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ABSTRACT

Enhancement of diffractions and their use to increase the resolution of finer details in a seismic image
has been a popular research topic the later years. It is well recognized that diffractions carry useful
information about small scale characteristics associated with, e.g., faults, pinch-outs, wedge-outs and
other geological features often linked to potential hydrocarbon reservoirs. To extract the information
content of these diffractions and form an optimal image of local subsurface details is not a trivial
task. The conventional way to image diffractions is using standard migration techniques, essentially
based on wave propagation. However, limited acquisition aperture, as well as finite bandwidth of the
seismic data, imposes on migration techniques a so-called diffraction-limit resolution constraint, by
which the full use of the diffraction information available within the data is prevented. An alternative
to overcome such limitations is to turn to signal-processing oriented approaches, which focus at the
structural features of data (e.g., singular properties of covariance matrices), with the aim of detecting
and imaging desired events. With an interest on diffractions, we propose here a windowed or steered
version of the powerful signal-processing scheme, MUltiple SIgnal Classification (MUSIC) method.
Use of this new scheme ensures that diffractions can be imaged to a resolution beyond the classical
limit. The potential of this technique is demonstrated using both controlled and field data.

INTRODUCTION

The early use of seismic diffractions dates back to the pioneering works of Krey (1952), Haagedorn (1954)
and Krey (1960). During the later years much attention has been paid to the enhancement and separation of
diffractions from reflection data for a number of imaging purposes. Several approaches have been proposed,
among them the use of anti-stationary filtering (Moser and Howard, 2008), plane-wave destruction filters
(Fomel et al., 2007), Multi-focusing (MF) (Berkovitch et al., 2009) or Common Reflection Surface (CRS)
(Asgedom et al., 2011, 2012b,a) moveout expressions. Since the diffracted events are known to carry high-
resolution information about the subsurface, their optimal use in imaging is an important topic. In a recent
paper (Gelius and Asgedom, 2011) discussed the concept of resolution from a theoretical point of view.
Their analysis covered both the classical resolution limit (generally referred to as diffraction-limited imag-
ing), as well as the use of high-coherency methods like MUltiple SIgnal Classification (MUSIC) (Schmidt,
1986). An attractive feature of the latter type of techniques is their potential to give rise to images with
a resolving power beyond those of the classical limits (referred to as super-resolution images). The work
accounted for here can be regarded as a practical demonstration of the conceptual ideas presented by Gelius
and Asgedom (2011). Note, however, that in the referred paper time-reversal type of MUSIC was consid-
ered and not classical MUSIC as discussed here. More specifically, by means of illustrative examples, we
verify that the use of a standard migration type of method will not be able to honor fully the potential high-
resolution information carried by the diffractions. As a way to overcome such limitations, we propose to
use a windowed or steered MUSIC type of algorithm to better preserve the finer details in the image. This
technique has already been used by the authors with success in a series of publications related to diffraction
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enhancement (Asgedom et al., 2011, 2012a). However, the details of the actual method have not been ad-
dressed. The main purpose of this paper is, thus, to introduce the basics of the proposed technique in a clear
and concise manner. The actual performance of the method is also demonstrated employing two different
data sets. This paper is organized as follows: After this introduction, a small section reviews the concepts
of resolution and diffraction-limit. The next section introduces a simple numerical example to illustrate
the resolution limitations of conventional imaging (e.g., backpropagation/migration), as a consequence of
the so-called diffraction-limit condition, as generally attached to those methods. In the subsequent section,
the same synthetic example is employed to show how the proposed version of the MUSIC algorithm leads
to so-called super-resolution images, namely ones that overcome the classical diffraction-limit condition.
The next section applies the new algorithm to a field data set and discusses its results. Finally, sections
conclusions, acknowledgments and references complete the paper.

BASIC CONCEPT OF RESOLUTION AND A DIFFRACTION-LIMITED SYSTEM

According to Sheriff (1991) ’resolution is the ability to separate two features that are very close together;
the minimum separation of two bodies before their individual properties are lost’. In case of a finite
receiver array, it is well known that the directivity degrades causing a wider main lobe and increasing side
lobes (Berkhout, 1984). This loss in resolution can be approximately described by the classical Rayleigh
criterion:

∆l =
Lλ

D
, (1)

where l is the spatial resolution limit, D is the aperture or length of the array, L is the distance to the target
and λ is the (dominant) wavelength. Such a system is denoted "diffraction limited". The same phenomenon
can be analyzed from an imaging point of view by "backpropagating" scattered waves associated with point
scatterers.

A SIMPLE NUMERICAL EXAMPLE

Consider the simple geometry shown in Fig.1 involving two nearby point scatterers, embedded in a ho-
mogeneous model and illuminated by a point source, and with the scattered data measured at receivers
distributed over a surface S. For definiteness, we assume the vectors rs = 0 (origin), rksc (k = 1, 2), r and

Figure 1: Sketch of scattering geometry.

r′ to designate the source, scatterers, image and receiver points, respectively. Our analysis is carried out
in the frequency domain, the frequency variable being denoted by ω. As a reasonable approximation, we
assume that the scattered field, psc(r′, ω) observed at a receiver, has the form (Born type)

psc(r
′, ω) =

ω2s(ω)

c2

2∑
k=1

exp[iω(τsk + τ ′k)]

RskR
′
k

, (2)
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where c is the medium velocity, Rsk = |rksc| and R′k = |rksc − r′| are the distances between the source and,
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Figure 2: Seismic section of the two nearby diffractions.

respectively, the k-th scatterer and the receiver, with τsk = Rsk/c and τ ′k = R′k/c being their corresponding
traveltimes. Also, s(ω) represents the spectrum of the source pulse, for convenience chosen to be the
zero-phase Ricker wavelet

s(ω) =
1

π3/2

(
ω2

ω3
0

)
exp[−ω2/ω2

0 ] , (3)

where ω0 represents the peak frequency. For computation simplicity, we assume that the measurement
boundary is flat and characterized by an infinite aperture cross-line (y-direction) and a finite aperture (D)
inline (x-direction). Moreover, we restrict the receivers to lie on a single horizontal (x-direction) line and
that the source, scatterers and receiver line all lie on a single vertical z-plane. Such conditions define a
so-called 2.5D configuration for which 3D wavefield computations on each receiver can be approximated
by a single spatial (x-coordinate) integral (see, e.g., Bleistein, 1986). Under the above conditions, we have
that rksc = (xksc, 0, z

k
sc), r = (x, 0, z) and r′ = (x′, 0, 0) (−D < x′ < D). As a consequence, we find

R′k =
√

(x′ − xksc)2 + (zksc)
2, R′k =

√
(x′ − x)2 + z2, τ ′k = R′k/c and τ ′ = R′/c . (4)

In the simulations, we used a medium velocity c = 2000m/s, an aperture D = 3200m and an equal depth
L = 2000m of the two nearby scatterers. Moreover, the center frequency was chosen as f0 = 25Hz. This
corresponds to a center wavelength ω0 =80m. Replacing λ by λ0 in Eq.(1) gives that the smallest distance
that can be resolved according to the Rayleigh criterion is approximately ∆l ≈ 5λ0/8. With the above
configuration, we obtain the data set of Fig.2

IMAGING BY BACKPROPAGATION

We now use the conventional approach of backpropagation to image of data with the aim of retrieving the
scatterer positions in depth. Following, e.g., Schneider (1978), Esmersoy and Oristaglio (1988), Schleicher
et al. (2007), Gelius and Asgedom (2011), the backpropagated wavefield, pbp(r′, ω), can be expressed by
an integral of the form

pbp(r
′, ω) = −

∫ ∫
S

[
∂

∂n
G∗0(r, r′, ω)psc(r

′, ω)−G∗0(r, r′, ω)
∂

∂n
psc(r

′, ω)

]
dr′ . (5)

Following, e.g., Bleistein (1986), the above integral admits a stationary-phase, approximate evaluation
of the cross-line (y-coordinate) integral, taken as an inner integral in Eq.(5), so that we are left with an
integration over the inline, x-coordinate only. If we divide the backpropagated field by the source field
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Figure 3: Migrated image of two nearby scatterer separated by (a) 5λ0/8 and (b) λ0 (λ0 being the center
wavelength).

incident at each image point (i.e., we apply the U/D imaging condition), then summing over the available
bandwidth will give the final migrated image I(r) = I(x, 0, z) in the vertical cross-section defined by
y = 0:

I(r) ≈


√

8π

c

∫ ωB

0

ω5/2 s(ω)

∫ D/2

−D/2

(R′zsc +R′scz)√
R′R′sc|∆|

cos

[
ω∆

c
+
π

2

(
1− sgn∆

2

)]
dx dω, (∆ 6= 0),

0, (∆ = 0) ,
(6)

where the notation ∆ = R′sc−R′ has been used. Figure 3a shows the migrated image of the two scatterers
when separated a distance of ∆l (only a selected part of the image surrounding the two scatterers shown
for convenience). It can easily be seen that migration is not able to resolve the two features. This example
demonstrates that the Rayleigh criterion is an empirical measure only able to give an approximate estimate
of the actual diffraction limit of a system. By increasing the scatterer separation to λ0, it follows from
Fig.3b that the two scatterers now separates well as expected. In the next section, we will discuss an
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alternative approach to image scattering events. The basis of this technique is to combine the data in a local
window steered by the migration operator with a high-resolution coherency measure denoted MUltiple
SIgnal Classification (MUSIC) Schmidt (1986). This MUSIC type of migration has the potential of imaging
scatterers beyond the classical diffraction limit just discussed.

SEMBLANCE APPROACH TO DIFFRACTION-STACKING AND THE STEERED DATA
WINDOW

In standard diffraction-stacking (Kirchhoff) type of migration, data are summed along the migration oper-
ator as defined by a given velocity model. Introduce now a small data window centered at the migration
operator curve as shown in Fig.4. The upper red curve defines the start of the data window and follows the
operator curve (interpolated to nearest data sample). This curve defines the start sample of each trace and
the window length defined in time samples defines the length of each subtrace selected. It is also to be noted
the analogy between the above windowing process with one associated with semblance in velocity analy-
sis, which uses the stacking operator (NMO) instead of the migration operator curve. Both these operators
are velocity dependent. For reasons that will be clear below, it is advantageous that values corresponding
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Figure 4: Window surrounding migration operator curve.

to the same sample number of each subtrace within the window are horizontally displayed as entries of a
matrix line. One refers to that process as a steered matrix construction. The terminology is a reminder that
the window steers the matrix. The benefit of the construction is that the window operations as required
for the imaging methods become easily formulated as natural matrix operations. Another beneficial aspect
is that approximation of trial curves to diffraction events within the window translates, after steering, into
corresponding approximations to the horizontal, measurements of which being better suited to available
signal-processing schemes. In particular, conventional semblance can be elegantly formulated in terms of
the covariance of the steered matrix. The inner properties of that covariance matrix are, however, not made
use of in the semblance calculation. That explains the trade-off of lower resolution and robustness that
are characteristic of the semblance as a coherence measure. As well known, higher-resolution coherency
measures, generally referred to as pseudo-spectra, can be achieved if the finer, eigenstructure properties
of the covariance of the steered matrix are exploited, as is the case of the steered MUSIC considered here
(see, e.g., Kirlin, 1992; Asgedom et al., 2011).

The concept of steered MUSIC has been previously employed by Kirlin (1992) to further improve the
velocity analysis. However, as opposed to semblance, which produces normalized values between 0 and 1,
MUSIC, despite its high-resolution capability, yields amplitudes (pseudo-spectra) of arbitrary values. Such
unpleasant behavior makes the simple replacement of semblance with MUSIC as a coherency measure, for
example in standard velocity analysis, not adequate. That is probably also the main reason why MUSIC
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type of seismic signal analysis has not been much discussed the recent years. In order to condition the
MUSIC pseudo-spectrum to be a normalized quantity, Asgedom et al. (2011) proposed semblance-balanced
MUSIC. This idea will also be employed in the current work.

The above discussion and qualitative considerations of steered MUSIC already allows us, even without
the technical details of the method, to appreciate its application to the numerical example earlier intro-
duced. A particular motivation is the comparison with the counterpart results provided by conventional
(backpropagation) obtained for the same example. That is what we do in the next section, leaving to the
subsequent section the formal description of the steered MUSIC method.

APPLICATION OF STEERED MUSIC TO NUMERICAL EXAMPLE

Let us now revisit the scattering example from the previous section. Figure.5 shows the scattered data as-
sociated with the two nearby scatterers measured along the horizontal receiver line defined by y=0 (source-
gather). The two red curves superimposed the same figure defines the data (’semblance’) window computed
around the true position of one of the scatterers. Figure 5b shows the corresponding steered data window.
One can see near-horizontal events fairly well aligned (especially in the middle part of the window), but
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Figure 5: (a) Scattered data superimposed steered data window centered around one of the scatterers. (b)
Raw steered data window. (c) After spatial smoothing and amplitude balancing.

with additional interfering events associated with the other nearby scatterer. The data within the window
are therefore further processed by applying spatial smoothing (horizontal 2D filter) and amplitude balanc-
ing. The final result is shown in Fig.5c where the horizontal trend has been significantly enhanced. A fairly
long data window has been used here for demonstration purposes. In practice, use of a shorter window can
ensure a more robust result. The width of the data window has been chosen to seven time samples in this
example. In general, the width should be chosen in a way that the main parts of the wavelet fall inside it.
Figure 6 is similar to Fig.5, however with the difference that the data window is no longer centered around
one of the scatterers but a nearby point. The steered data window now looks quite different both before and
after further processing (Figs.6b-c), and no longer contains near-horizontally aligned events. We will now
demonstrate the performance of steered MUSIC employing the scattered data set plotted in Figs.5a and 6a.
The result is shown in Fig.7. We can easily see that the two nearby scatterers are well separated (only a
selected part of the image surrounding the two scatterers shown for convenience). This result is certainly
different from the migrated image shown in Fig.3a, demonstrating the high-resolution capability of the new
proposed technique. Note that since MUSIC will only give the extreme localization of a scatterer, the effect
of the pulse is no longer present (see Fig.7).
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Figure 6: (a) Scattered data superimposed steered data window centered around a point nearby the two
scatterers. (b) Raw steered data window. (c) After spatial smoothing and amplitude balancing.

DESCRIPTION OF STEERED MUSIC

Based on the simple simulations and observations made in the previous section, we consider the window
steered data matrix, D, that corresponds to a well-aligned scattering event (cf. Figs.5b-c). The matrix D
can then be written in the form

D = [m1,m2, · · · ,mNr ]
T , (7)

where, mi = [mi(∆t),mi(2∆t), · · · ,mi(Nt∆t)]
T , is a column vector representing the set of samples

recorded by receiver i with i = 1, 2 · · · , Nr and ∆t is the sample rate. Moreover, Nr and Nt denote the
number of receivers and observed samples in each receiver, respectively. We now introduce the conceptual
trace decomposition

mi = mav + ∆mi + ni , (8)

where

mav =
1

Nr

Nr∑
i=1

mi , (9)

is the average measurement vector associated with the window, ∆mi is the residual trace contribution and
ni is the noise. The above decomposition readily carries over to the steered data matrix D, namely

D = A + ∆A + N . (10)

Here, all matrices have the dimension Nr × Nt, where Nr is the number of traces within the window
(aperture) and Nt is the number of time samples. Normally, Nr > (>)Nt . Moreover, we used the follow-
ing definitions: A = [mav,mav, · · · ,mav]

T = u ·mT
av with u the vector of ones, u = [1, 1, · · · , 1]T ,

∆A = [∆m1,∆m2, · · · ,∆mNr ]
T and N = [n1,n2, · · · ,nNr ]T . A pictorial description of the matrix

decomposition of Eq.(10) is provided by Fig.8. In terms of the decomposition of Eq. (10), the sample
correlation matrix R (covariance matrix) of the steered matrix, D, can be computed as

D =
1

Nr
DDT =

1

Nr
(A + ∆A + N)(A + ∆A + N)T ≈ (AAT + ∆A∆AT + NNT ) . (11)

It is assumed that the energy of the traces are well balanced and that the same therefore can be expected
for the residual traces (because of incoherency between the three components assumed). As a last assump-
tion, we consider that the residual traces are uncorrelated. Finally, assume that noise is a Gaussian white
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Figure 7: MUSIC migration of the two nearby scatterers.

Figure 8: Decomposition of steered data matrix (D), into three parts: average trace contribution (A),
residual trace (∆A) and noise (N) contributions.

realization. As a consequence, and assuming a migration operator defined by an optimal velocity field, the
correlation matrix of Eq.(11) can be further approximated as

R =
||mav||2

Nt
uuT +

ε

Nt
I + σ2

nI , (12)

in which the factor ε represents the energy of each residual trace and σ2
n is the variance of the white noise

series. It is now straightforward to demonstrate that the vector v = u/
√
Nr is an eigenvector of the

correlation matrix R. In fact,

Rv =
||mav||2√
NrNt

uuTu +

(
ε

Nt
+ σ2

n

)
I

1√
Nr

u =

[
Nr||mav||2

Nt
u +

ε

Nt
+ σ2

n

]
v = λv , (13)

with λ being the corresponding eigenvalue.
MUSIC is a sparsity technique that requires a larger number of observations than features to be re-

solved. If this requirement is fulfilled, the correlation matrix can be decomposed in two orthogonal spaces
(respectively signal and nil spaces). In the case of steered MUSIC as discussed here, we have Nr multiple
measurements of the same single horizontal event. Thus the fundamental requirement is well satisfied.
Note also that, since the steering vector required to generate the MUSIC pseudo-spectrum is horizontal (cf.
Eq.(13)), this implies that it is also frequency independent. This allows us to handle wideband seismic data
Kirlin (1992).

The SVD of the correlation matrix R when computed from the actual data window can now be written
formally as:

R = VsΣsV
T
s + VnΣnVT

n , (14)
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where Vs and Vn are, respectively, the signal and noise subspace singular-vector matrices, while Σs and
Σn are the corresponding singular-value matrices.

We are now ready to define the MUSIC pseudo-spectrum at a given time sample, t0 and mid-point
coordinate, m0. That is given by

I(m0, t0) =
uuT

uPnuT
· wsb , (15)

where Pn = VnVT
n represents the (steered) noise subspace projection matrix and wsb is the semblance-

balancing factor healing the amplitude ambiguity of the classical MUSIC pseudo-spectrum (Asgedom et al.,
2011). Note that, in case of a high-resolved localization event (such as a diffraction), the steering vector
u has a negligible projection into the nil space and the pseudo-spectrum of Eq. (15) is expected to yield a
large value.

The pseudo-spectrum in Eq.(15) is expressed by a nil-space projection. Alternatively, that pseudo-
spectrum can be constructed employing its counterpart signal-space projection (Asgedom et al., 2012c). In
the situation of more than one wavefront inside the data window, if a good velocity model is provided, one
event will be well aligned and the other(s) will be slightly incoherent. As discussed above, the coherency
can be further enhanced by simple sub-averaging or spatial smoothing. One may therefore assume that the
dimension of the signal subspace of R is still one, and that only the largest eigenvector of the correlation
matrix will span the signal subspace. However, in this work we have chosen to use the pseudo-spectrum
in Eq.(15), which we believe is slightly more robust than its signal subspace counterpart (although more
computer intensive).

DATA EXAMPLES

The potential of the proposed imaging technique will be now further demonstrated employing two different
data sets. The first set is taken from the Marmousi model and represents a controlled test case. The second
set is part of a marine seismic line acquired offshore Brazil including a well- known fault system.

4.1 Marmousi model: The Marmousi data set was generated by Institute Français du Petrol (IFP) em-
ploying a 2D finite-difference modeling code. It is based on a seismic profile running through the
North Quenguela trough in the Cuanza basin in Angola. In this study, we selected the upper part
of the original model containing a series of faults as shown in Fig.9a. Diffractions were enhanced
employing the generalized Common-Reflection-Surface (CRS) technique. For more details about
this enhancement as well as the Marmousi data the reader is referred to Asgedom et al. (2012a).
The final zero-offset (ZO) diffraction-enhanced stack was then imaged using the steered MUSIC
migration approach (cf. Fig.9b). The image is seen to be of high-resolution power with an over-
all good description of the major fault system including internal weaker faults. Since the synthetic
data were generated employing the finite-difference technique, the model will slightly suffer from
discretization artifacts. Thus a dipping reflector will be represented by a jig-saw pattern. Due to the
high-resolution characteristics of MUSIC migration also these fine details are revealed (see right part
of Fig.9b).

4.2 Field data: A 2D data set acquired over the Jequitinhonha basin (offshore Brazil) (Costa, 2011) was
used to test the proposed imaging scheme. The basin has undergone extensional type of deformation.
A very large extensional listric fault formed at the landward edge of the salt basin (Davison, 2007)
divides it in two parts characterized by respectively shallow and deep water. Compressional defor-
mations present in the basin are due to the salt. Figure 10 shows the seismic line (line 214-2660)
selected for this study (post-stack migrated). It was acquired along a NE direction over the deep
water part of the basin. The rectangle superimposed the migrated line defines the target zone which
will be in focus here. This area includes a system of major and minor faults which are known to exist
from this post-stack migrated reflection data, although not fully resolved.

Figure 11a shows a zoom of the target area defined in Fig.10 including an interpretation of the
fault system. A diffraction-enhanced stack was computed for this same region based again on the
generalized CRS technique. Note that this stack corresponded to a common-offset section with a very
small offset of 150m. This diffraction stack was then migrated using both conventional Kirchhoff
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Figure 9: (a) Upper part of Marmousi velocity model and (b) MUSIC imaging of enhanced diffractions.

migration and MUSIC migration as advocated for in this paper (cf. Figs. 11b and c). The new
high-resolution imaging technique is seen to give a more detailed picture than standard migration as
expected. Also on comparison with the post-stack migrated image in Fig.11a, MUSIC migration is
seen to give information which is highly correlated with the independent interpretation. In addition,
MUSIC migration indicates another fault (encircled with red) which is not clearly visible on the
post-stack migrated section.

DISCUSSION AND CONCLUSION

This paper has addressed the question of how to form a high-resolution image of diffracted wave con-
tributions in seismic reflection data. Such diffractions can be observed in the seismic data set, as well
as extracted by means of a diffraction-enhancement technique. Straightforward use of migration type of
reconstruction methods will not be able to preserve the fully resolving power of diffractions, due to the
diffraction-limit conditions inherently attached to those approaches. To be able to resolve finer details be-
yond the classical limits, we propose a new high-resolution imaging technique based on a windowed or
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Figure 10: Seismic line 214-2660 superimposed target zone (post-stack migrated data).

steered MUSIC implementation. Application of the method on both synthetic and field data demonstrated
a resolving power beyond that of standard migration. Note that the concept of MUSIC migration applies
to all type of data sorting, time and depth domain as well as prestack and poststack. The only requirement
is that data can be steered along the migration operator defined by an optimal velocity field.
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