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ABSTRACT

There is a need in the industry to geometrically and mechanically characterize fractures by means
of seismic experiments. To study this problem, we carried out physical-modelling experiments with
Plexiglas bodies, simulating fractures with a low-shear-modulus filling by using neoprene rubber discs
as inclusions. We carried out pulse transmission measurements of P- and S-wave velocities in a ref-
erence model without inclusions and in a model with penny-shaped neoprene inclusions. The back-
ground model is an anisotropic matrix that consists of stacked Plexiglas plates. Rubber disc inclusions
in that anisotropic matrix leading to secondary anisotropy. We recorded ultrasonic seismic data using
P-wave transducers with central frequency 120 kHz and S-wave transducers with 90 kHz. We com-
pressed the physical models using pressures ranging from 3 to 15.8 MPa. Full crack closure occurs at
stress 14.6 MPa normal to model faces. Our analysis indicates different regimens for the behaviour of
the inclusions when observed via its crack densities and aspect ratios. These results suggest a different
dependence of the crack aspect ratio on uniaxial stress at lower stresses than usually described in the
literature. Other results point toward the possibility to characterize a fractured medium though its elas-
tic coefficients. Though our results are not extensive, they show that simple experimental approaches
can provide valuable insight into the behaviour of cracked rocks at reservoir stress levels.

INTRODUCTION

Fault and fracture characterization is very important for hydrocarbon reservoirs, because these kinds of
structures can act as flow barriers or conduits (Aguilera, 1998; Nelson, 2001). In the last three decades,
there has been a growing number of papers that deal mathematically the question of wave propagation in
media with differing degrees of fracturing. With the aim to better understand faults and fractures geometri-
cally and mechanically, elastic anisotropy due to aligned cracks has been also the subject of many seismic
physical modelling experiments. Many advances were only possible due to improvements in seismic ac-
quisition and processing technologies.

However, due to the complexity of seismic wave propagation in fractured anisotropic media, fully
characterizing these kind of media is not always possible. Tsvankin (2005) observes that certain types of
anisotropy cannot be fully characterized with current seismic technologies. The effective anisotropy of a re-
gion could be associated with alternating layers with thickness smaller than a wavelength (Krey and Helbig,
1956; Figueiredo, 2012) or with preferential orientation or the degree of fracturing in the rocks (Crampin,
1981, 1984a,b; Schoenberg and Sayers, 1995; Figueiredo, 2012; Figueiredo et al., 2012b). Under these
conditions, the adoption of simplified models and geometries as well as adequate parameter choices permit
the reliable characterization of these media in both numerical and physical seismic modelling studies.
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As has been pointed out by Figueiredo (2012), numerical modelling needs to employ certain simplifi-
cations in the representation of fractured media that can result in numerical dispersion among other issues.
In such situations, physical modelling with careful choice of the model’s dimensions and constituent ma-
terials can serve as a useful link between theoretical developments, numerical models, and field data. In
situations when one can count on all four of approaches (theoretical, numerical, physical models and field
data), it is possible to evaluate how well seismic wave-propagation phenomena are understood and make a
meaningful contribution to the advancement of the body of knowledge in the field.

In this sense, the main objective of this study is to contribute with physical observations to the seismic
characterization of faults and fractures. Through simplified models, we attempt at observing the behaviour
of inclusions (as proxies to fractures) in a polar anisotropic background. Under external compression sim-
ulating reservoir stress, we carried out ultrasonic measurements as described in detail in Figueiredo (2012)
and Figueiredo et al. (2012b) on two models representing two geological cases. One is relief jointing,
caused by the decompression of rocks, that may be due to uplift or a free surface. The other represents
stilolites, i.e., discontinuities generated by pressure dissolution, usually found in carbonate rocks.

The modelling aimed at simulating fractures filled with a low-shear-modulus material. This material
would represent clay or fluids, containing or not hydrocarbons. Thus, due to its low shear modulus, we
used inclusions made of neoprene rubber. Specifically, the main objective was to describe the medium
behaviour in terms of fracture densities and their aspect ratios. Additionally, we wanted to determine the
effect of these inclusions on the elastic and anisotropic parameters of a model in which the background was
already polar anisotropic.

PHYSICAL MODELLING

Model Building

As previously mentioned, model building and ultrasonic data acquisition were carried out at the Allied
Geophysical Laboratories (AGL) of the University of Houston (Figueiredo et al., 2011a,b; Figueiredo,
2012; Figueiredo et al., 2012a,b; Marcondes et al., 2012a,b). The first model is the anisotropic reference
model, which can be seen in Figure 1a. It consists of 55, 1.5 mm thick Plexiglas plates, perforated at
the corners for the addition of an anti-slip device. The plates measured 93.4 × 95.5 mm (x × y). The
uncompressed stack of 55 plates measured 84.1 mm in height.

54 of these Plexiglas plates were used again for the construction of the model with inclusions (one
broke during the experiment with the reference model). In the cracked model, 30 neoprene rubber discs
were inserted between each pair of plates. The discs were 3.6 mm in diameter and 0.57 mm thick. In this
way, we expected to simulate a set of weakly filled fractures, with orientation parallel to the maximum
vertical stress. A measuring tape was embedded below the last plate to allow measuring the inclusion
diameter during the experiment (see Figure 1b). After the neoprene discs were added, the vertical model
dimension was 84.24 mm before the application of compression, all other dimensions were unchanged.
In order to ensure that all discs had the same diameter, a special puncher was used to cut the neoprene
inclusions from the rubber sheet. Since the inclusions were distributed uniformly, and since the plates and
neoprene discs adhere well, variation in diameter is considered to be uniform for all discs in the model.

Fracture density ε can be estimated according to the formula proposed by Hudson (1981),

ε =
NVc
V

=
Nπr2h

V
, (1)

where N is the number of fractures, Vc is the volume of a single fracture and V is the volume of the model.
For penny shaped inclusions, Vc = πr2h, where r is the radius of the inclusion and h is the thickness of
the inclusion.

Ultrasonic Experiment

For the ultrasonic experiment, S-wave transducers were located on opposite sides of the models. Initially
the polarisation was parallel to the plates and then rotated in 18 steps of 10 degrees. Polarisations 0 and
180◦ represent fast S-wave (S1) and those at 90◦ represent slow S-waves(S2). There is a 2.7 µs delay for
the S-wave transducers and 2.9 µs delay for the P-wave transducers. During the experiment, uniaxial stress
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was increased in 12 steps, from 3 up to 15.8 MPa using the device conceived by Omoboya et al. (2011).
The equipment is depicted in Figure 2 and a schematic representation of the experiment apparatus is shown
on Figure 3. Seismic signatures and spectra for both transducers are shown in Figures 4 and 5.

The ultrasonic signal was digitized using a scale factor of 1:10 000, to bring the frequencies into the
seismic range. The transducer-induced delay was subtracted from the arrival times during velocity calcu-
lations. The arrival picking accuracy is ±0.2 µs, which yields errors in velocities of the order of ±4 m/s.

(a) (b) (c)

Figure 1: Anisotropic models: (a) reference model, 55 stacked Plexiglas plates. (b) Model with inclusions,
top view before the experiment. (c) Side view after the experiment.

(a) Hydraulic Press and gauges (b) P-wave transducer.

(c) S-wave transducer.

Figure 2: Equipment used in the experiment.

Figure 3: Schematic positioning of transduc-
ers (drawn in red). The Plexiglas plates are
shown in gray and the inclusions in blue. In
green is the Plexiglas block, the buffer.
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(a) P-wave transducer time signature. (b) P-wave transducer spectrum.

Figure 4: Spectrum and signature of the P-wave transducer.

(a) S-wave transducer time signature (b) S-wave transducer spectrum

Figure 5: Spectrum and time signature of S-wave transducer used in this study.

Quality Control

Besides determining the P, S1, and S2 wave velocities in the models, we also measured these velocities in
the Plexiglas block called buffer. This buffer was used as support during compression, helping to better
distribute stress through the model. The buffer also allowed to establish reference Plexiglas velocities,
because of its high incompressibility. The reference velocities served as quality control during acquisition
in the models, assuring that there is good coupling between models and transducers. Despite the great
reduction in thickness of the rubber discs, the entire experiment was conducted in the linear elastic domain.
This is evidenced in Figure 6, which presents the deformation of the inclusions with increasing stress.

RESULTS AND DISCUSSION

Seismograms

The ultrasonic measurements described above led to the P- and S-wave seismograms in Figures 7 and 8
as a function of applied stress. The different P-wave traveltimes are a consequence of the different model
dimensions in the y and z directions. We denote the two main polarisations of the S-waves as S1 and S2,
where the S1 component is the one with higher velocity. This component is polarised parallelly to the
plates, i.e., it can be identified as the SH wave. Accordingly, the S2 component is the SV wave, polarised
orthogonally to the plates. Corresponding seismograms were acquired for the model with inclusion.

Velocities

The picked traveltimes (red lines in Figures 7 and 8) together with the model dimensions determine the
wave speeds. These velocities will then be used to compute elastic and anisotropic parameters. All veloci-
ties were determined in the y direction parallel to the Plexiglas plates and in the z direction perpendicular
to the plates. In the z direction, besides crossing the models, the signal also crossed two Plexiglas buffer
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Figure 6: Thickness variation of the inclusions with increasing stress.

(a) (b)

Figure 7: P-wave seismograms acquired for several stress levels in the reference model. Red lines represent
first arrivals. (a) Propagation in the y direction. (b) Propagation in the z direction.

blocks. Thus, velocities were calculated according to

Vy =
ly

ty − td
, Vz =

lz − 2lb
(tz − td)− 2tb

, (2)

where Vj is the (P- or S-wave) velocity of the wave propagating in the j (y or z) direction, tj and lj are the
traveltime and model dimension in that direction, and tB and lb denote the traveltime and size of the buffer.
The transducer-induced time delay td is a constant of the equipment.

In addition to these directions, similar experiments were carried out under 45◦ with respect to the
plates, in order to obtain information about the elastic coefficient C12. Since the measurements were taken
in the oblique direction, there is no interference of the buffer. Thus, in this case, velocities were computed
according to

V45 =
l45

(t45 − td)/0.88
(3)

where V45 is the velocity along the model diagonal, and t45 and l45 are the traveltime and model length in
that direction. As before, td is the transducer-induced time delay and 0.88 is a correction factor.

All ultrasonic measurements were done under variation of the applied stress. The only difference
between the P- and S-wave measurements is the change in the transducers. The P- and S-wave velocities
calculated using equations (2) and (3) are shown in Table 1 and Figure 9. Figure 9b only shows three curves
because the coupling between transducers and cracked model was not good at the oblique position, giving
rise to inconsistencies in the determination of velocities.

We observe that P- and S-wave velocities in both the reference model and the cracked model with
inclusions present different regimes of linear variation. For the reference model, a strong variation at low
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Figure 8: S-wave seismograms acquired for several stress levels in the reference model. Red lines represent
first arrivals. (a) Propagation in the y direction with polarisations parallel (left part) and perpendicular to
the plates (right part). (b) Propagation in the z direction, where all polarisations produce equivalent arrivals.

Table 1: Velocity data from ultrasonic experiments, values rounded to the nearest integer. See Figure 9.
Stress [MPa] 3.6 4.8 6.1 7.3 8.5 9.7 10.9 12.2 13.4 14.6 15.8
VP (z) [m/s] 1941 2030 2101 2155 2223 2271 2315 2354 2401 2422 2446
VP (y) [m/s] 2470 2483 2509 2535 2563 2584 2605 2619 2634 2641 2648

Reference Model V45◦ [m/s] 2290 2337 2367 2406 2432 2458 2469 2496 2523 2557 2569
VS1 [m/s] 1241 1241 1241 1241 1241 1241 1241 1241 1241 1241 1241
VS2 [m/s] 1081 1104 1126 1138 1146 1151 1157 1164 1170 1174 1179
Vbuffer [m/s] 2683 2683 2683 2683 2683 2683 2683 2683 2683 2683 2683
VP (z) [m/s] 1346 1655 1853 1953 2040 2151 2199 2249 2275 2298 NA†

VP (y) [m/s] 2396 2410 2443 2454 2493 2535 2558 2565 2578 2578 NA
Cracked Model VS1 [m/s] 1257 1257 1257 1257 1257 1257 1257 1257 1257 1257 NA

VS2 [m/s] 1045 1064 1095 1116 1121 1129 1154 1168 1182 1191 NA
VS(z) [m/s] 573 634 669 705 747 787 811 900 906 914 NA
Vbuffer [m/s] 2683 2683 2683 2683 2683 2683 2683 2683 2683 2683 NA

† Not acquired

compression (Figure 9) gives place to a weaker variation around 6-7 MPa. In the cracked model, there are
three linear regimes, separated at approximately 6-7 and 10-12 MPa. Despite the fact that all velocities
increase with increasing stress, the behaviour of the variation is markedly different in the reference model
and in the model with inclusions. However, the three linear stress regimes are visible in all parts of Figure 9.
A possible interpretation will be indicated below.

Existing rock physics model describe velocities that present a smooth variation as function of stress.
Therefore, in the fits below we chose an exponential function of the form

V = Va −Ae−kσ (4)

to describe the variation, where σ denotes the applied stress. This model also has the advantages of being
smooth, asymptotic, and needing few parameters, besides being already implemented in the software used.
Moreover, the exponential curves give rise to an asymptotic value Va which the velocities approach for
increasing stress. This can be interpreted as the value for a medium in which the discontinuities vanish.
The constant k in the exponent of function (4) can be understood as a kind of stress sensitivity. The higher
the factor k in the exponent, the more strongly the velocity depends on stress. It should be noted that VS1

is constant throughout the experiment, as can be verified from Table 1 and Figure 9. Thus, there was no
need to fit a curve to the data.
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(a) (b)

(c) (d)
Figure 9: P- and S-wave velocities measured with transducers of central frequencies 120 kHz and 90 kHz,
respectively. (a) P-wave velocities in the reference model; (b) P-wave velocities in the model with inclu-
sions; (c) S-wave velocities in the reference model; (d) S-wave velocities in the model with inclusions.

Table 2: Fitting parameters for exponential P-wave velocity fit. See Equation 4 for meaning of the terms.
Reference Model Cracked Model

VP (y) VP (z) VS2(y) VS(z) VP (y) VP (z) VS2(y) VS(z)
Va 2770 2664 1185 1188 2716 2348 1320 1609
A 416 1039 212 528 473 2563 351 1189
k 0.08 0.10 0.20 0.30 0.09 0.30 0.07 0.04

Figures 10 and 11 show the exponential fit of the wave velocities in the horizontal and vertical direc-
tions. In both cases, the fit is quite good, with rather small residuals distributed randomly around the fitted
curve. From the parameters of the exponential fit (see Table 2), we see that the P velocity in the horizontal
direction is less sensitive to stress increase than in the vertical direction. The P velocity measured in the
oblique direction exhibits an intermediate behaviour.

In the fitted function for the vertical P velocity in the reference model, the saturation (asymptotic) value
Va is quite close to the velocity measured in the buffer (2664 m/s vs 2683 m/s), with a difference of less
than 1%. The residual values for the fit are of the order of errors expected from the experiment.

The vertical P velocity in the model with inclusions is not as well fitted by an exponential function of
the type (4) as in the reference model, as can be seen in Figure 11. Up to 9 MPa the fit gives residuals of
about 30 m/s, while from this stress level upwards, the residuals fall below 5 m/s, within the error margins
from the experiment. The corresponding fitting curves for the S waves are shown in Figures 12 and 13.
The fitting parameters are also contained in Table 2. With few exceptions, the residuals are of the expected
size for all S-wave fits.
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(a) (b)
Figure 10: Exponential fit for VP in the y direction. (a) Reference model; (b) cracked model.

(a) (b)
Figure 11: Exponential fit for VP in the z direction. (a) Reference model; (b) cracked model.

Geometrical characteristics of the Inclusions

The geometrical characterization of discontinuities, fractures inclusive, is perhaps the most valuable prod-
uct that could be derived from the seismic data. The geometrical character of the fractures plays an impor-
tant role in the definition of fluid flow, thus being highly relevant in the production of fractured reservoirs.
In this subsection we will investigate the relationship between the geometrical characteristics of the inclu-
sions and the applied stress. The observed geometrical characteristics are summarized in Table 3.

Crack diameter. Specifically, we study the diameter variation as function of the longitudinal deformation
with the increasing stress (see Figure 14). Our analysis is a variation from that of Olson (2003), who has
studied vein and dyke lengths as function of their width. There are two possible interpretations of the
data in Figure 14. Clearly this function can be interpreted as being composed of three linear regimes (see
Figure 14a), separated at the same stress levels mentioned in connection with Figure 9. The fit residuals
for the three curves are 0.028; 1.2 × 10−33 and 0.0012 respectively for the blue, red and green lines.

An alternative is an exponential fit, as shown in the Figure 14b. In this case, the data were fitted via an
exponential function:

d = da −Ade−βh , (5)

where h denotes the deformation and d the crack diameter. The fitting parameters and standard deviations
are da = 10.372061 ± 0.037405, Ad = 2.866622 ± 0.0943954, and β = 5.565112 ± 0.357925. In other
words, equation (5) describes a saturation curve that asymptotically approaches the maximum diameter of
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(a) (b)
Figure 12: Exponential fit for VS2 in the y direction. (a) Reference model; (b) cracked model.

(a) (b)
Figure 13: Exponential fit for VS in the z direction. (a) Reference model; (b) cracked model.

(a) (b)
Figure 14: Inclusion thickness versus diameter during the experiment. Black numbers are the applied
stress, in MPa. (a) Interpretation with three linear segments. (b) Exponential fit.

the inclusions of 10.4 mm. A more detailed analysis of the exponential fit and its residual is shown in
Figure 15. We observe that the residuals are smaller than the measurement error.

Note that the excellent exponential fit indicates that our compression of soft rubber inclusions still might
be correctly described by fracture mechanics principles (Gross and Seelig, 2006). Of course, our results
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Table 3: Stress effects over inclusion dimensions. These data are also shown in Figures 14 and 16.
Stress [MPa] 0.0 3.6 4.8 6.1 7.3 8.5 9.7 10.9 12.2 13.4 14.6 15.8

Diameter [mm] 3.83 8.90 9.24 9.45 9.62 9.75 9.88 10.02 10.10 10.14 10.18 10.20
Thickness [mm] 0.57 0.45 0.41 0.37 0.33 0.29 0.25 0.21 0.16 0.12 0.08 0.04

Deformation [mm] 0.00 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.41 0.45 0.49 0.53
Aspect Ratio‡ 0.14 0.050 0.044 0.039 0.034 0.029 0.025 0.021 0.016 0.012 0.008 0.004

Fracture density‡ 0.061 0.059 0.055 0.050 0.045 0.038 0.032 0.025 0.017 0.009 NA† NA
‡ dimensionless † Not acquired

Figure 15: Exponential fit and residuals, following
the method of Olson (2003). Magnitude of residu-
als is less than the linear measurement error.
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Figure 16: Fracture parameters as function of ap-
plied uniaxial stress. (a) Fit of aspect ratio; (b) fit
of crack density; (c) aspect ratio compared to theo-
retical prediction.

for the fitting parameters differ from those of Olson (2003), which probably means that these parameters
are material constants. Still, the differences in diameter and width of fractures between our experiments
and the field data of Olson (2003) are rather small. Further experiments will be necessary to investigate if
other materials will better preserve scalability as crack filling material in this sense.

Aspect ratio. We also calculated the aspect ratio ra for an equivalent medium, based on the parameters
of the model with inclusions. The calculated data are shown in Figure 16. In the experiment, the system
was open to atmosphere and therefore, we considered pore pressure to be zero. The aspect ratio shows an
almost linear dependence on stress (see Figure 16a).

In Figure 16c, we compare these data to the theoretical prediction obtained by inverting the equation of
Mavko (2009, p. 66). It states that the necessary stress to achieve crack closure is related to the aspect ratio
by

σc =
1

2(1− ν2)
raE , (6)

where σc is the crack closure stress, ν is the Poisson ratio, ra the aspect ratio and E is Young’s modulus.
Taking E = 2µ(1 + ν), where µ is the shear modulus, and rearranging, we find

ra =

(
1− ν
µ

)
σc . (7)

This result resembles the corresponding equation of Verdon et al. (2008), with the exception of a factor 2/π
and an initial state aspect ratio r0

a. The expression given by those authors reads

ra = r0
a −

2(1− ν)

πµ
σc (8)

At this point, we do not have enough data to decide which of these formulas is better. To clarify this
point, other detailed studies are necessary. However, we can state that in the experiment, the crack closure
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Figure 17: Curve fit for aspect ratio. Blue lines are
the 95% confidence interval..

Figure 18: Sigmoidal function fit for fracture den-
sity. Blue lines are the 95% confidence interval.

Figure 19: Exponential function fit for inclusion
diameter. Blue lines are the 95% confidence inter-
val.

Figure 20: Exponential fit for inclusion thickness.
Blue lines are the 95% confidence interval.

stress σc was not attained. Thus, we understand that it is incorrect to use any of the preceding relations
to characterize the crack aspect ratio before closure, at least without taking into account that ν and µ also
vary with stress.

We also studied other fits to the experimental data with regards to the rubber inclusions, based on the
principles outlined in the Velocities subsection. The graphs are presented in Figures 17 to 20. The aspect
ratio as a function of stress is well-fitted by an exponential-decay function, whose parameters are shown
with the fitted curve in Figure 17. The first term can be understood as the initial aspect ratio, while the last
one can be seen as the aspect ratio at closure.

The crack density as a function of stress is well-fitted by a sigmoidal type curve, as shown in Figure 18.
In this case, the stress values of 6-7 MPa and 11-12 MPa, which define the three different linear regimes
for the velocity, also represent the transition between the parts of the sigmoidal function. These limits can
be interpreted as being the transitions between permeability regimes of the model, as discussed below.

The inclusion diameter is well described by an exponential saturation curve (see Figure 19). In this case,
the (constant) saturation value represents the inclusion’s maximum diameter under infinite compression.

Finally, the graph shown in Figure 20 displays the asymptotic decay of thickness as function of increas-
ing stress, fitted by an exponential curve. The first term represents the original inclusion thickness. The
error of about 0.1 mm is of the order of the expected experimental error. The last constant represents the
asymptote, i.e., the minimum thickness that would be reached under infinite stress.
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Figure 21: Calculated density for the reference
model (squares) and cracked model (circles).

(a) (b)
Figure 22: Elastic coefficients C11 and C33. (a)
Reference model; (b) cracked model.
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Figure 23: Elastic parameters C44 and C66 as well
as an approximation to C13 obtained by the Linear
Slip Displacement of Schoenberg (1980). (a) Ref-
erence model; (b) cracked model.

Figure 24: VP /VS ratios, measured in different di-
rections, for the reference model (circles) and the
model with inclusions (squares).

Elastic Coefficients

Next we determined the elastic coefficients, which rule the seismic behaviour of materials under stress.
Figure 21 shows the density of the models under stress, and Figure 22 depicts the coefficients C11 and C33

calculated from the velocities determined earlier.
The density in the reference model is approximately constant, while it increases with stress in the

cracked model, due to compression of the rubbers discs, as expected (Figure 21). The behaviour of the
elastic coefficients seems to mimic that of the velocities (Figure 22). In the cracked model, both compo-
nents C11 and C33 show slope variations at the same stress levels around 6-7 and 10-12 MPa, indicating
and reinforcing our interpretation (see below). Both components C11 and C33 exhibit a smoother behaviour
in the reference model than in the model with inclusions.

As a next step, we calculated the elastic parameters C44, C66, and, using the Linear Slip Displacement
approximation (Schoenberg, 1980), C13. Figure 23 shows C66 to be insensitive to stress increase and to
the presence of inclusions. The shear modulus µ = C44 in both models increases with stress. As expected
the soft rubber inclusions lower the overall shear modulus in the cracked model. In the reference model,
the shear modulus seems close to reaching a saturation level, while in the cracked model, such a saturation
cannot be found. In the cracked model, the Lamé parameters also seem to exhibit the three linear regimes
that we observed in the velocity data (Figure 9), aspect ratio (Figure 14) and elastic coefficients (Figure 22).
These observations are coherent with the notion that S-waves are less sensitive to anisotropy than P-waves,
since the S-wave velocities depend on different elastic parameters.
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(a) (b)

Figure 25: Thomsen’s parameters, calculated for
the reference model (circles) and the model with
inclusions (squares). (a) γ; (b) ε.
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y
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(b)

(c)

Figure 26: Interpretation. (a) Inclusions with
small deformation; (b) deformation increases; (c)
no more air can be expelled from the model.

The VP /VS ratio in the vertical direction shows a strong initial increase that diminishes with increasing
stress (see Figure 24). In the horizontal direction, the VP /VS1 ratio exhibits much smaller variations, and
the VP /VS2 ration remains approximately constant. There is some difference between the curves for the
reference model and for that on the model with inclusions, with smaller VP /VS ratios for the model with
inclusions than for the reference model. As before, also these curves can be interpreted as consisting of
three linear regimes.

Thomsen’s γ and ε present a marked decrease, both for the reference model and the model with in-
clusions, suggesting that there might be an asymptote beyond 16 MPa. For γ, the model with inclusions
shows a yet faster decrease that in the reference model. A Similar observation was made with regards
to ε, however, there is some separation between the results from the reference model and the model with
inclusions. The graph for Thomsen’s parameter as functions of applied stress is shown on Figure 25.

Interpretation

Figure 26 shows our interpretation model for the linear regimes in the elastic and anisotropic parameters
as functions of stress. In the first regime, indicated by inset (a), the inclusions are in an almost undeformed
state. The inter-inclusion space is filled with air and the system is open to atmosphere. Upon increased
stress, air is expelled from the sample. At the beginning of the second regime, at 6-7 MPa, the plates
start to touch between the inclusions (inset b). At this stage, the inclusions are already deformed and the
inter-inclusion space is already reduced. We infer that effective-medium behaviour starts at this stage. At
about 10-12 MPa begins the third regime, in which no further air can be expelled, as all spaces are almost
closed (inset c) and no longer communicating. Further modifications result from compaction of the plates
and rubber inclusions, though still within the limits of elasticity. In the reference model, since there are no
inclusions, the air would have been expelled much earlier, at about 6-7 MPa, and no further slope variations
should be expected. This coincides with the observations.

CONCLUSIONS

We carried out ultrasonic P- and S-wave measurements over two physical models. The reference model
was built by stacking 55, 1.5 mm thick Plexiglas plates and the model with inclusions added 30 neoprene
disks with diameter 3.6 mm and thickness 0.57 mm between each pair of the same plates. Under variation
of applied stress, we acquired ultrasonic P- and S-wave seismograms for different propagation directions.
From the model parameters and first-arrival traveltimes, we calculated seismic velocities and overall elastic
medium parameters. Even though the maximum stress attained in this experiment is low in comparison
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to actual reservoir stress levels, our results indicate that the experiment was able to sample most of the
variation in the properties of the materials employed in the models.

The P- and S-wave velocities show different variation patterns in the reference model and in the model
with inclusions. The general tendency of the velocities is to increase with increasing stress. In the reference
model, a strong variation at the start of compression changes into a smaller variation upwards from 6-
7 MPa. In the model containing penny shaped neoprene inclusions, there are three separate linear regimes,
limited at around 6-7 MPa and 10-12 MPa. Since the experiment was conducted in discrete stress steps, the
stresses where the transitions occur cannot be determined with higher precision. The three linear regimes
can be interpreted as regimes of different closure of the spaces between the inclusions.

In an alternative interpretation, we also found good exponential fits for the velocities for both models,
with residuals within 1% of the determined velocities and for the most cases, within the expected range of
experimental error. In the reference model, the P velocity given by the asymptote of the adjusted exponen-
tial function is close to the one measured in the Plexiglas buffer.

Verdon et al. (2008), who worked with core samples taken from different depths along a well, observed
a similar velocity behaviour as a function of stress. The samples had differing degrees of damage, related to
the difference between their original stress state and laboratory conditions under which they were prepared.
Since our experiment uses different materials, our results do not reproduce exactly those from Olson (2003)
or (Verdon et al., 2008), but seem to rely on the same fracture mechanics principles (Gross and Seelig,
2006).

In the same sense, the variation in fracture length and aperture we achieved in the experiment is small
when compared with field data. We believe that our model could capture the effects of a mechanism that is
also applicable to reservoir rocks, where the mechanism can be understood as the generation of unloading
fractures in rock cores and lateral samples, when brought to surface. The observed behaviour in the model
presents a high similitude to published data.

Due the experiment setup and choice of materials, it was only possible to reproduce a range of value
of stresses, fracture densities, and aspect ratios that we believe to be small compared to those that occur in
hydrocarbon reservoirs. Another source of discrepancies between our data and published data is the fact
that our fractures were actually inclusions of soft material, without pore pressure that impacts the behaviour
of rocks under high stresses. Despite those differences, we feel that the data we presented are representative
of the behaviour of rocks under low to medium stresses.

The three different regimes were also observable for the elastic parameters Cij , and for some of the
geometrical parameters of the models. reinforcing our interpretation of the air being forced out of the
model and the formation of an effective medium behaviour. The parameter C66 is insensitive to stress
increase and to the presence of neoprene inclusions, since the Plexiglas plates are much more rigid than
the rubber. The shear modulus µ = C44 in the model with inclusions presents lower values than in the
reference model, and rises quickly with stress. The soft rubber inclusions lower the overall rigidity of the
models, as one would expect from mixing laws.

The VP /VS ratios calculated in the different propagation directions also allow to interpret the three
different regimes. The VP /VS ratio in the model with inclusions is always lower that that for the reference
model, indicating that the P velocity is stronger affected by the inclusions than the S velocity. The horizon-
tal VP /VS ratios are less affected by the increasing stress than the vertical ones, with the one from the S2
polarisation being practically constant.

In summary, the availability of velocities measured for different polarisations in different propagation
directions allows to determine the elastic coefficients of the medium. From these coefficients, it is possible
to characterize the medium. On the basis of corresponding detailed information from rock samples or
analogous models, or even cross-well data, it might be possible to characterize the properties of a fractured
reservoir or even figure out which regions of a reservoir are more extensively fractured.
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ABSTRACT

The structure tensor is a very versatile tool. It can be used to detect edges, estimate coherency and
local slopes. In this work we employ the structure tensor to estimate local slopes. We compare the
slopes obtained with this tool with the slopes obtained by two different implementations of plane-wave
destruction filters. Those three methods were tested against three different datasets, two synthetic and
one real. The slopes detected through the structure tensor were reliable and comparable to the ones
obtained with plane-wave destruction filters. Finally, we present an application for the slopes detected
by the structure tensor. We show how to employ them to filter seismic data along structures.

INTRODUCTION

Determining local slopes is of great interest in seismic data analysis. They can be used to accomplish many
of time-domain imaging tasks, like normal moveout and prestack time migration (Ottolini, 1983; Fomel,
2007c). Local slopes can also be used to interpolate data and filter along seismic structures (Fomel, 2002;
Liu et al., 2010). In this work we compare the local slopes obtained via the well established method of
plane-wave destruction (Claerbout, 1992) to the ones obtained using the structure tensor (Bakker, 2002).

The structure tensor was applied to seismic data analysis and filtering many times before. Bakker (2002)
gives a very comprehensive description of the applications of structure tensors to seismic data filtering.
They can also be used to identify and create clusters of areas of interest in seismic data (Faraklioti and
Petrou, 2005) and to edge preserving smoothing by diffusion filtering of seismic data (Hale, 2009; Lavialle
et al., 2007).

As noted by Bakker (2002), the amount of data to interpret has grown faster than the number of capable
interpreters. Also, there are more pressure for quicker interpretation results, since risk management deci-
sions are taken based on them. One way to ease the burden imposed on interpreters and to make automatic
interpretation more reliable is to use structure oriented filtering. This procedure reduces noise and enhances
reflector continuity. It also removes some subtle geological features, resulting in seismic sections easier to
interpret.

Driven by those motivations, Fehmers and Höcker (2003) have proposed to use the structure tensor to
perform structure oriented filtering by anisotropic diffusion. This procedure results in structure simplifi-
cation and make the interpretation process more agile. Bakker (2002) also tried to address that problem
by using orientation adaptive filtering and edge preserving filtering with the structure tensor. His work
also features the use of the structure tensor to detect faults. In this paper we propose to study a third ap-
proach, by using structure prediction filtering (Liu et al., 2010). While Liu et al. (2010) advocate the use
of plane-wave destruction to estimate dips, we propose to employ the dips detected by the structure tensor.


