismogram with Transformation 1
have been computed and plotted as a function of the source to receiver offset r. It is quite surprising that
such a simple spreading correction fits the different geometrical spreading of point and line source wave-
fields. Comparison of line source and amplitude-only corrected point source seismograms of the three
exemplary shots are plotted in Figure 1. We observe a good fit of the amplitude-decay of seismograms ex-
cited by a line and a point source with Transformation 1. Still there are significant phase residuals over the
whole offset range. In Figure 1a) we observe in the near offset range (0-40 m, 0-0.2 s) direct surface waves
which correspond to the 1D structure in the left part of the subsurface model. With larger offset (40-80 m,
0.2-0.5 s) we notice a change in the dispersion of the direct surface waves due to the thinner layer in the
right part of the subsurface model. We also see reflected surface waves (0-40 m, 0.2-0.5 s) resulting from
the step of the layer which reveal on the 2D charateristic of the subsurface model.

Transformation 2 - Fourier-Bessel Transformation

Here we apply a transformation of amplitude and phase for 1D media suggested by Wapenaar et al. (1992)
and Amundsen and Reitan (1994) which is exact for 1D structure. Given a vertical point force as a source
in the origin of the coordinate system and a receiver profile along the horizontal y-axis. For 1D media we
can use a Fourier-Bessel-expansion to express the vertical component of the wavefield at offset r by

ũP (r, ω) =

∫ ∞
0

G(ω, p)J0(ωpr)ω2pdp (2)

with the Fourier transform ũP of the excited wavefield, the expansion coefficients G, the slowness p, the
source to receiver distance r, the Bessel function J0 of order zero and the angular frequency ω. The seis-
mograms of a line source in a distance y to the line source can be written as a superposition of seismograms
excited by an infinite number of point sources along the x-axis. Therefore we obtain

ũL(y, ω) =

∫ ∞
−∞

ũP (
√
x2 + y2, ω)

dx

[x]
(3)

for the Fourier coefficients of a seismogram ũL(y, ω) excited by a line source along the x-axis. Inserting
equation (2) into equation (3) we obtain after some calculation steps

ũL(y, ω) = 2

∫ ∞
0

G(ω, p) cos(ωpy)ωdp (4)

for the line source seismograms. Summarizing this transformation we first have to calculate the expansion
coefficients G from the point source seismograms by the back transformation of equation (2) via

G(ω, p) =

∫ ∞
0

ũp(r, ω)J0(ωpr)rdr. (5)
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Afterwards we have to do an expansion with plane waves according to equation (4). The transformation
for the radial component can be derived in an analog way.

Transformation 2 is indeed exact for 1D media (model changes only in depth) but we apply it in this
case to waves on a 2D structure (lateral heterogeneity). Comparison of line source and corrected point
source seismograms with Transformation 2 are plotted in Figure 3. For a shot at 5 m distance in Figure
7a) the transformation works quite well for the direct surface waves that correspond to the 1D structures in
the left and right part of the subsurface model. However, Transformation 2 neither reproduces amplitudes
nor phases of the reflected surface waves as this transformation is only valid for 1D media and therefore
cannot explain backpropagating waves. Moreover there is an artefact generated (see Figure 3a)) between
0-40 m and 0.18-0.25 s) which propagates with a very high velocity and interferes with the actual signal.
Seismograms of a shot at 50 m distance (middle of the subsurface model) are plotted in Figure 3b). This
shot is located on the fault in the subsurface model and produce a significant different dispersion to the left
and to the right of the shot location. Anyway, Transformation 2 calculates a kind of pseudo 1D medium
and has not the ability to explain the different dispersion in the left and right part of the model. We can
clearly observe this behaviour in Figure 3b). Waves for a shot in the right part of the model (Figure 3c)) do
not contain strong 2D charateristics. The transformation performs quite well in this case.

Transformation 3 - Direct Wave Transformation

The wave-theoretical approach is limited to 1D structures and cannot handle laterally heterogeneous struc-
tures. In reflection seismics a single-trace transformation has been suggested by Pica et al. (1990) and
Crase et al. (1990) which is commonly applied for body waves. Forbriger et al. (2012) suggest a slightly
different approach. The conversion factor of eq. 1 can be factorized to√

2πr

k
· eiπ/4 = r ·

√
1

t
·
√

π

|ω|
(1 + i sign(ω)), (6)

with kα = ω, where α is the phase velocity of the wave. t is the travel time of a wave travelling with
velocity α over a distance of r. The first factor accounts for geometrical spreading of the waves, the second
factor is applied by tapering the time series and the third factor is applied in the Fourier domain and equals a
convolution with t−1/2 in the time domain. This correction is called Direct Wave Transformation, because
we assume that the wave travel path equals the source to receiver offset r. Comparison of line source and
corrected point source seismograms with Transformation 3 are plotted in Figure 4. The transformation is
quite accurate for all shot locations on the subsurface model. The phases of the direct and the reflected
surface waves are corrected. Even the amplitudes are fitted appropriately for the direct surface waves.
However, the amplitudes of the reflected surface waves are rather too small due to the t−1/2 taper. This
transformation corrects both the phases and the amplitudes and does not require any a priori information.
Furthermore, it is applicable to single traces and for 2D structures.

Transformation 4 - Single Velocity Transformation

We have tried different ways to implement eq. 1. Another approach with a constraint is the assumption of
one single phase velocity. This way we can directly divide the Fourier transform ũP (r, ω) of a wavefield
excited by a point source by the Fourier transform of the 3D Greens function and multiply by the 2D Greens
function. We obtain a Fourier transform ũL(r, ω) of the far-field excited by a line source

ũL(r, ω) ≈ ũP (r, ω)
g2D
k (r)

g3D
k (r)

(7)

ũL(r, ω) ≈ ũP (r, ω)

√
2πr

k
· eiπ/4 (8)

where k is the wavenumber and r is the source/receiver offset. The selection of one single phase velocity is
only appropriate for the impulse response in homogenous full space. Our true subsurface model is for sure
no homogenous full space, but a 2D structure on a halfspace with free surface. So it is quite interesting
how far we can push such a simple transformation and it works really well for this example. To obtain



224 Annual WIT report 2012

the single wave velocity we have picked travel times of the near offset traces for the shot at 5 m distance.
We have choosen 280 m/s for the single wave velocity for this example. Comparison of line source and
corrected point source seismograms with Transformation 4 are plotted in Figure 5. The Single Velocity
Transformation is quite accurate for all shot locations on the subsurface model. In comparison with the
Direct Wave Transformation it is conspicuous that the amplitude fit of the shot at 5 m distance for the
near offset traces is significantly better for the Single Velocity Transformation. The mistake due to the
assumption of a single phase velocity is obvisouly rather small in this case. However, we have investigated
this correction filter only for this case study. So this assumption could cause artifacts in more complex
subsurfaces.

Discussion - 3D/2D transformation techniques

We have introduced four 3D/2D transformation techniques. We have applied these transformations to all
20 shots over the whole range of the subsurface model and calculated for every single shot the L2 norm
between the line source reference seismograms and the corrected point source seismograms. Figure 6
displays the individual L2 norm misfit, which is normalized to the energy of the line source seismograms,
over the shot location.

Transformation 1 is an amplitude-only transformation (scaling with
√

2πr/k) which is mandatory due
to the misfit definition with the L2 norm. This transformation produces a more mor less constant L2
value of approximately 56 % over all shot locations. The large misfit is produced by the signifcant phase
mismatch over the whole offset range.

Transformation 2 uses a wave-theoretical approach and is only valid for 1D media but we apply it in
this example to waves on a 2D structure. When we give a closer look to Figure 6 we see a charateristic
misfit trend with the shot locations which corresponds very similar to changes in the subsurface model.
For the shot locations in the left part of the subsurface model the L2 norm misfit is about 19 % although
Transformation 2 corrects the phases and the amplitudes. However, the reflected surface waves which
correspond to the 2D charateristic of the model cannot be reproduced, they even produce strong artifacts.
The L2 norm misfit increases (up to 48 %) in the middle of the subsurface model in the area of the step in
the layer. A shot exactly on the fault would produce a significantly different dispersion to the left and right
part of the model. Anyway, Transformation 2 produces waves for a kind of pseudo 1D medium and has not
the ability to explain the different disperion in the left and right part of the model. Shots in the right part of
model don’t contain strong 2D charateristics why the L2 norm misfit decreases to about 8 %.

Transformation 3 corrects the phase by convolution with t−1/2 and additionally the traces are tapered
with t−1/2 and scaled with source to receiver offset r. The phase and amplitude correction reduce the misfit
of line source and point source seismograms remarkable and produce L2 value of about 19 % for all shot
locations. This rather high value is due to the taper of t−1/2 which produce the amplitudes of near offset
traces too small.

Transformation 4 is completely done in the frequency domain by applying eq. 8. This approach works
only for waves of a single given wave velocity. Our choosen wave velocity of 280 m/s is obtained from
the seismograms and yields to a good fit of line source and corrected point source seismograms. Even the
amplitude fit of near offset traces is accurate due to the fact that we don’t have to apply the t−1/2-taper.
The L2 value amounts to about 11 % for all shot locations.

We have to keep in mind that for this example with synthetic data the true line source response is known.
We should think about a transformation which is most independent and appropriate for applying for field
data later on. Therefore, it would be quite counterproductive to choose a 3D/2D correction like Transfor-
mation 2 (Fourier-Bessel) which is only valid for 1D media. From our point of view Transformation 3
appears to be the most appropriate 3D/2D transformation technique for surface waves. The good perfor-
mance of the Single Velocity Transformation results probably from the narrow bandwidth of the seismic
data.

In the second part of the report we use these transformed point source seismograms in a 2D full wave-
form inversion as observed data and investigate the effects of the different geometrical spreading correc-
tions for shallow seismic surface waves during a full waveform inversion.
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a) b) c)

Figure 1: Transformation 1 - amplitude-only Transformation. Comparison of line source seismograms
(black) and corrected point source seismograms (red) (vertical component) for the true model in Figure
7a); not all traces are shown. Seismogram a) shows a shot at 5 m distance (very left part of the model),
seismogram b) a shot at 50 m distance (middle of the model) and seismogram c) a shot at 94 m distance
(very right part of the model). The seismograms in a) and c) are not trace normalized but scaled by an
offset dependent factor

(
r

1 m

)0.3
to equalize plot scale amplitudes. The seismogram b) is trace normalized,

please notice that the y-axis is the trace number not the offset in this case.

Figure 2: RMS amplitudes of wavefields from a shot at 5 m distance versus source-receiver offset from
a line source (solid curve), compared with a point source (dash-dotted curve) and a point source which is
corrected with Transformation 1 (dashed curve).
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a) b) c)

Figure 3: Transformation 2 - Fourier-Bessel Transformation. Comparison of line source seismograms
(black) and corrected point source seismograms (red) (vertical component) for the true model in Figure
7a); not all traces are shown. Seismogram a) shows a shot at 5 m distance (very left part of the model),
seismogram b) a shot at 50 m distance (middle of the model) and seismogram c) a shot at 94 m distance
(very right part of the model). The seismograms in a) and c) are not trace normalized but scaled by an
offset dependent factor

(
r

1 m

)0.3
to equalize plot scale amplitudes. The seismogram b) is trace normalized,

please notice that the y-axis is the trace number not the offset in this case.

a) b) c)

Figure 4: Transformation 3 - Direct Wave Transformation. Comparison of line source seismograms (black)
and corrected point source seismograms (red) (vertical component) for the true model in Figure 7a); not all
traces are shown. Seismogram a) shows a shot at 5 m distance (very left part of the model), seismogram b)
a shot at 50 m distance (middle of the model) and seismogram c) a shot at 94 m distance (very right part of
the model). The seismograms in a) and c) are not trace normalized but scaled by an offset dependent factor(
r

1 m

)0.3
to equalize plot scale amplitudes. The seismogram b) is trace normalized, please notice that the

y-axis is the trace number not the offset in this case.
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a) b) c)

Figure 5: Transformation 4 - Single Velocity Transformation. Comparison of line source seismograms
(black) and corrected point source seismograms (red) (vertical component) for the true model in Figure
7a); not all traces are shown. Seismogram a) shows a shot at 5 m distance (very left part of the model),
seismogram b) a shot at 50 m distance (middle of the model) and seismogram c) a shot at 94 m distance
(very right part of the model). The seismograms in a) and c) are not trace normalized but scaled by an
offset dependent factor

(
r

1 m

)0.3
to equalize plot scale amplitudes. The seismogram b) is trace normalized,

please notice that the y-axis is the trace number not the offset in this case.

Figure 6: L2 norm misfit trend with shot location. Area of thin dashed lines indicates the location of the
step in the layer of the subsurface model (see Figure 7a)).



228 Annual WIT report 2012

APPLICATION OF FULL WAVEFORM INVERSION FOR SHALLOW SEISMIC SURFACE
WAVES

Before we present and discuss our inversion results, we briefly introduce our inversion parameters and
strategies during our FWI investigations. The aim of the full waveform inversion is to minimize the objec-
tive function (Mora (1987), Tarantola (1986))

EL2norm =
∑
i

∑
j

‖ui,j − di,j‖2 (9)

which is the signal energy of residuals between the modeled data u and observed data d to infer the material
parameters m in the subsurface model. The indexes i and j indicate the sources and receivers, respectively.
We are using an iterative steepest-descend gradient method to update the model parametersmn at iteration
step n (Köhn, 2011)

mn+1 = mn − µnPn
(
∂E

∂m

)
n

, (10)

where
(
∂E
∂m

)
n

denotes the gradient direction of the objective function with respect to the model parameters,
Pn an appropriate preconditioning operator and µn the step length. The gradients can be expressed by a
zero-lag correlation of displacment wavefields (Mora (1987), Tarantola (1986) and Köhn (2011)). To
increase the convergence speed we use the conjugate gradient direction (Mora, 1987) and preconditioning
of the gradients with the Pseudo-Hessian matrix (Sheen et al., 2006). Furthermore, we taper shotwise
the gradients circular at the source locations to avoid strong artifacts. The model parameters are the S-
velocity, the P-velocity and the density (Köhn et al., 2012). For the force time function we use the first
period of a sin3(t) with a frequency bandwidth of 0 Hz to about 100 Hz. Since the source wavelet is
known, it is not estimated during inversion. Furthermore, we use a multistage approach for inversion with
frequency filtering to reduce the nonlinearity of the misfit function (Sirgue and Pratt, 2004). Starting at low
frequencies builds up a smooth subsurface model and prevents the FWI to end up in a local minimum. We
start at a low pass frequency of 10 Hz and increase the range of frequencies in steps of 10 Hz up to the full
bandwidth of the source signal.

In Figure 7a) the true subsurface model is displayed. It is characterized by a layer with a step over half-
space, whereat the layer and halfspace is not completely homogenous, but has a smooth gradient especially
at the transition zone of layer and halfspace. The used velocities and density range is realistic for shallow
seismic subsurface. For all investigations we use initial models constructed with linear gradients as shown
in Figure 7b). As sources we applied 20 vertical point forces resembling hammer blows and recorded the
wavefields with 88 receivers (horizontal and vertical component) with spacing of 1 m. All test cases are
synthetic data (true subsurface model is known) and can be called reconstruction tests.

Reference FWI result - perfect line source seismograms

To evaluate a reference FWI result we use perfect line source seismograms as observed data during in-
version. The objective is to learn more about the inversion procedure and the resolution power by using
surface waves. Furthermore, there is no error by applying a transformation technique. Hence, all FWI
results in the next section have to be compared with this reference FWI result.

In Figure 7a) and b) the true subsurface and starting models are plotted. The comparison of the seismo-
grams of the true and starting model are shown in Figure 7c) for an exemplary shot at 5 m distance. The
velocities and density values in the very shallow are in the same range, but the seismogram of the starting
model is completely 1D whereas the seismogram of the true subsurface contains a change in the dispersion
and reflected waves of the step in the layer. In Figures 7d)-f) the FWI results of the S-velocity, P-velocity
and Density, respectively, are plotted with the same colorbar as in a) and b). The seismograms in Figure
7 g) show the comparison of the seismogram of the true subsurface and the seismogram of the inverted
model. We observe a very good fit in this comparison. Judging from the waveform only we apparently
have estimated an appropriate subsurface model during inversion. For the final seismograms in the FWI we
obtain L2 norm misfit of 2.75 %. We obtain satisfatory subsurface models in Figure 7d)-f), however, also
some less resolution like underestimated halfspace values due to the insufficient penetration depth of the
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Rayleigh wave with the dominant wave length and a smoother transition zone than in the true model. The
S-velocity model has a much higher resolution than the P-velocity and Density model because of the high
sensitivity of surface waves to the S-velocity. Nevertheless, it is possible to obtain a reliable 2D subsurface
model with a 1D starting model by using FWI with shallow seismic surface waves.

Reconstruction tests for corrected point source seismograms

In this section we discuss 2D FWI results with point source seismograms as observed data which were
corrected with different 3D/2D transformation techniques. Due to the high sensitivity of surface waves to
the S-velocity we present only the S-velocity models to investigate the effects of geometrical spreading
corrections towards a FWI with surface waves. To help clarifying the different inversion results we show
only investigations for Transformation 1-3, because the Single Velocity Transformation produces almost
the same inversion result as the Direct Wave Transformation.

First of all we would like to mention that all inversion tests run with the same parameter settings like fre-
quency filtering, starting models and so on as for the reference inversion in the previous section. We obtain
L2 norm misfits for the final seismograms in the FWI between 14.03 % for the Direct Wave Transforma-
tion, 18.85 % for the Amplitude-only Transformation and 82.21 % for the Fourier-Bessel Transformation
(Table 9 - first line). If we consider on the one hand the L2 norm as a measure of how succesful an inversion
is, it is clear that the inversion of the Direct Wave and the Amplitude-only Transformation should be more
reliabe than the inversion of the Fourier-Bessel Transformation. However, on the other hand it is essen-
tial how well the inversion could reconstruct the subsurface model. In Figure 8b)-d) the inversion results
with corrected point source seismograms as observed data are plotted and in Figure 8a) again the reference
inversion result with line source seismograms as observed data. A single value appears to be insufficient
to describe the inversion results completely. Because of this we display in Figure 8e)-h) a relative error
between the true und the inverted S-velocity model

relative error(x, z) =
mtrue(x, z)−msyn(x, z)

mtrue(x, z)
(11)

where x and z indicate the spatial coordinates, mtrue the true subsurface and msyn the inverted model.
At first view the inversion results with the Amplitude-only and the Direct Wave Transformation seem
to be similar and comparable with the reference inversion result. The inversion result for the Fourier-
Bessel Transformation significantly shows less resolution. Nevertheless, all inversion tests minimize the
L2 norm with different observed data why it is clear that the differences must be in some details. For
the reference inversion result in Figure 8a) and e), it is obvious that the velocities in the halfspace for
the right part of the model are underestimated and that mainly the transition zone between the layer and
the halfspace is overestimated. So we have to keep that in mind and cannot expect a better resolution
to the inversions with corrected point source seismograms. It is conspicuous that the inversion with the
Amplitude-only Transformation carves out a significant to high velocity area above the transition zone.
We guess this is probably due to the disregarded phase delay correction. The inversion of the Direct
Wave Transformation can be considered as the most reliable reconstruction in comparison to the reference
inversion result. However, we obtain an artifact at the step of the layer as a result of the small amplitudes
of the reflected surface waves due to the taper with t−1/2 of the transformation. The relative error in Figure
8h) for the inversion with the Fourier-Bessel Transformation is quite high in the entire model. This was
expectable with the experience of Section ’3D/2D Transformation Techniques for shallow seismic surface
waves’ as Transformation 2 is not able to reproduce a 2D wavefield.

A final consideration will emphasize our discussion. Normally we would do a 3D modelling on the
inverted models to obtain 3D wavefields and compare them to the originally observed 3D wavefields to
close the circle. But to save computional time we do it the other way around and simply calculate the L2
norm between the final seismograms of each inversion and line source seismograms of the true subsurface
model (Table 9 - third line). It is clear that the misfit value for line source seismograms is the same as in
the end of the inversion. But for the three inversions with point source seismograms as observed data we
are able to infer the quality of the reconstruction of the model from the different transformation techniques.
The not-explained energy in the residuals of the Amplitude-only and the Fourier-Bessel Transformation is
over 50 % whereas the L2 norm for the Direct Wave Transformation amounts around 18 %. For sure in
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comparison to the reference line source inversion it is quite high but much less than for the other 3D/2D
correction filters.

CONCLUSIONS

With the objective to realize a 2D full waveform inversion of field data, we have to deal with the different
spreading of recorded and computed waves. In the first part of the paper we have discussed four different
3D/2D transfomation techniques. One of them uses a wave-theoretical approach which requires a complete
common source gather and the other transformation techniques have the benefit of being applicable to
individual traces. The most appropriate correction filter is the Direct Wave Transformation after Forbriger
et al. (2012) as it is applicable to 2D structures and single traces and it corrects both the amplitude-decay
as well as the phase delay.

In the second part of the paper we have investigated line source and corrected point source seismograms
as observed data. The FWI with shallow seismic surface waves has the potential to reconstruct the subsur-
face reliably. The L2 norm is remarkable minimized to 2.75 % by using line source seismograms. When
using the L2 norm as a measure of misfit a correction for the different decay of amplitudes is mandatory
but not sufficient to obtain reliable inversion results. In addition the signal phase must also be corrected
which should be done with the most appropriate physical accuracy. On account of this we should not apply
the Fourier-Bessel Transformation, because it is only valid for 1D structures. Hence we propose to use the
Direct Wave Transformation which is the most appropriate 3D/2D transformation technique for shallow
seismic surface waves we have tested so far.
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Figure 7: The true and starting model is shown in a) and b), respectively. Seismogram c) shows the
wavefields of a shot at 5 m distance (very left part of the model) for the true (black line) and the starting (red
line) model. FWI results of S-velocity, P-velocity and Density model are plotted in d)-f), respectively, with
perfect line source seismograms (subfigure c)) as observed data. The black/white dashed line indicates the
transition zone of layer and halfspace in the true subsurface model. The absorbing boundary with perfectly
matched layers (CPML) is plotted with black dashed lines. Seismograms g) show the waves of a shot at 5
m distance (very left part of the model) of the true (black line) and final (red line) model after inversion.
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Figure 8: FWI results for line source and corrected point source seismograms as observed data in a)-d) and
relative error to true subsurface model in e)-h). The black/white dashed line indicates the transition zone
between layer and halfspace in the true subsurface model. The absorbing boundary with perfectly matched
layers (CPML) is plotted with black dashed lines.
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Figure 9: Final L2 data misfit in the end of the full waveform inversion for different observed data and
the number of iterations. Furthermore the L2 data misfit between final seismograms and true line source
seismograms. The horizontal and vertical component are considered for this calculation.
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