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ABSTRACT

The structure tensor is a very versatile tool. It can be used to detect edges, estimate coherency and
local slopes. In this work we employ the structure tensor to estimate local slopes. We compare the
slopes obtained with this tool with the slopes obtained by two different implementations of plane-wave
destruction filters. Those three methods were tested against three different datasets, two synthetic and
one real. The slopes detected through the structure tensor were reliable and comparable to the ones
obtained with plane-wave destruction filters. Finally, we present an application for the slopes detected
by the structure tensor. We show how to employ them to filter seismic data along structures.

INTRODUCTION

Determining local slopes is of great interest in seismic data analysis. They can be used to accomplish many
of time-domain imaging tasks, like normal moveout and prestack time migration (Ottolini, 1983; Fomel,
2007c). Local slopes can also be used to interpolate data and filter along seismic structures (Fomel, 2002;
Liu et al., 2010). In this work we compare the local slopes obtained via the well established method of
plane-wave destruction (Claerbout, 1992) to the ones obtained using the structure tensor (Bakker, 2002).

The structure tensor was applied to seismic data analysis and filtering many times before. Bakker (2002)
gives a very comprehensive description of the applications of structure tensors to seismic data filtering.
They can also be used to identify and create clusters of areas of interest in seismic data (Faraklioti and
Petrou, 2005) and to edge preserving smoothing by diffusion filtering of seismic data (Hale, 2009; Lavialle
et al., 2007).

As noted by Bakker (2002), the amount of data to interpret has grown faster than the number of capable
interpreters. Also, there are more pressure for quicker interpretation results, since risk management deci-
sions are taken based on them. One way to ease the burden imposed on interpreters and to make automatic
interpretation more reliable is to use structure oriented filtering. This procedure reduces noise and enhances
reflector continuity. It also removes some subtle geological features, resulting in seismic sections easier to
interpret.

Driven by those motivations, Fehmers and Höcker (2003) have proposed to use the structure tensor to
perform structure oriented filtering by anisotropic diffusion. This procedure results in structure simplifi-
cation and make the interpretation process more agile. Bakker (2002) also tried to address that problem
by using orientation adaptive filtering and edge preserving filtering with the structure tensor. His work
also features the use of the structure tensor to detect faults. In this paper we propose to study a third ap-
proach, by using structure prediction filtering (Liu et al., 2010). While Liu et al. (2010) advocate the use
of plane-wave destruction to estimate dips, we propose to employ the dips detected by the structure tensor.
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THE STRUCTURE TENSOR

The structure tensor is obtained by simple windowed smoothing operations and simple differentiation of
the image. It is commonly used to detect lines and regions of interest in images. The structure tensor is
known by different names depending on the application field: gradient structure tensor, second-moment
matrix, scatter matrix, interest operator and windowed covariance matrix (Faraklioti and Petrou, 2005).

The first order structure tensor is obtained by a first order Taylor series expansion of the squared differ-
ence function. This function sums square differences of point-to-point image amplitudes between a fixed
window W around the analysis point (x0, t0) and a window shifted by (∆x,∆t). The squared difference
function is defined as

E(x0,t0)(∆x,∆t) ≡
∑

(i,j)∈W

wi,j (P (xi + ∆x, tj + ∆t)− P (xi, tj))
2
, (1)

whereW is a window around (x0, t0), wi,j is are non-negative weights, and P (x, t) is the image amplitude
at the point (x, t). All the elements of the squared difference function are summarized in Figure 1.

Image

Shifted window

Fixed window

(x0,t0)

Figure 1: Parameters of the squared difference function. The black
dashed square indicates the fixed window around the point (x0, t0), and
the gray one represents the window shifted by (∆x,∆t).

Function P Taylor series approximation is

P (xi + ∆x, tj + ∆t) = P (xi, tj) + ∆xPx + ∆tPt + O(‖(∆x,∆t)‖2), (2)

where Px and Pt are the first-order partial derivatives of P , evaluated at (xi, tJ). For small shifts (∆x,∆t),
we keep only first order terms, giving rise to the approximation

P (xi + ∆x, tj + ∆t)− P (xi, tj) ≈ ∆xPx + ∆tPt. (3)

By squaring both sides of the previous equation, we have a first order approximation to the squared differ-
ence

(P (xi + ∆x, tj + ∆t)− P (xi, tj))
2 ≈ (∆xPx + ∆tPt)

2

= (∆x,∆t)

(
P 2
x PxPt

PxPt P 2
t

)(
∆x
∆t

)
.

(4)

By substituting equation (4) on equation (1), we finally obtain the first order approximation for the squared
difference function

Ẽ(x0,t0)(∆x,∆t) ≡
∑

(i,j)∈W

wi,j(∆x,∆t)

(
P 2
x PxPt

PxPt P 2
t

)(
∆x
∆t

)
. (5)

Since only the partial derivatives and the weights depend on (i, j), we can rewrite the previous equation
as

Ẽ(x0,t0)(∆x,∆t) =
∑

(i,j)∈W

(∆x,∆t)

(
wi,jP

2
x wi,jPxPt

wi,jPxPt wi,jP
2
t

)(
∆x
∆t

)

= (∆x,∆t)

( 〈
P 2
x

〉
〈PxPt〉

〈PxPt〉
〈
P 2
t

〉 )(
∆x
∆t

)
= (∆x,∆t)M(∆x,∆t)T .

(6)
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The matrix M is known as the structure tensor. The symbol 〈·〉 represents the average value produced
by the smoothing procedure considering the weights wi,j . The window size, in this case, is usually called
integration scale. The local smoothing window size, used when the derivatives are calculated, is called
local scale. The smoothing of the data is necessary to estimate reliable derivative values from noisy raw
data (Faraklioti and Petrou, 2005).

EIGENVALUES AND LOCAL IMAGE STRUCTURE

The structure tensor is clearly symmetric. It is also positive semidefinite, i.e., (∆x,∆t)M(∆x,∆t)T ≥ 0,
for all ∆x and ∆t. Indeed, from equations (4) and (6)

(∆x,∆t)M(∆x,∆t)T = Ẽ(x0,t0)(∆x,∆t) ≥ 0, (7)

as long as wi,t are nonnegative.
Since M is symmetric and positive semidefinite, all its eigenvalues are real and nonnegative. The struc-

ture tensor’s eigenvalues and eigenvectors can be used to detect lines, borders and regions with constant
image intensity. All those scenarios, and the squared difference function, are sketched in Figure 2.

(a) Constant intensity. (b) Linear feature. (c) Corner.

Figure 2: Simplified version of possible image scenarios and its relation with the squared difference func-
tion. The black dashed squares represent the window centered at (x0, t0), while the gray dashed squares
represent that window shifted by (∆x,∆t). The squared difference function is the weighted sum of point-
to-point image amplitude differences from the black to gray squares. In (a) Ẽ(∆x,∆t) = 0, in the vicinity
of (x0, t0) in any direction. In (b), the red arrow indicates one direction where Ẽ does not vary, since the
amplitudes inside the regions delimited by both the black and the gray squares are the same, point-to-point.
In (c) there is no direction across which both regions encompass the same amplitudes, point-to-point.

Let’s start our discussion with the first case, when the image intensity is constant. In this case, we can
move the gray window in any direction and the squared difference function will be close to zero due to
image noise. This fact suggest that any nonzero vector x ≡ (∆x,∆t)T is an eigenvector of M, which
implies that all of its eigenvalues are also close to zero.

The second case is when there is a linear feature in the image. As shown in Figure 2(b), there is only
one possible direction where there is no variations of the squared difference function value. This direction
is parallel to the linear feature. Recalling equation (6) again, and assuming 0 = E(x) ≈ Ẽ(x), for x in the
direction parallel to the linear feature observed in the image we have

xTMx ≈ 0. (8)

It’s possible to use that equation to show that x is in fact an eigenvector of M. The first step is to consider
the spectral decomposition of M as

M = UΛUT , (9)

where U is an orthogonal matrix composed by normalized eigenvectors of M and Λ is a diagonal matrix,
with the diagonal elements being the corresponding eigenvalues of M. Since the tensor is a real symmetric



256 Annual WIT report 2012

positive semidefinite matrix, all its eigenvalues are real, so we can rewrite the decomposition as

M = UΛ
1
2 Λ

1
2 UT , (10)

where Λ
1
2 denotes the element-wise square root of Λ. Therefore,

xTMx = xTUΛ
1
2 Λ

1
2 UTx

= (xTUΛ
1
2 )(Λ

1
2 UTx)

= (Λ
1
2 UTx)T (Λ

1
2 UTx)

=
∥∥∥(Λ

1
2 UTx)

∥∥∥2

2

≈ 0.

(11)

Thus, the vector Λ
1
2 UTx is approximately null, since its Euclidean norm is near zero. Therefore,

Mx = UΛ
1
2 (Λ

1
2 UTx) ≈ 0. (12)

Then it’s possible to conclude that x is near to an eigenvector of M, associated with an eigenvalue close
to zero. The other eigenvalue is greater than zero, because it corresponds to the eigenvector orthogonal
to the linear feature. In the corner case, one can not find a direction without variations of the squared
difference function, as depicted in Figure 2(c). So, both eigenvalues will be much greater than zero. The
expected behavior for each one of those scenarios is summarized in Table 1.

Local structure Eigenvalues
constant intensity λ1 ≈ λ2 ≈ 0

line λ1 � λ2 ≈ 0
corner λ1 � 0, λ2 � 0

Table 1: Local structure conditions and expected relationships between eigenvalues of the structure tensor
matrix (Faraklioti and Petrou, 2005).

The eigenvalues of the matrix M are the roots of the characteristic equation

λ2 −
(〈
P 2
x

〉
+
〈
P 2
t

〉)
λ+

〈
P 2
x

〉 〈
P 2
t

〉
− 〈PxPt〉2 = 0. (13)

Both eigenvalues can be easily found by solving the afore mentioned equation. Its solutions are given by

λ1,2 =
1

2

(〈
P 2
x

〉
+
〈
P 2
t

〉
±
√

(〈P 2
x 〉+ 〈P 2

t 〉)
2 − 4

(
〈P 2
x 〉 〈P 2

t 〉 − 〈PxPt〉
2
))

. (14)

From equation (14) we can note that both eigenvalues also satisfy the relation λ1 ≥ λ2 ≥ 0. In order to
avoid loss of significant digits, it is wise to compute the eigenvalues as

λ1 =
1

2

(〈
P 2
x

〉
+
〈
P 2
t

〉
+

√
(〈P 2

x 〉+ 〈P 2
t 〉)

2 − 4
(
〈P 2
x 〉 〈P 2

t 〉 − 〈PxPt〉
2
))

(15)

and

λ2 =
〈Px〉 〈Pt〉 − 〈PxPt〉2

λ1
. (16)

In our computational tests, for the eigenvalues calculation, the local and integration scales were win-
dows with 5× 5 samples each. The amplitudes squared differences were weighted by

wi,j = exp

(
− i

2 + j2

16

)
, (17)
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these weights have also been normalized before use.
We propose to study the tensor properties using three different datasets. The first one (Figure 3(a)) is

composed of five plane events with different dips: 0.3, 0.17, 0.0, −0.17, and −0.3 s/km respectively. All
planes have the same intensity and were composed of Ricker wavelets with central frequency of 40 Hz.
This dataset resolution is 200× 200 pixels, spaced by 4 m in the x axis and 4 ms in the t axis.

The second set is a synthetic sedimentary model (Figure 4(a)). Proposed by Claerbout (1992), this
dataset is composed by 200×200 pixels, spaced by 8 m in the x axis and 4 ms in the t axis. Finally, the last
dataset (Figure 5(a)) is a time-migrated seismic image from a historic Gulf of Mexico dataset (Claerbout
and Green, 2010). It’s composed by 250×876 pixels with the time sampling of 4 ms, and spacing between
considered as unitary. The data was also filtered with an AGC filter using triangular weights and half-
second window.

Before we obtain the slopes or other seismic attributes, we want to take a look at the tensor eigenvalues,
given by equations (15) and (16). The eigenvalues are shown in figures 3(b) and 3(c) for the dipping planes
dataset, figures 4(b) and 4(b) for the synthetic sedimentary model and figures 5(b) and 5(b) for the field
data.

It is important to note that the values of λ2 for the last dataset seem to be higher at the normal faults
present in data (Figure 5(c)). This behavior is not totally unexpected. If we recall the relations between
λ1 and λ2, listed on Table 1, we can see that the faults may be considered corner points. This behavior for
the eigenvalues matches with common geological interpretation intuition, considering that the faults are
registered as event terminations.

(a) Dipping planes model.

(b) First eigenvalue.

(c) Second eigenvalue.

Figure 3: Eigenvalues for the dipping planes
model in (a), composed of 200 × 200 samples
and five plane events. In (b) we have the eigen-
values for that model, computed with equa-
tion (15) and an 5 × 5 integration scale size
with Gaussian like weights (17). Finally, in (c)
we have the second eigenvalue, computed with
equation (16) and the same window and weights
of (b).

Let e1 and e2 be eigenvectors corresponding to eigenvalues λ1 and λ2. As discussed before, the eigen-
vector e2 is parallel to the seismic image structures. We can estimate the data local slope by using the
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(a) Synthetic sedimentary model.

(b) First eigenvalue.

(c) Second eigenvalue.

Figure 4: Eigenvalues for the synthetic sedi-
mentary model in (a), composed of 200 × 200
samples. In (b) we have the eigenvalues for
that model, computed with equation (15) and
an 5 × 5 integration scale size with Gaussian
like weights (17). Finally, in (c) we have the
second eigenvalue, computed with equation (16)
and the same window and weights of (b).

inclination of e2 as

σ =
λ2 −

〈
P 2
x

〉
〈PxPt〉

. (18)

Since e1 is orthogonal to e2, we can also use it to estimate the local slope as

σ = − 〈PxPt〉
λ1 − 〈P 2

x 〉
. (19)

COMPARISON OF LOCAL SLOPES ESTIMATION METHODS

In order to judge the quality of the slopes obtained with the structure tensor we need to compare its results
with other methods. We choose to compare it with the well-known method of plane-wave destruction
(Claerbout, 1992). We compare two different implementations of that method. For the sake of brevity we
let to the reader to pursue further explanation of both methods.

The first formulation was suggested by Fomel (2002), it treats the plane-wave filter as a time-distance
(t-x) prediction-error filter. Let the local plane wave equation be given by

Px + σ Pt = 0, (20)

where P is the wave field. Assuming that the slope σ(x, t) varies in both directions, one can design a
local filter to propagate a trace to its neighbors. The filters are obtained with the help of an implicit finite-
difference scheme for the local plane-wave equation.

Let the seismic section s = [s1 s2 s3 . . . sn]T be a collection of traces. The plane-wave destruction
operation can be defined in a linear operator notation as

r = D(σ)s , (21)
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(a) Time-migrated field data.

(b) First eigenvalue.

(c) Second eigenvalue.

Figure 5: Eigenvalues for the time-migrated
field data in (a), composed of 250 × 876 sam-
ples. In (b) we have the eigenvalues for that
model, computed with equation (15) and an
5 × 5 integration scale size with Gaussian like
weights (17). Finally, in (c) we have the sec-
ond eigenvalue, computed with equation (16)
and the same window and weights of (b).

where r is the destruction residual. D is the non-stationary plane-wave destruction operator. The previous
equation leads to the system of equations

r1

r2

r3

...
rN

 =


I 0 0 · · · 0

−P1,2(σ1) I 0 · · · 0

0 −P2,3(σ2) I
. . . 0

... · · · · · · · · ·
...

0 0 · · · −PN−1,N (σN−1) I




s1

s2

s3

...
sN

 , (22)

where I stands for the identity operator, σi is local dip pattern, and Pi,j(σi) is an operator for prediction
of trace j from trace i. The destruction residual is minimized using regularized least-squares optimization.
This is the essence of the method proposed by Fomel (2010) to estimate σ.

The second method, proposed by Schleicher et al. (2009), is based on a windowed fit of the data to
the plane-wave equation using total least squares. The data derivatives are estimated for x and t, then the
slope is obtained by fitting these derivatives to the plane wave equation inside a small window. The slope
is considered to be constant in each window. In order to estimate the slope one just needs to use

σ = −sign

 ∑
(i,j)∈W

Px(xi, tj)Pt(xi, tj)


√√√√√√

∑
(i,j)∈W

P 2
x (xi, tj)∑

(i,j)∈W
P 2
t (xi, tj)

, (23)

where i and j are the indices inside W window and σ is the estimated slope. The equation (23) is the total
least-squares fit of equation (20) to the data derivatives inside the moving window W . The derivatives used
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are the same ones used for the structure tensor, both estimated using a smooth first derivative program of
the Madagascar package (sfsmoothder) with standard parameters. On the test data, the window W is 5× 5
samples in every test case. To improve the results for the local plane wave destruction implementation, its
derivatives had been smoothed with the same Gaussian kernel of the structure tensor i.e. 5 × 5 samples
suport and (17) weights.

(a) Structure tensor local slopes. (b) Local plane-wave destructor local slopes.

(c) Global plane-wave destructor local slopes.

Figure 6: Comparison between local slopes ob-
tained with the structure tensor (a), local (b) and
global (c) plane-wave destructor implementa-
tions for the dipping planes model (Figure 3(a)).

In Figure 6 we compare the dips obtained by the three methods above for the dipping planes dataset. We
can easily note that the smoother estimate is the one obtained by the global minimization method (Figure
6(c)). This lies on the fact that this method uses a global minimization with regularization, which forces
smooth variations of dips estimations.

As seen in figures 6(b) and 7(b), the estimation based on the local implementation of the plane-wave
destructor is almost visually equivalent to the structure tensor. This fact may be expected for simple test
cases, since both methods have common characteristics as local support.

We also need to be careful on choosing an appropriated window size, because this method consider
the events on each window as a single plane wave propagation. This may be a problem, if we want each
pixel to represent just the slope of the event passing thought the center of the window. As seen in Figure
8(b), there are horizontal outlier values lines accross the figure. Tweaking the window size may solve this
problem. Also, comparing figures 8(a) and 8(b), the structure tensor slope estimation seem to be a bit more
smooth, without the afore mentioned outlier values lines.

One of the main advantages of the structure tensor is that each pixel corresponds mainly to the slope
on the center of the window. This is due to the tensor construction, specially if we use a Gaussian like
window. The structure tensor slope estimation was comparable to the global plane-wave destructor, as seen
in Figure 6(a). With the advantage of being faster to run and simpler to implement.
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(a) Structure tensor local slopes. (b) Local plane-wave destructor local slopes.

(c) Global plane-wave destructor local slopes. (d) Smoothed slopes estimated using the structure tensor.

Figure 7: Comparison between local slopes for the synthetic sedimentary model (Figure 4(a)). The slopes
obtained with the structure tensor are shown in (a). A second version (d) of those slopes was obtained by
smoothing (a) three times with a 15× 15 triangular window. Finally, the local slopes for the same dataset
using the local (b) and global (c) plane-wave destructor implementations.

The slopes were estimated using the first eigenvalue and the equation (18). This eigenvalue was ob-
tained using equation (15). If calculated without proper care, λ2 may suffer from loss of significance. By
calculating it using equation (16) the dips obtained with equation (19) are equivalent to the ones obtained
with λ1 and equation (18).

By comparing figures 7(a) and 7(c), it’s possible to conclude that the structure tensor slopes are a little
less smooth than the slopes of the global implementation of plane-wave destruction. The slopes obtained
with the structure tensor are based on sums over data derivatives. This derivatives can be a little noisy,
even after applying smoothing procedures. A possible workaround is to further smooth the data before
differentiation, taking care to not blur the reflector’s edges too much.

Smoother slopes can be obtained by changing the local and integration scales. Greater local scale
make the structure tensor ignore smaller details. The integration scale should reflect the characteristic size
of the texture of interest (Weickert, 1999), in this case it should reflect the seismic events size. Instead of
increasing the scale’s size, we choose to smooth the slopes obtained three times with a triangular smoothing
window of 15× 15 samples, obtaining the slopes showed in Figure 7(d). The results of this procedure are
almost visually identical to the results of the global plane wave destruction, as seen by comparing figures
7(d) and 7(c). This fact suggests that both estimations are almost equivalent, if proper smoothing is applied.
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(a) Structure tensor local slopes. (b) Local plane-wave destructor local slopes.

(c) Global plane-wave destructor local slopes. (d) Smoothed slopes estimated using the structure tensor.

Figure 8: Comparison between local slopes for the time-migrated field data (Figure 5(a)). The slopes
obtained with the structure tensor are shown in (a). A second version (d) of those slopes was obtained by
smoothing (a) three times with a 15× 15 triangular window. Finally, the local slopes for the same dataset
using the local (b) and global (c) plane-wave destructor implementations.

STRUCTURE PREDICTION FILTERING

There are many ways to accomplish structure-enhancing filtering of a seismic image, like diffusion filtering
of seismic data (Lavialle et al., 2007) or steering Gaussian elongated windows along local slope patterns
(Haglund, 1991). For performance testing purposes, we choose to filter along the structures using plane-
wave prediction (Liu et al., 2010). The filtering scheme is shown in Figure 9.

A trace can be predicted by shifting it according to the local seismic event slopes. Consider the pre-
diction operator Pi,j(σi) as an operator for prediction of trace j from trace i, according to the local slope
pattern σi (see e.g. Fomel (2002) and Fomel (2010) for further details). It’s possible to predict a trace from
a distant neighbor by simple recursion. So, predicting trace k from trace 1 is simply

P1,k = Pk−1,k · · · P2,3 P1,2. (24)

In this work we propose the use of the structure prediction with the dips estimated by the structure
tensor, instead of using the ones estimated with plane-wave destruction. After estimating the slopes, we
predict a trace from its neighbors and stack the predicted traces with the original one. In that way we
accomplish the structure filtering (Liu et al., 2010).

We tested this filtering method with two datasets, the synthetic sedimentary dataset (Figure 4(a)), and
the Gulf of Mexico dataset (Figure 5(a)). We used the smoothed slopes estimated with the structure tensor,
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Local slope estimation Predict traces from shifted 
neighbors of the central trace

Stack

Figure 9: Prediction filtering scheme for the trace
in blue. After estimate the local slopes for all
points in data, the original trace can be predicted
by shifting the neighbouring traces following the
local slopes. In this figure, only the neighbours
in the immediate vicinity are used. Distant neigh-
bours can also be used by recursion. After the pre-
diction step, all predicted traces are stacked with
the original ones, accomplishing structure filter-
ing.

showed in figures 7(d) and 8(d), to predict each trace from its seven nearest neighbors. At this point it is
possible to accomplish structure filtering by simply stacking the predicted and original traces. By doing so,
we have the filtered data showed in figures 10(a) and 10(c).

(a) Filtered synthetic data by simply stacking the original and
predicted traces.

(b) Difference between the original data (Figure 4(a)) and the
filtered data (a).

(c) Filtered field data by simply stacking the original and pre-
dicted traces.

(d) Difference between the original data (Figure 5(a)) and the
filtered data (c).

Figure 10: Structure prediction filtering for the synthetic sedimentary and field datasets. First, each trace
was predicted from its seven nearest neighbours. Then, all fourteen predicted traces and the original ones
are stacked, generating the sections in (a) and (c) for the synthetic and real datasets. The difference between
and the original data is shown in (b) and (d) for the synthetic and real datasets.

First, let us discuss the results concerning the synthetic dataset. The noise was clearly attenuated, but
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the fault and the interface between the folded layers and the plane layers was smeared. This effect is
very clear when we calculate the difference between the original and filtered data (Figure 10(b)). There
are also some small data loss at the ends of the folded layers. This may be due to the increased error in
trace prediction, since steeper slopes may have bigger errors associated. This effect is also enhanced if the
predicted traces are too far away from the original trace.

As seen in Figure 10(d), we can’t see much of that effect on the real dataset. This may be due to the
small slope of the seismic reflectors. What is very clear is the loss of information at the reflectors ends,
blurring the normal faults present in data. Nevertheless, the results were satisfactory and the data coherence
and reflectors continuity was improved, as shown in Figure 10(c). Again, this may be due to the data being
compose mainly of planar like reflectors, which suits structure prediction filtering better.

SIMILARITY FILTERING WITH GAUSSIAN WEIGHTS

To prevent the blurring of data near faults and stratigraphic interfaces, we decided to improve the structure
filtering by using similarity based filter weights for the stacking step (Liu et al., 2010). The basic filtering
scheme is explained in Figure 11. For the similarity weights, we use the definition of local similarity
proposed by Fomel (2007a). This version of local similarity is defined using shaping regularization and
local correlation. Shaping regularization expands Tikhonov’s regularization using a smoothing operator as
the regularization operator (Fomel, 2007b). This formulation makes the similarity vary smoothly, being
close to one when the two traces compared are locally similar and approaching zero when they differ.

Local slope estimation Predict trace from its 
neighbours

Stacking with 
weights

Local similarity with the 
original trace

Figure 11: Local similarity enhanced prediction filtering scheme for the trace in blue. After estimate the
local slopes for all points in data, the original trace can be predicted by shifting the neighbouring traces
following the local slopes. In this figure, only the neighbours in the immediate vicinity are used. Distant
neighbours can also be used by recursion. After the prediction step, local similarity between each predicted
trace and the original one is calculated. This similarity is used as stacking weights when all predicted traces
are stacked with the original one. This procedure results in local similarity enhanced structure filtering.

To further improve the data staking we employed a Gaussian taper. This results lower weights in
stacking for traces predicted from traces far from the original one, which diminishes some prediction errors
in the stacking (Liu et al., 2010). We multiply each trace by

wk = exp

(
−k

2

ζ2

)
, (25)

where wk is the Gaussian weight function, k is the index offset between the original and the predicted
traces, i.e. for the original trace k = 0, for a trace predicted using an immediate neighbour k = 1. The
parameter ζ alters the shape of the Gaussian. This approach is analogous to bilateral filtering (Tomasi and
Manduchi, 1998), with the advantage of smooth variation of the similarity weights. Finally, the filtering
using similarity stacking weights and ζ = 2 is showed in Figure 12(a) for the synthetic data. In Figure
12(c), the same procedure was applied for the field data using ζ = 0.02. We can see that the noise was
attenuated, also there are very little smearing of the faults and other interfaces. This fact is further confirmed
by the difference between the original data and the filtered data (figures 12(b) and 12(d)).
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(a) Synthetic structure prediction filtered data using the Gaus-
sian taped-out similarity as staking weights.

(b) Difference between the original data (Figure 4(a)) and the
data filtered with local similarity enhanced structure filtering
(a).

(c) Field structure prediction filtered data using the Gaussian
taped-out similarity as staking weights.

(d) Difference between the original data (Figure 5(a)) and the
data filtered with local similarity enhanced structure filtering
(c).

Figure 12: Structure prediction filtering for the synthetic sedimentary data and field data. First, each trace
was predicted from its seven nearest neighbours. Before the stacking step, the local similarity between the
each predicted trace and the original ones is calculated. Those weights also receive the Gaussian taper (25),
with ζ = 2 for the synthetic dataset and ζ = 0.02 for the field data. This procedure gives distant traces
smaller weights. Finally, all fourteen predicted traces and the original ones are stacked using these weights,
generating the section in (a) for the synthetic dataset and (b) for the real one. The difference between the
original data and the filtered data is shown in (c) for the synthetic data and in (d) for the real dataset.

CONCLUSIONS

As discussed through this article, the structure tensor is highly correlated with the image local structure. It
provides a fairly good and robust estimation for seismic data local slopes. The method worked pretty well
on real data, as seen in Figure 8. The values obtained for the slopes are also very close to the ones obtained
by the two plane-wave destruction methods tested. One point to keep in mind is that care should be taken
on the smoothing prior to the data differentiation, to not blur features of interest, like reflector terminations.
Also, one should be careful on choosing the integration scale. It should reflect the characteristic size of the
features of interest (Weickert, 1999).

We also tested the slopes for structure oriented filtering. As seen in figures 12(a) and 12(c), the results
were very positive, removing mostly noise from the data. These results assert the quality of the structure
tensor based slopes, as also depicted in figures 8 and 7. One of the advantages of this method is the easy
implementation and fast runtime, since it is basically composed of local sums over data and smoothing
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procedures. Those filtering results where further improved by the use of similarity weights (Figure 12)
resulting in edge preserving structure oriented filtering. In the near future we intend to further test the
structure tensor filtering capabilities. We intend to use different types of adaptive filters and compare those
results with the results discussed above.
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