
59

OFFSET-CONTINUATION STACKING

T.A. Coimbra, A. Novais, and J. Schleicher

email: tgo.coimbra@gmail.com,amelia@ime.unicamp.br,js@ime.unicamp.br
keywords: Offset continuation, data stacking, signal enhancement, multi-fold data

ABSTRACT

We introduce a data-driven stacking technique that transforms 2D/2.5D prestack multicoverage data
into a common-offset (CO) section. We refer to this new process, which is based on the offset-
continuation operation (OCO), as offset-continuation stacking or briefly OCO stack. Similarly to the
CMP and CRS stacks, the OCO stack does not rely on an a-priori velocity model but provides velocity
information itself. The original OCO method is a seismic configuration transform designed to simulate
a seismic section as if obtained with a certain source-receiver offset using the data measured with
another offset. Since OCO is dependent on the velocity model used in the process, it can be combined
with stacking techniques for a set of models, thus allowing for the extraction of velocity information.
The algorithm is based on so-called OCO trajectories, which are related to the concepts of image
waves and velocity rays. We theoretically relate the OCO trajectories to the kinematic properties of
OCO image waves that describe the continuous transformation of the common-offset reflection event
from one offset to another. Based on OCO trajectories, we then formulate a horizon-based velocity
analysis method, where root mean square (RMS) velocities and local event slopes are determined by
stacking along event horizons.

INTRODUCTION

By definition, the Offset-Continuation Operation (OCO) is an operator that transforms common offset
(CO) seismic gathers from one constant offset to another (Deregowski and Rocca, 1981). It is an important
tool for imaging in a complex medium. Possible applications of OCO include velocity analysis, common-
reflection point (CRP) stacking, dip moveout (DMO), migration to zero offset (MZO), interpolation of
missing data, amplitude variation with offset (AVO) studies, and geometrical-spreading correction (see,
e.g., Salvador and Savelli, 1982; Bolondi et al., 1982, 1984; Fomel, 1994, 2003; Santos et al., 1997).

Since OCO is a configuration transform, its objective is to simulate a seismic section using as input
the data measured with another configuration. As discussed by Hubral et al. (1996a) and mathematically
demonstranted by Tygel et al. (1996), any configuration transform can be thought of as being composed of
a migration and a subsequent demigration after changing a configuration parameter.

Configurations transforms have already been used for several purposes in seismic processing such as
MZO (Tygel et al., 1998; Bleistein et al., 1999), source continuation operation (SCO) (Bagaini and Spagno-
lini, 1993, 1996), azimuth moveout (AMO) (Biondi et al., 1998), DMO (Hale, 1984; Canning and Gardner,
1996; Collins, 1997; Black et al., 1993), common-source (CS)-DMO (Schleicher and Bagaini, 2004), data
reconstruction (Bagaini et al., 1994; Stolt, 2002; Chemingui and Biondi, 2002), and velocity analysis (Silva,
2005; Coimbra et al., 2012).

For data of very low signal-to-noise ratio (S/N) or acquisitions with very low fold, conventional
common-midpoint (CMP) processing might not provide stacked sections of sufficient quality. In such
situations, alternative processing sequences are necessary to improve the data quality. The OCO stack
represents such an alternative path for the processing of reflection-seismic data. Its key element is the con-
struction of common-offset stacked sections together with coherency sections and sections of kinematic
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and dynamic wavefield attributes.
The OCO stacking surface is composed of so-called OCO trajectories (Coimbra et al., 2012). Such a

trajectory requires only two parameters (local event slope and stacking velocity) to describe the seismic
reflection event in the multi-coverage data. Neighbouring trajectories can be located by event tracking in
the stacked section or described by a third curvature-related parameter. Using these parameters, the method
stacks the data along a predicted traveltime curve that approximates the CRP event. Since the parameters,
and thus the predicted traveltime curve, are updated from the data at each offset, the approximation is better
than by conventional methods that adjust the approximate traveltime expression at some initial point. The
purpose of this paper is to establish a consistent processing chain that is based entirely on the OCO stack,
relying on identical assumptions at all steps.

METHOD

The OCO stack is a multiparameter stacking procedure similar to its relatives, the CMP and CRS stacks
and multifocusing. It automatically determines stacking attributes based on a coherence measure applied at
every common-offset sample of the data. Since these attributes vary with time for the same event, the OCO
stacked section is free of normal moveout (NMO)-stretch (Perroud and Tygel, 2004). The main advantages
of the OCO stack are twofold. Firstly, it is not limited to a zero-offset stacked section like the CMP stack.
Secondly, for the 2D/2.5D case as discussed here, the OCO stack needs at most two parameter in addition
to stacking velocity, even for the construction of stacked common-offset sections.

There are other multiparameter stacking methods (Gelchinsky et al., 1999; Jäger et al., 2001; Zhang
et al., 2001; Hertweck et al., 2007; Fomel and Kazinnik, 2012), which are based on stacks data from
multiple CMP locations. As a result, they considerably improve the signal-to-noise ratio. However, these
methods require the estimation of more data parameters than conventional CMP processing, in addition
to the conventional stacking velocity. For instance, the zero-offset CRS method requires two additional
parameters and common-offset CRS requires four of them. Moreover, due to multi-coverage some events
such as diffractions, far-offset faults and strong dips can disappear.

In this section, we derive the theoretical basis for the OCO stack. It is based on the kinematic behaviour
of the OCO transformation as described by the OCO image-wave equation (Hubral et al., 1996b).

Image-wave for OCO

The OCO image-wave equation was derived through image-wave theory from the kinematic behaviour of
the OCO transformation (Hubral et al., 1996b). It is a second order linear partial differential equation,
which can be written as
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Equation (1) describes the behavior of an artificial (non-physical) process of transforming reflection seis-
mic data U(ξ, t, h) in the offset-midpoint-time domain as a certain kind of “wave propagation”. In this case
it is the record of the seismic reflection that “propagates”as a function of half-offset h. In equation (1), ξ
and t are the midpoint and time coordinate of the reflection event under consideration. The velocity V is
assumed to be a constant average velocity that is known a priori. We will refer to V as the OCO velocity.
Its relationship to the RMS velocity is discussed below.

Equation (1) belongs to the class of linear hyperbolic equations, when t > 0 and h 6= 0, with the half-
offset h acting as propagation variable (i.e., equivalent to time in conventional wave propagation). Equation
(1) describes a wave-like propagation in the offset direction that Hubral et al. (1996b) termed image-wave
propagation.

We use the OCO image-wave equation (1) to obtain the trajectory of single point under variation of the
half-offset. Formally, we can think of the solution to equation (1) as being approximated by an expression
that is analogous to the one used in ray theory, i.e., the leading term of a high-frequency asymptotic (WKBJ-
type) approximation for a reflected wave recorded on a seismogram of the form

U(ξ, t, h) = A(ξ, t)F (h−H(ξ, t)), (2)
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Figure 1: Sketch representing a traveltime surface and an OCO trajectory starting at a point P0 on the
traveltime curve S0 in the initial common-offset section with half-offset h0 (front panel).

where A stands for the amplitude, F is the wavelet shape of the leading high-frequency term, and H =
H(ξ, t) describes the image-wave front for the OCO image wave. In other words, H can be called the
OCO eikonal. By substitution of approximation (2) in equation (1), we obtain, to the leading order, the
image-eikonal equation associated with equation (1) as

tH

(
1 +

4

V 2

(
∂H

∂t

)2
)
−
(
t2 +

4

V 2
H2

)
∂H

∂t
− tH

(
∂H

∂ξ

)2

= 0. (3)

Equation (3) kinematically describes the propagation of the OCO image-waves.

OCO Trajectories

The solution of the OCO eikonal equation (3) leads to ray-like trajectories describing the position of a
selected point P0 on a seismic reflection event S0 in different common-offset sections, the so-called OCO
trajectories (Coimbra et al., 2012, see also Figure 1). In this section, we develop an algebraic procedure
to construct the OCO trajectories. It is based on manipulating the Huygens image-wave for OCO (Hubral
et al., 1996b).

We begin our derivation with the Cauchy-problem consisting of the first-order differential equation (3)
and initial condition

H(ξh0 , th0(ξh0)) = h0, (4)

where h0 denotes the initial half-offset, i.e., the one at which the OCO trajectory starts. Note that h0 can
be any offset, not only zero offset as in the CMP method or zero-offset CRS.

Coimbra et al. (2012) used the method of characteristics to obtain the analytical form for the OCO
trajectories. This method consists of transforming equation (3) into the following system of ordinary dif-
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where p = ∂H/∂ξ and q = ∂H/∂t. The choice dH/dh ≡ 1 in the last equation is required to guarantee
h = H(ξ, t) on the OCO image-wavefront, i.e., on the seismic reflection event in the CO section for h.
This defines the scale factor as λ =

(
−tHp2 + 4q2tH/V 2 − tH

)−1
.

System (5) is called the characteristic system of differential equations of equation (3). All variables
involved are parameterized as ξ = ξ(h), t = t(h), p = p(h), q = q(h) and H = H(h). The solutions
(ξ(h), t(h)) of system (5) describe the OCO trajectory associated with an initial point P0 in the CO section
with half-offset h0 (see Figure 1). In other words, (ξ(h), t(h)) are the coordinates where the image of P0

will be found in any other CO section with half-offset h.
According to the general theory of partial differential equations of the first order (Courant and Hilbert,

1989), we obtain the general manifold of solutions to the partial differential equation (3) with the initial
value (4) by the following procedure. The traveltime surface in the offset-midpoint-time space is a manifold
SH(t, ξ,H) = 0 (see again Figure 1). At h = h0, the manifold coincides with the reflection event S0 =
SH(t(h0), ξ(h0), h0) = 0. This manifold can alternatively be described by the parameter ξh0
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must be satisfied in order to guarantee the existence of the OCO trajectories. Hence, we define S0 as the
traveltime curve in a common-offset section as the manifold SH projected on the ξ×t-common-offset-plane
with h = h0 and rewrite H , t, ξ as functions of the parameter ξh0

.
We now seek an integral surface H(ξ, t) which passes through S0, that is, a solution to (3)) for which

H(ξh0 = H(ξ(ξh0), t(ξh0)) = h0 holds identically for all ξh0 . The curve S0 is called the initial curve of
the problem, and H(ξh0) is called the initial data.

This leads to a family of characteristic curves
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and h as parameters. Fixing h = h0 and varying ξh0

we obtain the curve S0. On the
other hand, fixing ξh0

and varying h, we obtain the OCO trajectories.

Complete solution

The initial value problem composed by equations (3) and (4) can be solved analytically. Actually, Santos
et al. (1997) have demonstrated that for one fixed ξh0 , all possible OCO trajectories must satisfy
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Equation (10) is also known as the OCO Huygens-image curve. In analogy to physical wave phenom-
ena, equation (10) is the position of a (hypothetical) image wave ‘excited’ at an elementary point-source
at a position P0 with coordinates (ξh0

, th0
) (Hubral et al., 1996b). In other words, equation (10) repre-

sents a complete integral of the problem (3)-(4), depending on the parameters ξ, h, ξh0 , th0 and h0, but
independently of the actual position of the event through P0.

The actual path of the OCO trajectory depends on the event slope at P0. To describe this dependence,
we parameterize th0 = th0(ξh0) and consider ξh0 as a function of ξ, h and h0. The envelope of all OCO
Huygens image-curves for all points on S0 describes the manifold SH at half-offset h. It is constructed by
taking the derivative of t in equation (10) with respect to ξh0

. Under consideration of the identity
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denoting the dip of the reflection event S0 at P0.
Together, equations (10) and (13) constitute a parametric form of the manifold SH . For a fixed ξh0

these equations thus describe the OCO trajectory from P0 in the initial common-offset section at h0 to any
other common-offset at h. In other words, equations (10) and (13) represent the position of events that are
reflected at the same point in depth (if the medium was exactly described by the OCO velocity V ), i.e.,
the OCO trajectory belongs to a common-reflection point (CRP). Using the formulae above, we can trace
an OCO trajectory starting at any point on an reflection event in any arbitrary common-offset section, just
using the information about the average velocity and local event slope at that point. If the OCO trajectory
starts or ends at zero offset, formulae (10) and (13) simplify considerably.

Migration to zero offset. For a migration to zero offset, we need the OCO trajectory to start at some
initial half-offset h0 6= 0 and end at the final half-offset h = 0. This reduces the set of equations (10) and
(13) to
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where ξ0 denotes the values of ξh at h = 0.

OCO starting at zero offset. For the zero-offset case, we need the OCO trajectory to start at the initial
half-offset h0 = 0 and end at the final half-offset h 6= 0. This reduces the set of equations (10) and (13) to
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where ξ0, t0, and φ0 denote the values of ξh0
, th0

, and φh0
at h0 = 0. Substitution of equation (18) in

expression (17) yields
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which describes the OCO trajectory as a function of h.

Traveltime derivatives

There are a number of useful relationships between different types of traveltime derivatives that can be
found from the set of equations (10)-(13). On the traveltime curve in the common-offset section at h, we
have that h = H(x, t). The derivatives of this equation with respect to ξ and h provide two important
relationships between the parameters p and q and the local event slopes in the CO section, φh, and in the
CMP section, φξ, at the point (ξ, h) where these sections intersect. The fact that the total derivative of H
with respect to ξ on the event is identically zero, leads to (Coimbra et al., 2012)
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which relates the traveltime slope φ in the CO section to p = ∂H/∂ξ and q = ∂H/∂t. Correspondingly,
from dH/dh = 1, we find that the traveltime slope ψ in the CMP section relates to q as
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Relationships between slopes. Hubral et al. (1996b) found another useful equation for the midpoint
displacement in terms of the derivatives of H . In our notation, their equation (A29) can be written as

ξh − ξ0 =
−ph2

qt− h
=

φhh
2

t− hψξ
, (22)

where the second equality is a consequence of equations (20) and (21).
By equating the right side of equation (22) with the negative of the right side of equation (16), we find

after some manipulations the local event slope ψξ in the CMP section at ξ as a function of the local event
slope φh in the CO section at h,
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It is instructive to observe that for a horizontal event, i.e., in the case of φh = 0, equation (23) simplifies
consiberably to

ψξ =
4h

V 2t
. (24)

Since equation pairs (15)-(16) and (17)-(18), describe the very same OCO trajectory in opposite direc-
tions, we can also equate the midpoint dislocations of equations (16) and (18), resulting in the relationship
between the event slopes in the ZO and CO sections given by
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t2 − 4h2/V 2 is the NMO corrected traveltime at half-offset h. Equating φ0 from two

different half-offsets h and h0 allows to find the direct relationship between the event slopes at the OCO
trajectory in the two CO sections at h and h0 as
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Common-shot and common-receiver slopes. Using that ξ = (s+g)/2 and h = (g−s)/2, where s and
g are the source and receiver coordinates, we can also find the traveltime derivatives with respect to s and
g as
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OCO velocity and RMS velocity

Let us now briefly discuss the relationship between the OCO and RMS velocities. For the case of h0 = 0
in a homogeneous medium, differentiation of equation (23) with respect to h yields
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The second traveltime derivative in the CMP section at h = 0 is closely related to the NMO velocity vn.
Because vn defines the hyperbolic traveltime approximation t2 = t20 + 4h2/v2

n, expression (29) taken at
h = 0 and multiplied by t0 yields
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While this expression may be hard to interpret in the general case, it is instructive to note that for a stack
of dipping layers with dip angle β0, vn = vrms/ cosβ0 and φ0 = 2 sinβ0/vrms, which yields

V = vrms . (32)

Note that this identity between the OCO velocity V and the RMS velocity vrms is true at the very beginning
of the OCO trajectory at zero offset. For OCO trajectories traced from another initial offset, V will deviate
from the RMS velocity. In other words, OCO allows to extract offset-depending average velocities.

THE OCO STACK

The idea of the OCO stack is to construct an approximate traveltime surface using the set of equations (10),
(13), and (26). The advantage of such a surface is that it uses only two traveltime attributes. These are the
local event slope and the OCO velocity at the central point. Figure 2 compares a so-obtained traveltime
surface to other traveltime approximations. Figure 2a shows the deviation of the OCO trajectory from
the CMP traveltime. Figure 2b shows that at large offsets, the OCO trajectory leaves the CRS stacking
surface. Figure 2c demonstrates that this is also true for the improved nonhyperbolic CRS stacking surface
of Fomel and Kazinnik (2012). Finally, Figure 2d demonstrates the advantage of the OCO stacking surface,
composed exclusively of OCO trajectories. This surface englobes the OCO trajectory of the central point
at all offsets.

To construct the OCO stacking surface for a central point P0 with coordinates (ξh0 , th0 ), we trace
trial OCO trajectories for each possible combination of values for V and φh0 . The pair that provides
the maximum coherence along the trial trajectory defines the OCO trajectory for P0. For a simple one-
reflector model (see Figure 3), Figure 4 illustrates the procedure. For each point in the reference CO
section for h = 100 m (Figure 4a), the noisy data (Figure 4a) are stacked along the OCO stacking surface.
The maximum semblance (Figure 4e) along all trial surfaces determines the parameter pair of traveltime
slope (Figure 4c) and OCO velocity (Figure 4d) that define the best-fitting OCO trajectory through the
multi-coverage data. The result is a noise-attenuated stacked CO section (Figure 4f) corresponding to the
reference section (which can, but need not exist among the acquired data).
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Figure 2: Location of an OCO trajectory as compared to different traveltime curves and surfaces. (a)
CMP traveltime, (b) CRS stacking surface, (c) non-hyperbolic CRS stacking surface, (d) OCO stacking
surface.
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Figure 3: Model for the first synthetic test of stacking along OCO trajectories.

To incorporate information about the time dip along the trial trajectories, the coherence is evaluated
along the dip direction in a small window of neighbouring traces (5 traces in our implementation) around
the trajectory. At each half-offset, the dip is corrected from its initial value by means of equation (26).

To extend the so-determined OCO trajectory to an approximate traveltime surface, there are two pos-
sibilities. The most intuitive one is to join OCO trajectories for neighbouring points on the same event.
This involves tracking of the event in the semblance section, which may be difficult to achieve for events
with strongly varying amplitudes or noisy data. On the other hand, if handled correctly, this procedure has
the potential to offer a better treatment for conflicting dips, because a single trajectory within the stacking
surface, even at the central point, is of reduced importance.

Another approach is to approximate the event in the initial CO section in the vicinity of the central point
P0. In this work, we have tested the approximation by means of a Taylor expansion up to second order,
which makes the method more comparable to the CRS stack. However, any other type of approximation
(e.g., a Padé approximation) could also be used. Since the local event slope is already known from the
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Figure 4: (a) Reference CO section, (b) Noisy reference CO section (S/N=2), (c) Traveltime slope, (d)
OCO velocity panel. (e) Semblance along OCO trajectory, (f) stacked CO section.

previous two-parameter search, the Taylor approximation involves the search for a third parameter, the
event curvature in the CO section.

The second-order Taylor approximation of the CO traveltime in the vicinity of P0 reads

T (∆ξh0
;P0) =

√
(th0

+ φh0
∆ξh0

)2 + th0
Kh0

∆ξ2
h0
, (33)

where

Kh0 =
∂2t

∂ξ2

∣∣∣∣
h=h0

(34)

denotes a measure of the local event curvature at the central point P0. This parameter must be found by an
additional one-parameter search.

From equation (35), the OCO stacking surface can still be obtained in two manners. The first way
consists of predicting the slope of the event in the vicinity of P0 using the traveltime approximation (35)
and tracing the neighbouring OCO trajectories using these approximate slope values.
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Figure 5: Velocity spectrum for (a) conventional CMP velocity analysis, (b) OCO velocity analysis.

The derivative of T with respect to ∆ξh0 yields the approximate slope in the vicinity of P0 as a function
of Kh0 , viz.

Φ(∆ξh0
;P0) =

∂T

∂∆ξh0

=
(th0 + φh0∆ξh0)φh0 + th0Kh0∆ξh0

T
. (35)

The second way consists of predicting the corresponding Taylor expansion of the event traveltime in
the CO section with half-offset h from equation (35). For this purpose, the parameter Kh at h needs to be
determined from Kh0

. The OCO stacking surface is then formed by all so-obtained Taylor expansions at
all available offsets.

To transform Kh0 to another offset, we use the fact that on the OCO trajectory, equation (26) holds.
Since this must be true for all ξ, we have

∂

∂ξ

(
φh − φh0

t2nth0

t2n0
t

)
= 0 , (36)

which results in

Kh = Kh0

t2nth0

t2n0
t

+ φh0

φh(t2 − 4/V 2)th0
t2n0
− φh0

(t2h0
− 4h2

0/V
2)t2nt

t2t4n0

(37)

on the OCO trajectory.
Both ways of constructing the OCO stacking surface from Taylor expansion (35) yield in approxima-

tions of slightly different quality. In our tests, the procedure tracing OCO trajectories using approximate
slopes was slightly superior to the one constructing approximate Taylor expansions for other offsets, par-
ticularly for large differences between h and h0.

RESULTS AND DISCUSSION

To test the OCO stacking technique as described above, we have applied it to two synthetic data sets. The
first is a multi-coverage data from a constant-velocity model and the second one is the Sigsbee2B data set.

Constant-velocity model

The first model consists of two constant-velocity layers with velocities 1.7 km/s and 1.9 km/s, separated
by a reflector with two linear and a synclinal segment, including an egde that causes a diffraction event
(see Figure 3). We modelled multi-coverage data using 2.5D Kirchhoff modelling and added white noise
with a signal-to-noise ratio of 10. To these data, we applied the OCO stack starting at zero-offset (see
Figure 4). Note that for this simple model, we stacked only along single OCO trajectories, not along OCO
stacking surfaces composed of multiple trajectories. Figure 5 compares the conventional NMO velocity
spectrum (no DMO correction) to the resulting OCO velocity spectrum at the CMP position indicated by a
blue line in Figure 4a. At this position, there are four events with different dips in the zero-offset section
(one reflection from the linear segment and two from the synclinal part, as well as the diffraction event).
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Figure 6: (a) Dip angle as estimated from OCO stack. (b) Stacked ZO trace from OCO and CMP compared
to true modelled ZO trace.

Their different dips causes the peaks in the CMP velocity spectrum (Figure 5a) to be positioned at different
velocities. We see that the OCO stack not only gets the velocity right for all four events (Figure 5b), but
also provides better focused peaks that allows for a more reliable velocity extraction.

In addition to its better properties for velocity extraction, the OCO stack provides additional information
on the dip of the reflection event in the stacked section (Figure 6a). It is clearly visible that the top reflector
has a positive dip and the bottom reflector has a negative dip. This information cannot be extracted from the
NMO velocities since any dip always shifts the NMO velocities to higher velocities by a factor of 1/ cos θ,
where θ is the dip angle. Since such a dip spectrum can be obtained for any half-offset (independently of
whether the respective section is available in the acquired data or not), slope information can be extracted
for all offsets of interest. This is valuable information for slope-based methods like stereotomography
(Billette and Lambaré, 1998; Billette et al., 2003) or parsimonious migration (Hua and McMechan, 2001,
2003) and migration velocity analysis (Lambaré et al., 2008).

Finally, the quality of the resulting stacked section is evaluated in Figure 6b, which shows compares
the stacked ZO trace from OCO and CMP and compares them to the true modelled ZO trace at the same
position. Both stacked traces are scaled by the number of traces stacked to allow for comparison. We see
that the pulse recovered by the OCO stack resembles the true one much more closely than the one obtained
by a CMP stack.

Sigsbee2B data

For a more realistic example, we applied the OCO stack to the Sigsbee2B data. Figure 7a shows a short-
offset (h0 = 90 m) section, together with the central point (blue line) where the analysis was carried out.
For the analysis, we added white noise with an S/N ration of 10 to these data. The resulting velocity and
dip spectra are shown in Figure 7b-d. We see that the resulting OCO velocities (Figure 7b) are slightly
shifted to lower velocities in comparison to the NMO velocities (Figure 7c), accounting for the slight dips
at the chosen central point. Moreover, like in the previous example, the OCO velocity peaks are again
better focused than those of the NMO velocities, allowing for more reliable velocity picks. In addition to
the velocity information, the OCO stack also provides information about the event slope at the central point
in the stacked section (Figure 7d). The semblance maxima indicate predominantely left-dipping events in
the region between 4 s and 7 s and more or less horizontal events between 7 s and 9 s two-way time.

The biparametric search that results in the two OCO panels in Figures 7b and c took 3h20min in a
simple matlab implementation.

CONCLUSIONS

We have developed a new method for stacking data into zero or common-offset sections. The method uses
the tracing of offset continuation (OCO) trajectories. These trajectories describe the position of a selected
point on a seismic reflection event as a function of offset. Neighbouring OCO trajectories form a stacking
surface along which the data can be summed up. In this way, stacked common-offset sections can be con-
structed for any arbitrary offset. An OCO trajectory is described by only two parameters, being an average
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Figure 7: Sigsbee2B data: (a) Short-offset section, (b) conventional CMP velocity spectrum, (c) OCO
velocity spectrum, (d) dip angle as estimated from OCO stack.

velocity that is an approximation to RMS velocity, and the local event slope in the final stacked section.
To describe the full OCO stacking surface, one can use an additional curvature-dependent parameter to
avoid event tracking in the stacked section. This procedure is still advantageous over an offset CRS stack,
which needs at least 5 parameters to describe the stacking surface. Two synthetic examples for a simple
constant-velocity model and the Sigsbee2B data have demonstrated that the OCO velocity spectra are more
focused than conventional CMP spectra, allowing for more reliable velocity picks. Additionally, the OCO
stack can provide a spectrum of local event slopes for all offsets of interest. This is valuable information
for slope-based methods like stereotomography or parsimonious migration.
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