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ABSTRACT

In applied seismics it is very important to get a first, reliable time image of the subsurface. So called
multi-parameter stacking operators establish this image and in addition multiple important attribute
sections. The quality of image and attributes strongly depends on the accuracy of the description of
the traveltime moveout. The implicit common reflection surface (i-CRS) approach assumes a circular
reflector beneath a heterogeneous medium. It leads to good results in terms of traveltime fit, coherence
and attributes. By introducing a new degree of freedom to the i-CRS operator, we want to achieve a
sensitivity improvement and a better fit, i.e. a larger coherence. The new free parameter is the overbur-
den velocity. We investigate different four parameter approaches and compare the two most promising
ones to the established three parameter methods CRS, planar MF and conventional i-CRS. The investi-
gations include an accuracy study, a sensitivity study and the application as a stacking operator. All of
them consider a simple synthetic model with different radii of curvature and different vertical velocity
gradients. It turns out, that the new four parameter descriptions perform better in terms of traveltime
fit and sensitivity than CRS, MF and i-CRS. The application as a stacking operator results in a slightly
higher coherence and a worse attribute estimation compared with the three parameter i-CRS.

INTRODUCTION

Traveltime curves are derived for different seismic events like reflections, refractions and diffractions.
These curves are approximated with different functions. The simplest one is a parabola. The stack sums up
traces of the same regions in the subsurface (Mayne, 1962). Advantages of stacking are a reduction in the
data volume and an improvement of the signal-to-noise ratio. New methods execute the stacking process
in two directions. Subsurface information like the curvature of a reflector, are described by the kinematic
wave field attributes α,RNIP and RN (Hubral, 1983). Different multiparameter stacking operators are
applied. These are e.g. the shifted hyperbola (de Bazelaire, 1988), the common reflection surface (Müller,
1999), planar multifocusing (Gelchinsky et al., 1999) and the new approach of the implicit common
reflection surface (Vanelle et al., 2010; Schwarz, 2011).

We investigate the extension of i-CRS up to four parameters. The fourth parameter is the overbur-
den velocity. Simple synthetic models are considered to analyze the behavior of the four parameter i-CRS
(i-CRS4) with respect to accuracy and sensitivity, and to compare the results with CRS, MF and i-CRS.

THEORY

Implicit common reflection surface

Vanelle et al. (2010) and Schwarz (2011) developed a new approach for multi-parameter stacking, i-CRS.
The method is based on the assumption of a constant overburden velocity and can be expressed in terms of
the CRS parameters. The problem of finding the reflection point on a circle is underlying. In Figure 1, the
geometry of the problem is illustrated. The circle is described by the centre point (xc, H) and the radius
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R. The basic equations are the following ones:

Figure 1: Based on the assumption of a homogeneous medium, the ray paths are straight. Due to symmetry,
it only remains one unknown: the reflection angle θ.
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A strategy to calculate the reflection angle θ is suggested by Vanelle et al. (2010). We have to calculate θ0

and insert it into the equations for ts and tg . Then calculate θ and repeat the procedure.

The connection to the CRS parameters is established by expanding the square of (1a) up to the sec-
ond order and comparing the corresponding coefficients to their CRS counter parts (see Schwarz, 2011).
For this task it is useful to make a transformation of coordinates. By introducing the following relations:
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, (2a)
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√
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√
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We end up with a system of four equations with four unknowns. The problem therefore is well-determined
and its solution reads:
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2v0RNIP
t0 cos2(α) is the normal moveout velocity.
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Four parameter extension

de Bazelaire (1988) and Thore et al. (1994) introduced the velocity as a free parameter.The multiparameter
stacking operators (CRS, MF and i-CRS) do not include a free velocity. So we investigate the extension up
to four parameter for i-CRS. We utilize some techniques from mathematics and physics, i.e. the expansion
with zero (add and subtract), the multiplication with one (multiply and divide) and a simple substitution
based on:

t0 =
2R̃NIP
V

=
2
(√
xc2 +H2 −R

)
V

. (4)

This relation results from the comparison of the zero-order coefficients of a Taylor series expansion. While
introducing V and t0 in equation(1a), we want to achieve, that small parameter deviations produce a max-
imum traveltime error. Finally we end up with different possible four parameter equations, which reads:

t = ts + tg+t0 −
2R̃NIP
V

, (5a)

t = ts + tg+ exp(t0)− exp

(
2R̃NIP
V

)
. (5b)

where the small letters a and b correspond to first and second traveltime equation, e.g. i-CRS4a.

ACCURACY STUDY

To investigate the accuracy, we consider a simple test model.

Figure 2: Evaluated are traveltimes for four different radii of curvature and four different vertical velocity
gradients (γ = 0, 0.5, 1, 1.5 1/s).

Beginning with R = 10 m representing the diffraction case, up to R = 10000 m, which marks a nearly
planar reflector. The different vertical velocity gradients represent a homogeneous and inhomogeneous
overburden.The midpoint displacement (∆xm)and half-offset (h) range shall lie within realistic dimen-
sions, i.e.

∆xm = xm − xc ∈ [−2000, 2000]m, h ∈ [0, 1000]m. (6)

Each circle is located 1000 m below the surface, i.e. H−R = 1000 m. The errors as a function of midpoint
displacement and half-offset are determined by the root-mean-square deviation:

δtRMS =

√∑n
i=1 δt

2
i

n
. (7)

The variable n is the number of considered combinations of (∆xm, h), tref is the reference traveltime
calculated with Seismic Unix (see Schwarz, 2011) and ti denotes the respective operator traveltime. The
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horizontal position of the center point xc is placed in the centre of the aperture. Consequently, the angle of
emergence vanishes, i.e. α = 0, for all considered (∆xm, h) pairs, because of normal incidence. Thus, the
operator traveltimes are estimated by minimizing (7). For the optimization of RNIP , RN and the fourth
parameter V , we make use of the simplex search by Nelder and Mead (1965).

Figure 3 shows the results for the two four parameter extensions and conventional i-CRS3. The
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Figure 3: RMS-errors distribution for the three selected equations in dependency on radii of curvature and
inhomogeneity. Please note the logarithmic radii scale.

blue surface (i-CRS4a) provides the smallest errors. Both four parameter equations offer a more precise
traveltime fit for the case of an inhomogeneous overburden than i-CRS3. With increasing inhomogeneity
the RMS-errors are increasing, too. For large radii the different i-CRS methods behave more similar.

Figure 4 shows the error distribution for a vertical velocity gradient of γ = 0.5 1/s. For CRS we
can see that the errors increase with higher half-offsets and midpoint displacements. The smallest errors
for CRS are reached for ∆xm = 0, i.e. the CMP configuration. The shape and value of the error
distribution of i-CRS3 and i-CRS4b is similar while i-CRS4a achieves the smallest errors. All i-CRS
methods have in common, that the errors are biggest for a large midpoint displacement and offsets.
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Figure 4: Traveltime error distribution of (a) CRS, (b) i-CRS3, (c) i-CRS4a, (d) i-CRS4b for an inhomo-
geneous overburden (γ = 0.5 1/s) and R = 1000 m. Please note the different scales.
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SENSITIVITY STUDY

In this part we take a closer look at the parameters and their behavior. The principle is very similar to Tygel
et al. (2011). We choose a homogeneous model with the following model and acquisition parameters:
xm ∈ [−1000, 1000] m, h ∈ [0, 1000] m, V = 2000 m/s, α = 5◦, RNIP = 1000 m and RN = 2000 m.
During the study we perturb the exact values of α,RNIP and RN , to simulate estimation errors. This is
be done for two important configurations, the CMP gather (∆xm = 0) and the zero-offset section (h = 0).
One of the parameters is varied in steps of 2% from −10% to +10%, while the remaining attributes are
kept constant. This procedure reveals how the traveltime is affected by changing each of the parameters.
We investigate the sensitivity for CRS, MF, i-CRS3, i-CRS4a and the i-CRS4b method. The aim of this
study is that, if the traveltime varies much when a certain parameter is perturbed, we can infer that:

• this parameter can be accurately estimated, because we can distinguish between the correct and
incorrect values,

• if this is not the case, the respective parameter for the invested equation is not sensitive and does not
allow a good estimation.

Both Figures 5 and 6 show the traveltime deviation when the variation is applied to the exact values of
α,RNIP and RN . Each curve represents the time deviation δt = t − tref , where t is the perturbed
traveltime for the method and parameter under investigation and tref is the reference traveltime without
variation. We start with the results of the perturbation for the common midpoint configuration (xm = 0),
as shown in Figure 5. For the perturbation of α, CRS shows the largest deviations, especially for large
offsets. MF and i-CRS3 are worse than CRS. On the right side the values of the three i-CRS methods are
the same and plotted on top of. In the case of RNIP , the i-CRS4b has the largest time deviations across
all offsets. In the CMP configuration i-CRS3 leads to better results than the i-CRS4a for RNIP . For RN ,
the largest deviations are achieved with MF followed by i-CRS3. Interesting is, that CRS shows no time
deviation while varying RN for xm = 0. That is because the CRS equation (Müller, 1999) reduces to:

t2(0, h) = t20 +
2t0 cos2(α)

v0

h2

RNIP
. (8)

This means that the determination of RN can be done just imprecise. The i-CRS methods lead to the same
results for α and RN . For RN , it is because the additional terms for the introducing of V in the four
parameter equations (5) and the transformation equations (3) do not include RN . In the case of α, we get
the same results for a homogeneous medium (V = v0 and t0 = 2RNIP

v0
), because equation (4) contains

only a RNIP dependency (see Bobsin (2012)):√
x2
c +H2 −R

V
=
RNIP
v0

(9)

But if one consider an inhomogeneous medium the dependence on α does not vanish and one would see
differences in the i-CRS methods, too.

The next Figure 6 shows the ZO configuration (h=0). The common intersection point of the curves is
moved right because of α = 5◦. On the left side , we see that i-CRS3 is varying most. With larger values
of xm (positive and negative) the sensitivity increases, too. Interesting is that CRS and MF show no time
deviation for RNIP . That is because MF reduces for ZO to the parametric CRS (see Schwarz, 2011) and
reads as follows:

t2 =
4

v2
0

(
∆x2

m + 2∆xmRN sin(α) +R2
N

)
. (10)

The time deviation for the variation of α and RN is again the same for all three i-CRS methods. The most
important result is gained for RNIP . Across all midpoints i-CRS4b has the largest time deviations, which
means it is very sensitive towards the estimation of RNIP . But also i-CRS4a shows larger deviations than
i-CRS3 and therefore for CRS and MF for a certain parameter perturbation.
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Figure 5: Sensitivity for three parameter methods (left) and i-CRS methods (right) for a CMP configura-
tion.
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Figure 6: Sensitivity for three parameter methods (left) and i-CRS methods (right) for a ZO configuration
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Figure 7: Semblance for R = 100 m and the i-CRS methods. On the left side is a homogeneous medium
considered and on the right side an inhomogeneous with γ = 0.5 1/s.
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Figure 8: Semblance for R = 10000 m and the i-CRS methods. On the left side, a homogeneous medium
is considered and on the right side an inhomogeneous medium with γ = 0.5 1/s.

SYNTHETIC DATA EXAMPLE

Here we want to verify, whether the good results from the accuracy and sensitivity study can also be
confirmed for the stacking. We apply i-CRS4a and i-CRS4b as stacking operators on the extended CRS
implementation by Mann (2002). The underlying model is shown in Figure 2. In contrast to the accuracy
study, where the RMS-error of the operator traveltime is minimized, the key task of the stacking routine is
to maximize coherence. To measure the coherence one can make use of the semblance coefficient (Taner
and Koehler, 1969).Schwarz (2011) showed the comparison of the semblance for CRS, MF and i-CRS3.
There i-CRS leads to the largest values for all different considered radii of curvature and vertical velocity
gradients. So we investigate the behavior of the different i-CRS methods.

Figure 7 shows the semblance for a strongly curved reflector. The i-CRS3 has the largest values,
while i-CRS4b fluctuates for larger midpoint displacements (xm − xc) from the circle’s center. In the
case of inhomogeneity, i-CRS4a has the largest values. For small midpoint displacements all methods
show a similar behavior. In general, the semblance values are larger for all methods in this region and the
fluctuations of i-CRS4b are suppressed. Figure 8 shows the semblance for the nearly planar reflector case.
Only small deviations between the i-CRS methods can be seen. The values are larger than for R = 100 m
and no fluctuations for i-CRS4b can be found.

Figures 9 to 11 show the estimated kinematic wave field attributes. The semblance shows nearly no
influence of vertical velocity gradients. Therefore we only present the results for a homogeneous medium.
Figure 9 shows that α is better estimated for larger radii of curvature. The different i-CRS methods are
similar for R = 10000 m and differ for R = 100 m. Figure 10 shows the calculated values for RNIP .
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Figure 9: Values for the parameter α are shown for R = 100 m (left) and R = 10000 m (right). Please
note the different scales.
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Figure 10: Values for the parameter RNIP are shown for R = 100 m (left) and R = 10000 m (right).
Please note the different scales.
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For the strong curvature case i-CRS4b fluctuates between i-CRS3 (top) and i-CRS4a (bottom). Again the
values for the nearly planar reflector are very similar. Instead of RN we show its inverse KN , because
infinite values cannot be illustrated in a moderate way. For R = 100 m the curve of i-CRS4b is close to the
corresponding counterparts of i-CRS3, whose values are smaller than for i-CRS4a.

CONCLUSIONS AND OUTLOOK

We investigated a four parameter i-CRS equation and their behavior in comparison with existing three
parameter approaches (CRS, MF and i-CRS). The accuracy study shows a smaller errors for all considered
four parameter approaches with respect to reference traveltimes. Overall i-CRS4a shows the smallest
deviations for all considered scenarios. The main result of the sensitivity study is that all i-CRS formulae
are more sensitive than CRS and MF in the CMP configuration and ZO section. Highest sensitivities
for RNIP are reached for i-CRS4b. The synthetic data example shows small deviations between the
i-CRS methods. Semblance and attribute estimates are very smooth for i-CRS4a, while for i-CRS4b they
considerably fluctuate, especially for small radii of curvature. Surprisingly, the i-CRS4a search turned out
to be more economical in terms of computational time than i-CRS3 about 5% for the simple models under
investigation.

In future more complex and realistic subsurface models have to be investigated. It might be also
conceivable to look for further four parameter extensions, which allow to systematically steer the
sensitivity of the operator.
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