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ABSTRACT

In this paper we derive an approximation for the diffraction response for a general 2D anisotropic
medium. Our traveltime expression is formulated as a double-square-root equation that allows us
to accurately and reliably describe diffraction traveltimes. The diffraction response depends on the
ray velocity which varies with angle and thus offset. To eliminate the angle dependency, we suggest
to expand the ray velocity in a Taylor series around a reference ray. We choose the fastest ray of the
diffraction response, i.e., the ray corresponding to the diffraction apex as the reference ray in this study.
Moreover in an anisotropic medium, the location of the diffraction apex may be shifted with respect to
the surface projection of the diffractor location. To properly approximate the diffraction response we
consider this shift. The proposed approximation depends on four independent parameters: emergence
angle of the fastest ray, ray velocity along this ray, and first and second-order derivatives of the ray
velocity with respect to the ray angle. We also establish relations between anisotropy parameters and
Thomsen parameters for homogeneous media with polar anisotropy.

INTRODUCTION

Diffractions carry detailed information on structural features of the subsurface which are of great interest in
seismic exploration. This information can be used, e.g., for high-resolution imaging (see, e.g., Khaidukov
et al., 2004; Dell and Gajewski, 2011) or migration velocity analysis (see, e.g., Reshef and Landa, 2009;
Dell and Gajewski, 2012). However, until now only isotropic media have been considered in diffraction
imaging. The frequently used approximation for diffraction traveltimes in heterogeneous media imple-
ments a conventional double-square-root (DSR) equation which is valid for media with moderate lateral
velocity variations (Landa and Keydar, 1997). In the DSR approximation the surface projection of the
diffractor coincides with the surface location of the fastest ray. Unfortunately, this simplification fails for
many geological models due to seismic anisotropy. Figure 1(a) displays a top view of the diffraction re-
sponse in an isotropic medium for a model shown in Figure 5. The diffractor is located at the x-coordinate
3000 meter. From the figure it is apparent that the fastest time, i.e., the time between diffractor location
and its surface projection (red cross), is the vertical one and also the diffraction response is symmetrical to
the vertical ray slice. Figure 1(b) displays the top view of the diffraction response for the dame geological
medium with TTI anisotropy. The tilt is 45 degree, ε is 0.24, and δ is 0.13. From the figure it is apparent
that the fastest time is not the vertical time anymore and the diffraction response becomes asymmetrical
with larger offset.

Although there exists no analytical solution of the diffraction response in anisotropic media one can
approximate it, e.g., by a traveltime expression derived by Alkhalifah and Tsvankin (1995) which is based
on a non-hyperbolic reflection response. Their approximation represents an extension of the conventional
isotropic DSR equation with an additional fourth-order term. This term depends on an additional parameter,
η, which steers the non-hyperbolic part of the moveout. Moreover, their diffraction response is assumed
to be symmetrical with respect to the time along the vertical ray which is considered to be the fastest
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Figure 1: (a) A top view of the diffraction response in an isotropic medium for a model shown in Figure 5.
The diffractor is located at the x-coordinate 3000 meter. The diffractor surface projection coincides with the
location where the fastest ray arrives (red cross). (b) A top view of the diffraction response in an anisotropic
medium for the same model. The diffractor surface projection does not coincide with the location where
the fastest ray arrives (red cross).

one (see, e.g., Figure 1 in Alkhalifah, 2000). However, this traveltime approximation is derived for media
with a weak polar anisotropy and, hence, not applicable for strong and for general anisotropy. Figure 1(b)
shows, however, that the apex of the diffraction response does not coincide with the subsurface projection
of the diffractor location, i.e., the diffraction apex is laterally shifted. This feature is called apex shift in the
following. This shift should be taken into account if we want to properly describe the diffraction response.

In this paper we consider a general anisotropic medium and propose to expand the ray velocity in
a Taylor series. In the 2D case, this leads to a parameterization of the diffraction response with four
parameters, namely the emergence angle of the fastest ray emanated from the diffractor, the ray velocity
along this ray, and first and second-order derivatives of the ray velocity with respect to its angle. The
four parameters of the diffraction response are required to describe the prestack diffraction response in
the vicinity of the fastest ray for a general anisotropic 2D medium. Also, we show that for weak polar
anisotropy with vertical symmetry the diffraction traveltime can be described by the ray velocity and the
Thomsen parameter δ.

THEORY

We consider a general anisotropic homogeneous medium with the geometry shown in Figure 2. The po-
sition of a diffractor in the subsurface is given by x and z. x0 is the location on the measurement surface
where the fastest ray arrives and xsp identifies the surface projection of the diffractor. x1 and x2 are the
horizontal coordinates of source and receiver. The traveltime between the collocated source and receiver,
i.e., from (x1, z = 0) via (x, z) to (x2, z = 0) can be calculated by applying Pythagorean theorem as

t =

√
(xsp − x1)2 + z2

ν(ϕ1)
+

√
(x2 − xsp)2 + z2

ν(ϕ2)
, (1)

where ν(ϕ1), ν(ϕ2) are the ray velocities and ϕ1, ϕ2 angles as defined in Figure 2. Equation 1 represents
the anisotropic DSR equation. Note that the ray velocity varies for different angles or offsets. To eliminate
the angle dependency, we expand the ray velocity into a Taylor series in the vicinity of the fastest ray with
respect to its angle.

The ray velocities along both rays are

ν(ϕi) ≈ ν0(1 +A(ϕi − ϕ0) +B(ϕi − ϕ0)2), (i = 1, 2) , (2)
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Figure 2: Geometry for a 2D general anisotropic medium.

where

ν(ϕ0) = ν0, A =
1

ν0

∂ν

∂ϕ

∣∣∣∣
ϕ0

, and B =
1

2ν0

∂2ν

∂ϕ2

∣∣∣∣
ϕ0

. (3)

Here ν0 = ν(ϕ0) is the ray velocity along the fastest ray. Substituting the ray velocities into the anisotropic
DSR equation given by equation 1 yields

t =

√
(xsp − x1)2 + z2

ν0(1 +A(ϕ1 − ϕ0) +B(ϕ1 − ϕ0)2)
+

√
(x2 − xsp)2 + z2

ν0(1 +A(ϕ2 − ϕ0) +B(ϕ2 − ϕ0)2)
. (4)

This approximation depends on the surface projection of the diffractor (xsp, z = 0), the coordinates of the
source and receiver (x1, z = 0) and (x2, z = 0), first and second-order derivatives of the ray velocity with
respect to the ray angle ( i.e., A and B), angle variations (i.e., ϕ − ϕ0), the ray velocity along the fastest
ray ν0, and the depth coordinate z.

Note, that equation 4 directly depends on the angles. In appendix A we derive the equation 4 in
midpoint-offset coordinates to make it consistent with common processing workflows. The midpoint-offset
equation reads as

t =

(
1 +A

(m− h) sinϕ0

r1
+ (A2 −B)

(m− h)2 sin2 ϕ0

r2
1

)
×

√
t20
4

+
(m− h)2

ν2
0

+
(m− h)t0 cosϕ0

ν0

+

(
1−A (m+ h) sinϕ0

r2
+ (A2 −B)

(m+ h)2 sin2 ϕ0

r2
2

)
×

√
t20
4

+
(m+ h)2

ν2
0

+
(m+ h) cosϕ0

ν0
, (5)

and is valid for a general 2D anisotropic medium and moderate offsets.
The transition from homogeneous to heterogeneous anisotropic medium is very similar to other cases

(CMP operator, isotropic DSR operator). All medium parameters become "effective parameters". For
anisotropy this is inherently frequency dependent, however, this is a different issue. If you have several
diffractors at different depth, it is possible to determine interval parameters out off the effective parameters.
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Because of the 3-D nature of the problem and the "point characteristics" of the diffractor it is not an easy
task. It is very attractive though since it is applied post-stack and the illumination of diffractions is far
superior to reflections.

Next, we discuss three special cases.

Isotropic homogeneous media

For an isotropic homogeneous medium, the first and second-order derivatives are equal to zero and the ray
velocity coincides with the phase velocity. Also the fastest ray coincides with the vertical ray so that the
angle of emergence, ϕ0, equals π

2 . In this case, the new traveltime approximation given by equation 5
simplifies to

t =

√
t20
4

+
(m− h)2

v2
+

√
t20
4

+
(m+ h)2

v2
, (6)

where v is the phase velocity. The obtained expression is identical to the conventional DSR equation.

Isotropic strongly heterogeneous media

In this case the first and second-order derivatives equal zero and the ray velocity coincides with the phase
velocity. However, the fastest ray may not coincide with the vertical ray because of the inhomogeneities.
The diffraction traveltime approximation given by equation 5 simplifies to

t =

√
t20
4

+
(m− h)2

v2
− 2(m− h)t0p0 +

√
t20
4

+
(m+ h)2

v2
+ 2(m+ h)t0p0 , (7)

where p0 is a ray parameter given by

p0 =
cosϕ0

ν0
. (8)

The inhomogeneity is hidden in the third term inside the square roots which we interpret as a lateral shift
of the diffraction apex with respect to the diffractor location.

Weak anisotropic media with vertical polar symmetry

In the case of weak VTI, the fastest ray coincides with the vertical ray, i.e. ϕ0 = π
2 . The diffraction

traveltime given by Equation 23 simplifies to

t =

√
t20
4

+
(m− h)2

ν2
0

1 +A
m− h√

t20ν
2
0

4 + (m− h)2

+ (A2 −B)
(m− h)2

t20ν
2
0

4 + (m− h)2

+

√
t20
4

+
(m+ h)2

ν2
0

1−A m+ h√
t20ν

2
0

4 + (m+ h)2

+ (A2 −B)
(m+ h)2

t20ν
2
0

4 + (m+ h)2

 . (9)

Furthermore, for weak VTI media the following relations are valid (see, e.g., Tsvankin, 2001)

A =
1

ν0

∂ν

∂ϕ
= 0 and B =

1

2ν0

∂2ν

∂ϕ2
= δ , (10)

where δ is the Thomsen parameter. This leads to

t =

(
1− δ(m− h)2

t20ν
2
0

4 + (m− h)2

)√
t20
4

+
(m− h)2

ν2
0

+

(
1− δ(m+ h)2

t20ν
2
0

4 + (m+ h)2

)√
t20
4

+
(m+ h)2

ν2
0

. (11)

Note, the weak VTI approximation directly depends on δ which allows to invert surface seismic data for δ.
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NUMERICAL EXAMPLES

We consider polar symmetry with vertical and 60 degree tilted symmetry axes. The anisotropy itself
changes from weak to moderate. For VTI media we compare the new traveltime approximation and the
approximation of Alkhalifah and Tsvankin (1995) with the exact traveltimes for a point diffractor located
at the depth of 2 km. We compute the exact traveltimes solving the Christoffel equation. For TTI, media
we compare the new approximation, approximations of Pech et al. (2003) and Grechka and Pech (2006)
with the exact traveltimes.

Figure 3(a) shows traveltime plots for a weak VTI medium with ε = 0.03 and δ = 0.045. The vertical
qP-velocity is 3810 m/s. The red crosses represent the new approximation, the black line represent the
exact traveltimes, and the blue points represents the traveltimes computed by Alkhalifah’s approximation.
We observe that for the weak VTI both approximations fit the exact traveltimes almost perfectly. Fig-
ure 3(b) shows traveltime plots for a VTI medium with ε = 0.195 and δ = 0.175. The vertical qP-velocity
is 2106 m/s. Both approximations fit the exact traveltimes considerable but worse than in the previous
case. Figure 3(c) shows the traveltime comparison for a medium with even stronger VTI anisotropy where
ε = 0.223 and δ = 0.204. The vertical qP-velocity is 2870 m/s. Again, both approximations fit the
exact traveltimes considerable. We also observe that for larger offsets Alkhalifah’s approximation fits the
exact traveltimes slightly better than the new approximation. We explain this behavior by the following
reasons. Because of the Taylor expansion, the new approximation depends only on Thomsen parameter δ
which steers traveltime moveout near to the fastest ray. Parameter ε affects more the reflection moveout at
larger offsets. To improve the accuracy at larger offsets we can include higher order terms in the Taylor
series (see equation 2). Alkhalifah’s approximation accounts for both Thomsen parameters δ and ε through
the parameter η = ε − δ. However, Alkhalifah’s approximation is sensitive to the parameter η and in all
previous examples the parameter η is small. Figure 3(d) shows the behavior of the different approximations
when the parameter η is large. We keep the vertical qP-velocity and δ as in Figure 3(c) and only change
the sign of δ. In this case η = 0.427 and we observe that Alkhalifah’s approximation is not accurate also
at near offsets.

Figure 4(a) shows traveltime plots for a weak TTI medium with ε = 0.065 and δ = 0.059. The tilt is
60 degree and the vertical qP-velocity is 3.383 km/s. The point diffractor is located at the depth of 2 km.
The red crosses represent the new approximation, the black line represents the exact traveltimes, the purple
points represents the Pech’s approximations and the blue dotted line represents the Grechka’s and Pech’s
approximation. The new approximation fits the exact traveltimes almost perfectly. Examining Figure 4(b),
4(c), and 4(d) we observe that the new approximation is better for TTI media than for the VTI examples
specially at larger offsets. We explain this behavior with the fact that the TTI approximation depends on two
anisotropic parameters which account for both near-offset and far-offset anisotropic effects. In appendix C,
TTI anisotropic stacking parameters are expressed by Thomsen parameters ε and δ.

SYNTHETIC DATA EXAMPLE

We use the new traveltime approximation as the prestack operator applied to a synthetic data example to
demonstrate whether it will focus diffractions. The model consist of two layers and a small sphere acting
as a diffracting object (Figure 5). The vertical velocity within the layers is constant. In the first layer it is
1500 m/s, and in the second layer 2000 m/s. The sphere has a radius of 100 meters. We used NORSAR ray
tracer to generate synthetic seismograms using a Ricker-wavelet with a central peak frequency of 20 Hz,
i.e., the prevailing wavelength is about 100 m in the second layer. Figure 7(a) shows the ZO section.

We use the ZO section and the stacking operator given by Equation 11 to estimate anisotropic parame-
ters δ and velocity ν0. For this purpose, we perform a simultaneous search for δ and ν0. Figure 6(a) shows
the coherence map after the bispectral analysis. We observe a very good focusing with high coherence.
For a comparison Figure 6(b) shows the coherence map after conventional one-parameter analysis. As
expected, we observe lower coherence values. With the estimated anisotropic parameters we then perform
the prestack time migration.

Figure 7(b) shows the migrated section when using the new approximation as the PreSTM operator.
The maximum offset to be migrated is 4000 meters. The migration midpoint aperture is 4000 meters and
no filtering is applied to the time-migrated result. We observe a very high focusing of the diffraction.
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Figure 3: Comparison of traveltimes for homogeneous VTI media computed by solving Christoffel equa-
tion (black line), by the new approximation (red crosses) and by Alkhalifah’s approximation (blue points).
The point diffractor is located at 2 km depth. vp0 represents the vertical qP-velocity.
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Figure 4: Comparison of traveltimes in TTI media. The point diffractor is located at 2 km depth. The axis
of symmetry is rotated by 60o. The crosses represent the new approximation, the line represents the exact
traveltimes, the points represent the Pech’s approximations and the dotted line represent the Grechka’s and
Pech’s approximation. vp0 represents the vertical qP-velocity.
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Figure 5: Geological model consisting of two homogeneous VTI layers and a diffracting spherical object
of 100 m radius. The vertical velocity in the fist layer is 1500 m/s, in the second layer 2000 m/s. Thomsen
parameters in both layers are ε = 0.24 and δ = 0.13. The symmetry axis is vertical.
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Figure 6: (a) Coherence map after bispectral analysis for δ and velocity ν0. We observe a good focusing
with high coherence values. (b) Coherence map after monospectral analysis for velocity v. As expected,
we observe lower coherence values.
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Figure 7: (a) Zero offset section for the synthetic model obtained with NORSAR ray-tracing package.
We used a Ricker-wavelet with a prevailing frequency of 20 Hz. Response from the first reflector was
muted. (b) PreSTM result using the new diffraction traveltime approximation as the PreSTM operator. The
maximum offset is 4000 meters.

CONCLUSIONS

We presented a new traveltime approximation for the diffraction response. We considered general aniso-
tropic media and proposed to expand the ray velocity in a Taylor series which leads to a good performance
of the operator for short offsets. In the 2D case, this leads to a parameterization of the diffraction response
with four parameters: the emergence angle of the fastest ray, the ray velocity along this ray and first and
second-order derivatives of the ray velocity with respect to its angle. For weak anisotropy these attributes
can be calculated to anisotropic parameters.

Numerical and synthetic examples show that the proposed traveltime approximation fits the diffraction
response considerable well independent from the anisotropy type. Using the new approximation as the time
migration operator leads to a highly focused diffraction image.
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APPENDIX A

Here we derive the diffraction response given by equation in midpoint-offset coordinates to make it consis-
tent with common processing workflows. For this purpose, we express x and z coordinates with respect to
the zero-offset (ZO) traveltime. We calculate the ZO traveltime using Pythagorean theorem, i.e.,

t0 =
2

ν0

√
(xsp − x0)2 + z2 . (12)

We denote the apex shift as
∆x ≡ x0 − xsp . (13)

Then, we rewrite the terms (xsp − x1)2 and (x2 − xsp)2 as

(xsp−x1)2 = ((x0−x1)−(x0−xsp))2 = ((x0−x1)−∆x)2 = (x0−x1)2+∆x2−2∆x(x0−x1) , (14)

(x2−xsp)2 = ((x2−x0)+(x0−xsp))2 = ((x2−x0)−∆x)2 = (x2−x0)2+∆x2+2∆x(x2−x0) , (15)

We substitute equations 2-3 into the DSR traveltime approximation of equation 4 and obtain

t =
1

ν(ϕ1)

√
(x0 − x1)2 − 2(x0 − x1)∆x+

t20ν
2
0

4
+

1

ν(ϕ2)

√
(x2 − x0)2 + 2(x2 − x0)∆x+

t20ν
2
0

4
.

(16)
Taking ν0 out of the square root leads to

t =
ν0

ν(ϕ1)

√
t20
4

+
(x0 − x1)2

ν2
0

− 2(x0 − x1)∆x

ν2
0

+
ν0

ν(ϕ2)

√
t20
4

+
(x2 − x0)2

ν2
0

+
2(x2 − x0)∆x

ν2
0

. (17)

Inverting the ray velocities given by equation 2 as

1

ν(ϕi)
≈ 1

ν0
(1−A(ϕi − ϕ0) + (A2 −B)(ϕi − ϕ0)2), (i = 1, 2) , (18)
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and substituting them into equation 17 gives

t =

√
t20
4

+
(x0 − x1)2

ν2
0

− 2(x0 − x1)∆x

ν2
0

(
1 +A(ϕ1 − ϕ0) + (A2 −B)(ϕ1 − ϕ0)2

)
+√

t20
4

+
(x2 − x0)2

ν2
0

+
2(x2 − x0)∆x

ν2
0

(
1−A(ϕ2 − ϕ0) + (A2 −B)(ϕ2 − ϕ0)2

)
. (19)

In appendix B we show how to remove the angle dependency by a sine approximation of the angle, i.e.,

ϕi − ϕ0 ≈ (−1)i
(m∓ h) sinϕ0

ri
, (i = 1, 2) , (20)

where r1, r2 are the distances from the diffractor to the source and receiver, respectively, and h is the half
offset coordinate. We express the shift ∆x, and depth z as

x0 − xsp =
t0ν0

2
cosϕ0 , z =

t0ν0

2
sinϕ0 , (21)

and x1, x2 coordinates in midpoint-offset coordinates as

x2 = xm + h , x1 = xm − h . (22)

Using expressions 21 and 22 into equation 19, yields

t =

(
1 +A

(m− h) sinϕ0

r1
+ (A2 −B)

(m− h)2 sin2 ϕ0

r2
1

)
×

√
t20
4

+
(m− h)2

ν2
0

+
(m− h)t0 cosϕ0

ν0

+

(
1−A (m+ h) sinϕ0

r2
+ (A2 −B)

(m+ h)2 sin2 ϕ0

r2
2

)
×

√
t20
4

+
(m+ h)2

ν2
0

+
(m+ h) cosϕ0

ν0
, (23)

where m = xm − x0 is the midpoint displacement. Equation 23 represents the diffraction response ap-
proximate which is valid for a general 2D anisotropic medium and moderate angles.

APPENDIX B

To exclude the angle dependency on the traveltime expression we propose to use a sine approximation. For
small angles the sine is equal to its argument, i.e.,

sinx ≈ x . (24)

Alternatively, a tangent approximation can be applied, as described in (Dell et al., 2012). Using

sin(ϕi − ϕ0) = sinϕi cosϕ0 − sinϕ0 cosϕi, i = 1, 2 , (25)

yields

ϕi − ϕ0 ≈
z

ri
cosϕ0 −

xi − x
ri

sinϕ0, i = 1, 2 . (26)

r1 and r2 are the distances from diffractor to the source and receiver determined as

r1 =

√
t20ν

2
0

4
+ (m− h)2 + t0ν0(m− h) cosϕ0 and r2 =

√
t20ν

2
0

4
+ (m+ h)2 + t0ν0(m+ h) cosϕ0

(27)
Making use of equation 21 yields

ϕ1 − ϕ0 ≈ −
(m− h) sinϕ0

r1
and ϕ2 − ϕ0 ≈

(m+ h) sinϕ0

r2
. (28)
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APPENDIX C

Group velocity in weak TI media can be approximated (see Tsvankin, 2001) as

ν(ϕ∗) = ν0(1 + δ sin2 ϕ∗ cos2 ϕ∗ + ε sin4 ϕ∗) , (29)

where the ε and δ are Thomsen parameters and ϕ∗ is the difference between the angel ϕ and the title angle
ψ (i.e., ϕ∗ = ϕ− ψ).

The first and second-order derivatives of the ray velocity with respect to the angle ϕ∗ are calculated as

∂ν

∂ϕ∗
= ν0 sin 2ϕ∗(δ cos 2ϕ∗ + 2ε sin2 ϕ∗) ,

∂2ν

∂(ϕ∗)2
= 2ν0

[
δ cos 4ϕ∗ + 2ε sin2 ϕ∗(2 cos2 ϕ∗ + 2 cos 2ϕ∗)

]
. (30)

Substituting the expressions above in equation 3 yields the anisotropic stacking parameters

A = sin 2ϕ∗(δ cos 2ϕ∗ + 2ε sin2 ϕ∗) ,

B = δ cos 4ϕ∗ + 2ε sin2 ϕ∗(2 cos2 ϕ∗ + 2 cos 2ϕ∗) . (31)


