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ABSTRACT

3D elastic full waveform inversion aims to reconstruct elastic material properties of 3D structures
in the subsurface with high resolution. Here we present an implementation of 3D elastic full wave-
form inversion based on the adjoint gradient method. The code is optimized regarding runtime and
storage costs by using a time-frequency approach. Wavefields are simulated in time domain using
Finite-Differences, whereas gradients are calculated in frequency domain. We show synthetic inver-
sion results of P- and S-wave velocities, comparing two transmission geometries: (1) a 3D acquisition
geometry with planes of sources and receivers and (2) a 2D geometry with two lines of sources and
receivers, resembling two boreholes. Using the 3D geometry, the 3D inversion is capable to resolve
differently sized 3D structures in good resolution. The 3D random medium data recorded with 2D
acquisition geometry was inverted with the 3D inversion and a 2D full waveform inversion for com-
parison. The 2D inversion is only capable to resolve the main structures and suffers from artefacts
that are caused by the 3D scattering. The 3D inversion offers a comparable resolution within source-
receiver plane. Furthermore, when inverting multicomponent data, it is capable to reconstruct main
3D structures up to about 1 to 2 wavelengths adjacent to the source-receiver plane.

INTRODUCTION

In the 1980’s Tarantola (1984) and Mora (1987) developed a new inversion strategy known as adjoint full
waveform inversion (FWI). By iteratively minimizing the misfit between observed and modeled seismo-
grams this technique uses the full information content given by the waveforms. However, the method is
computationally highly demanding and only in recent years, with ongoing increase of computational power
available to academia, its application to 3D complex media comes into reach. As wave propagation is influ-
enced by various factors like elastic moduli, density, attenuation and anisotropy, it is necessary to include
these parameters in modeling and inversion (Virieux and Operto, 2009). This is a great computational
challenge, but offers the opportunity to invert for multiparameters of 3D complex structures. Today, due to
computational reasons, many 3D applications still use acoustic modeling, hereby neglecting elastic effects.
This is especially the case for marine 3D real data applications (e.g. Plessix, 2009; Sirgue et al., 2010; Vigh
et al., 2011; Etienne et al., 2012). The acoustic approximation generally performs well for marine streamer
data, but is limited for land seismic and ocean bottom seismic data due to the importance of shear-waves.
Until today most elastic FWI applications are mainly performed in 2D (e.g. Sheen et al., 2006; Groos et al.,
2012; Köhn et al., 2012). The 2D approximation is unable to explain 3D scattering arising from 3D het-
erogeneous subsurface structures and of course only offers insights into one or few 2D slices of the 3D
subsurface. 3D elastic FWI is still a computational challenge and applications, as performed by Epanomer-
itakis et al. (2008), Pyun et al. (2008), Fichtner et al. (2009) and Tape et al. (2010), are rare.
In this work, we describe our first implementation of 3D elastic FWI and show its performance for a 3D



162 Annual WIT report 2012

heterogeneous random medium model. Hereby we invert for the compressional and shear wave velocities
using a transmission geometry. We study the resolution of 2D and 3D acquisition geometries and compare
results of 2D and 3D FWI.

METHOD AND IMPLEMENTATION

Full waveform inversion (FWI) aims to minimize the misfit between modeled data u and observed data
uobs. This optimisation problem can be solved by the conjugate gradient approach. In each iteration k the
model mk is updated by

mk+1 = mk − αkPpk (1)

with preconditioning operator P and steplength αk. The search direction

pk = δmk + βkpk−1. (2)

is along the conjugate direction of the gradient of the misfit function δmk = ∂M
∂m . The factor βk is calcu-

lated as given in Mora (1987). M denotes the misfit function.
The gradient is calculated using the adjoint method (e.g. Tarantola, 1984; Mora, 1987). The following
equations use the Einstein notation. We use the L2 norm based misfit function given by

M =
1

2

∑
sources

∫
dt

∑
receivers

δui(xs, xr, t)δui(xs, xr, t) (3)

with the i-th component of the residual δui = ui − ui,obs at source position xs and receiver position xr.
Expressions for the gradients in time or frequency domain are derived in various papers like Mora (1987),
Tarantola (1988) and Pratt et al. (1998). We use a time-frequency approach and calculate wavefields in
time domain, but do the gradient calculation in frequency domain as described by Sirgue et al. (2008). For
a model parametrisation with density ρ and Lamé parameters λ and µ the gradients for one frequency in
the frequency domain are given by

δρ(x, ω) =
∑
s

Re[ω2ũi(x, xs, ω)Ψ̃i(x, xs, ω)], (4)

δλ(x, ω) = −
∑
s

Re

[
∂ũi
∂xi

(x, xs, ω)
∂Ψ̃j

∂xj
(x, xs, ω)

]
(5)

and

δµ(x, ω) = −1

2

∑
s

Re

[(
∂ũi
∂xj

(x, xs, ω) +
∂ũj
∂xi

(x, xs, ω)

)(
∂Ψ̃i

∂xj
(x, xs, ω) +

∂Ψ̃j

∂xi
(x, xs, ω)

)]
. (6)

Hereby ũi and Ψ̃i are the forward and backpropagated displacements in frequency domain, respectively.
The backpropagated wavefield Ψi in time domain is defined as

Ψi(x, xs, t) =
∑

receivers

∫
dtGip(x, t, xr, τ)δup(xr, T − τ) (p = 1, 2, 3). (7)

This wavefield is thus generated at the receivers by the residual reversed in time acting as source time
function. Hereby Gip is the Green’s function for displacement and T denotes the total time length. The
transformation of wavefields from time to frequency domain is performed on the fly as done by Sirgue et al.
(2008)

ũi(x, ω) =

nt∑
l=0

exp(iωl∆t)ui(x, l∆t)∆t, (8)

where nt is the number of timesteps and ∆t the time sampling.
Several advantages arise from the calculation of gradients in the frequency domain. For the inversion only a
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few discrete frequencies are generally sufficient for the model reconstruction. Thus, storage costs of wave-
fields decrease dramatically compared to time domain. At the same time 3D modeling of elastic wavefields
is more efficient in the time domain. The time-frequency approach thus enables an optimisation of runtime
and storage costs. Furthermore it allows an easy frequency filtering and flexible time windowing during
the inversion process.
The modeling is performed with a classical time-domain elastic finite-difference code discretizing the ve-
locity stress formulation of the elastic wave equation on a staggered grid (Virieux, 1986). Boundary re-
flections are efficiently reduced applying convolutional perfectly matched layers (Kamatitsch and Martin,
2007). The code is optimised for parallel computing architectures (Bohlen, 2002).
We calculate the derivatives of the displacement components ui in the equations (4) to (6) directly from
the particle velocity components vi, not from stress components as it is often done for velocity-stress for-
mulations (e.g. Shipp and Singh, 2002; Köhn et al., 2012). To derive displacements we can use the simple
relation

ui(x, ω) =
1

iω
vi(x, ω). (9)

This has the advantage, that only three wavefield components instead of nine need to be stored and addition-
ally no medium parameters are required for the gradient computation of δλ, δµ and δρ. Spatial derivatives
of ui in the equations (5) and (6) are calculated with the use of finite differences.
It is often favourable to use the P-wave velocity vp, the S-wave velocity vs and the density ρ as parametri-
sation (Köhn et al., 2012). The corresponding gradients can be derived from the equations (4) to (6) by
applying the chain rule, leading to

δvp = 2ρvpδλ, (10)

δvs = −4vsρδλ+ 2vsρδµ (11)

δρ′ = (v2
p − 2v2

s)δλ+ v2
sδµ+ δρ (12)

δρ′ is the density gradient in the new parametrisation.

APPLICATIONS

This section shows the results of our first application of 3D full waveform inversion (FWI) to invert 3D
subsurface structures by using two different transmission geometries: an ideal 3D geometry and a more re-
alistic 2D geometry, resembling two boreholes. Results obtained for a checkerboard and a random medium
model are shown. Furthermore, a comparison between 3D FWI and 2D FWI was performed for the random
medium. Table 1 lists the seven different tests which will be compared here, varying in model, acquisition
geometry, number of receiver components and dimensionality of the FWI.

model FWI acquisition inverted S-wave- P-wave- number of
geometry frequencies (Hz) lengths (m) lengths (m) iterations

Test 1 3D checker 3D 3D, 3C 140→ 240 25→ 15 45→ 26 37
Test 2 3D checker 3D 2D, 3C 160→ 240 22→ 15 39→ 26 70
Test 3 3D random 3D 3D, 3C 140→ 320 25→ 11 45→ 20 73
Test 4 3D random 3D 2D, 3C 100→ 320 35→ 11 63→ 20 75
Test 5 3D random 3D 2D, 1C 100→ 320 35→ 11 63→ 20 73
Test 6 2.5D random 2D 2D, 2C < 320 > 11 > 20 36
Test 7 3D random 2D 2D, 2C < 320 > 11 > 20 66

Table 1: Inversion tests varying in method, models, acquisition geometry and number of components (C)
with applied inversion parameters.

Model and acquisition geometry

The model size is 240 m× 160 m× 280 m, that is 300× 200× 350 gridpoints in X-, Y - and Z- direction,
respectively. The grid spacing is dh = 0.8m. Average material parameters of the real models were
adapted with vp = 6300 m

s , vs = 3500 m
s and ρ = 2800 kg

m3 . The seismic velocities show checkerboard or
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Figure 1: Acquisition geometries. Source and receiver positions are indicated by stars and crosses, re-
spectively. a) 3D geometry with 12 sources and 416 receivers; b) 2D geometry with 10 sources and 100
receivers

random medium structures whereas the density is kept homogeneous and constant during inversion.
The acquisition geometries are shown in Figure 1. The grey area corresponds to checkerboard or random

medium structure, which changes to homogeneous medium (white area) towards source and receiver
planes. For the 3D acquisition geometry (Figure 1a) 416 receivers and 12 sources, marked as crosses and
stars, respectively, were regularly arranged in X-Y oriented source and receiver planes. This configuration
is used to test the performance of the 3D FWI in favourable geometry. For the 2D acquisition geometry
only a line of 10 sources and a 200 m distant line of 100 receivers at Y = 80 m was used, as indicated
in Figure 1b. Compared to the 3D geometry, additional sources and receivers were added in these lines
to increase the coverage. With this geometry, the reconstruction of 3D structures using a 2D geometry
is tested and compared to 2D FWI results. We applied point forces in Z-direction with a central source
frequency of 200 Hz, emitting both P- and S-waves. Generally, we used all three receiver components in
the 3D inversion and the X- and Z-component in the 2D inversion.

Inversion setup

We inverted for vp and vs as given in the equations (10) and (11) and chose homogeneous starting models,
hereby adapting the average seismic velocities. The gradients were tapered around source and receiver
planes and along the model boundaries to avoid artefacts in these areas. The different tests and the
respective inversion parameters, like the number of iterations and the frequency range of the FWI, are
listed in Table 1. For the 3D FWI up to three frequencies per iteration were used, which were successively
increased in 20 Hz steps. The 2D FWI is performed with an elastic FWI code developed by Köhn (2011).
This code is based on the adjoint gradient method similarly to the 3D code, however, it calculates gradients
in time domain. It therefore uses the full frequency spectrum. For the 2D calculations a lowpass filter of
320 Hz was applied in all tests.
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Figure 2: Checkerboard model vs with 20 m edge length and ±5% velocity perturbations. The source-
receiver plane of the 2D acquisition geometry at Y = 80 m is indicated by a white dashed line.

The checkerboard test

The checkerboard model (Figure 2) consists of alternating cubes of 20 m edge length and ±5% velocity
variation in both vp and vs. The checkerboard is chosen antisymmetric to the 2D geometry source-receiver
plane at Y = 80m, indicated with a white dashed line in Figure 2. Note that the Y -Z slice shown here is
12 m distant from this plane.

Inversion parameters used for FWI with 3D geometry (test 1) and 2D geometry (test 2) are given in
Table 1. We used a minimum frequency of 140 Hz (S-wavelength 25 m) and increased it in 20 Hz steps to
240 Hz (S-wavelength 15 m), employing three frequencies at a time. This frequency range turned out to be
not sufficient to resolve vp. We will therefore show results for vs only. The inversion for the 2D acquisition
geometry required about twice the number of iterations to converge compared to the 3D geometry.
The models inverted using data acquired with 3D and 2D geometries are plotted in Figure 3. When using

data of a 3D source-receiver geometry (Figure 3a), the inversion can resolve the cubes well. The inversion
is not able to resolve the sharp edges, as this would require the use of higher frequencies. The 3D FWI
of data acquired with a 2D source-receiver geometry is capable to reconstruct the checkerboard pattern in
the area adjacent to source-receiver plane (Figure 3b). Structures up to 40 m apart from the plane, which
corresponds to about two wavelengths, could be recovered. Furthermore, the antisymmetric pattern of the
checkerboard could be resolved. However, resolution is less than for the 3D geometry, which is due to the
lower wave path coverage. This example indicates that 3D FWI is capable to recover 3D structures in the
vicinity of the direct propagation path and also structures outside the first Fresnel zone of the direct rays.

The random medium test

To derive a realistic model with relatively simple wavefields for our first application we chose a random
medium model. We used statistical parameters as observed for crystaline rocks at the German Continental
Drilling site (KTB) (Kneib, 1995). The random medium (Figure 4) is described by an exponential au-
tocorrelation function in space with a correlation length of 30 m and a standard deviation of 5% for the
Gaussian distributed seismic velocities. The average velocities are the same as in the previous section with
vp = 6300 m

s and vs = 3500 m
s and a constant vp/vs ratio of 1.8. The model features differently sized 3D

structures and is used here to test resolution of the FWI results for different scales.

Results 3D full waveform inversion:
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Figure 3: Checkerboard inversion results for data acquired with a) 3D geometry (Figure 1a), test 1 and b)
2D geometry (figure 1b), test 2.

Figure 4: The random medium velocity model.
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Figure 5: Observed, initial and inverted waveforms of 3D FWI with 3D acquisition geometry data (test 3)
at one representative receiver (136 m, 72 m, 32 m) and for one shot at (96 m, 80 m, 232 m).

Inversion parameters are given in Table 1, test 3. The maximum S-wavelength of 25 m corresponds to half
the size of the largest model structures. The smallest wavelengths are 20 m and 11 m of P- and S-waves,
respectively. For the 2D acquisition geometry (test 4) lower frequencies of down to 100 Hz corresponding
to S-wavelengths of about 35 m were required for the inversion to succeed.
The misfit was successfully decreased to final values of 1.5% of the initial misfit for the 3D geometry
data and 2.2% for the 2D geometry data. Figure 5 shows the observed, initial and inverted 3-component
waveforms at one exemplary receiver and for one shot. Starting from a homogeneous model, the main
phases of P- and S-waves as well as the scattered waves in the observed data can be well explained by the
final model for all components.
In Figure 6a and Figure 6b the final inverted models of vs and vp for the 3D acquisition data are plotted.

Compared to the true model in Figure 4, the differently sized 3D structures of the random medium are
well resolved in vs. Structures smaller than the minimum wavelength could be recovered. The vp model
is smoother due to its larger wavelengths. The quality decreases towards the model boundaries where
wavefield coverage is lower.
The vs model obtained for the 2D acquisition geometry data is shown for comparison in Figure 6c.
Maximum wave path coverage is along the source-receiver plane at Y = 80 m. In this plane the main
structures are recovered by the inversion. However, even though we used a denser spacing of sources
and receivers within this plane, the quality is less than for the FWI with 3D geometry data. Similar to
the checkerboard test, we observe that the 3D FWI succeeds to reconstruct 3D structures outside the
source-receiver plane. Using multi-component 3D scattered waves, some structures up to two wavelengths
apart from the plane are recovered.
Highest amplitudes of the S-wave in the source-receiver plane are found on the X-component seismograms.
We repeated the 3D FWI with 2D source-receiver geometry using only the X-component of the observed
data to see the influence of multi-component data (test 5). The final vs model is plotted in Figure 6d.
Within source-receiver plane the reconstructed structures look quite similar to the three component result
in Figure 6c. The main difference is, that gradients and model updates of the X-component inversion are
symmetric to source-receiver plane. Structures antisymmetric to source-receiver plane cannot be resolved
correctly without the additional information about the Y-component waveforms.
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Figure 6: 3D FWI results for the random medium model using different acquisition geometries: a) model
vs inverted with 3D geometry (test 3), b) model vp inverted with 3D geometry (test 3), c) model vs inverted
with 2D geometry using all receiver components (test 4) and d) model vs inverted with 2D geometry using
one receiver component (x-component)(test 5).
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Figure 7: Reconstruction of vs using 2D FWI; sources (stars) and receivers (crosses) are marked. a) real
smoothed model, b) result 2D FWI of 2.5D random medium data (test 6) as reference and c) result 2D FWI
of 3D random medium data (test 7)

Comparison of 3D and 2D inversion results:
In many applications 2D FWI is applied to cross-well seismic experiments (e.g. Pratt et al., 2005; Zhang
et al., 2012). In these studies structures outside the acquisition plane are neglected but may distort the
inversion results. To study the possible site effects of 3D structure we compare the 3D FWI results with
the results of a 2D FWI. For the 2D FWI we used the same 2D acquisition geometry as previously. We
thus try to resolve the plane at Y = 80 m of the random medium. Two tests were performed: test 6 and
test 7 (Table 1). As a reference result a 2D FWI of 3D modelled data of the 2.5D random medium was
performed (test 6). The 2.5D model extends model parameters at Y =80 m of the random medium constant
in Y -direction. The data of this model are thus not influenced by 3D scattering and a 2D approximation is
valid. In test 7 the data of the 3D random medium were inverted, which contain the 3D scattered waves.
To invert the 3D data with a 2D method, a transformation of observed data from 3D to 2D was applied to
account for the differences between line source and point source wavefields. We convolved seismograms
with 1√

t
as phase correction and multiplied amplitudes with C

√
t as amplitude correction (Pica et al.,

1990). The transformed 3D modelled data for the 2.5D model show a very good agreement with the 2D
data modelled for the plane at Y = 80m. This proves, that the transformation works well for the given
scenarios.
We applied a 2D FWI to the transformed data of the 2.5D model and of the 3D model. In both cases the
2D inversion successfully minimized the misfit to 1-2% of the initial value.
The 2D FWI results for vs are shown in Figure 7. The slice of the true model (Figure 7a) is smoothed,

to enable a better comparison. The 2D FWI of the 2.5D model data (Figure 7b) successfully recovered the
random medium structure. Its quality and resolution is comparable to the 3D FWI result achieved with 3D
source-receiver geometry (Figure 6a). The main features can still be reconstructed when inverting the data
of the 3D heterogeneous random medium with 2D FWI (Figure 7c). However, smaller structures suffer in
resolution and artefacts are caused by 3D site-scattering. This can be explained when looking at the effects
of 3D scattering on the waveforms. Figure 8a shows a comparison between the 2.5D random medium data
without 3D scattering versus the 3D random medium data with 3D scattering for X-, Y-, and Z-component
at one exemplary receiver. 3D scattering has a significant influence on the wavefields. In Figure 8b the
observed, initial and inverted waveforms of the 2D FWI are plotted and it is evident, that the 2D FWI tries
to fit the 3D scattered waveforms. However, the 2D FWI is unable to interpret the 3D scattering correctly,
leading to artefacts and the lack of resolution. The resolution of 2D FWI thus suffers from the presence of
3D small scale heterogeneities.

A 3D FWI with 2D source-receiver geometry (test 4) has the advantage to gain information about 3D
structures outside source-receiver plane, as was shown in the previous section. A comparison of the final
model achieved with 3D FWI (Figure 6b) and the 2D FWI result of the 3D random medium (Figure 7c))
shows, that the resolution within source-receiver plane is comparable.
Table 2 gives a comparison of the computation times for 2D FWI and 3D FWI. The 2D FWI requires only

about 64 core hours in total for our example and was performed on a 8 CPU workstation. The 3D FWI
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Figure 8: Waveforms at receiver (111 m, 80 m, 32 m) for source location (96 m, 80 m, 232 m): a) The
comparison of waveforms for the 3D and the 2.5D random medium model shows the influence of 3D
scattering. b) Observed, initial and final inverted waveforms of the 2D FWI with 3D random medium data
(test 7).

3D FWI 800 cores 73 iterations 300× 200× 350 35 hours
2D FWI 8 cores 67 iterations 300× 350 8 hours

Table 2: Comparison of run times for a 2D and a 3D elastic FWI using 10 sources, 28 forward modelings
per iteration and 3300 timesteps.

requires 28.000 core hours and can be realized nowadays on high performance computers.

CONCLUSION

We present an implementation of 3D elastic full waveform inversion (FWI) which is based on the adjoint
method and uses a time-frequency approach. First applications confirm the efficiency of this approach,
which shows for example in a dramatic reduction of wavefield storage and an efficient calculation of 3D
wavefields. We discussed the performance of the code for a random medium and a checkerboard example in
transmission configuration. Using a 3D acquisition geometry, the 3D elastic FWI can successfully recover
the 3D velocity structures starting from a homogeneous starting model. Using a 2D acquisition geometry
3D structures are recovered up to 1 to 2 wavelengths adjacent to the source-receiver plane, however with
less resolution. When using only one component directed parallel to the source-receiver plane, the inversion
result is symmetric and structures antisymmetric to this plane cannot be reconstructed correctly. The results
indicate, that the application of 3D FWI to multi-component cross-well data might be used to detect 3D
structures in an area around the acquisition plane. For comparison a 2D FWI was performed. In the
presence of 3D small-scale heterogeneities the 2D FWI suffers in resolution and from artefacts due to 3D
scattering effects, still, the main structures in the acquisition plane are resolved.
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