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ABSTRACT

We derive an extension of the Helmholtz decomposition theorem for vector fields to represent the
displacement wavefield in a homogeneous weakly anisotropic VTI medium. Besides an elegant gen-
eralization of known facts about wave propagation in VTI media, the decomposition enables us to
derive a system of partial differential equations to describe the propagation of pseudo-acoustic waves.
We also obtain the parabolic approximation for the pseudo-acoustic wave equation providing a rigor-
ous demonstration of dispersion relations established heuristically by Alkhalifah (2000). Finally, we
show how the decomposition can be applied to perform wave-mode separation in VTI media.

INTRODUCTION

The anisotropic elastic wave equation is an important tool to describe seismic wave propagation. However,
this partial differential equation is difficult to solve even in homogeneous media. In the isotropic case, the
Helmholtz decomposition allows to decouple compressional (P wave) and shear (S wave) components and
find separate equations to describe each wave mode independently. For the general anisotropic case, such
a decoupling is not possible, i.e., the anisotropic equation must be solved at once.

Since the Helmholtz decomposition has important applications in practice, approximate wavefield de-
coupling methods are still a subject of ongoing investigations. Several authors have proposed ideas to
separate wavefields of so-called quasi-P and quasi-S waves. Dellinger and Etgen (1990) suggested separat-
ing the wavefield in an anisotropic medium by projection of the wavefield in directions where the q-P and
q-S waves are polarised. For heterogeneous media Yan and Sava (2009) suggested using pseudo-operators
to separated the wavefield. His technique is based on solving the Christoffel equation.

In last year’s WIT report, Bloot et al. (2011) derived an elastic wave equation for a weakly anisotropic
medium with vertical transverse isotropy (VTI), directly based on the parameterisation of such a medium
by Thomsen (1986). Starting from this equation, we propose an extension of Helmholtz decomposition
to represent the elastic wavefield in weakly anisotropic VTI media. The decomposition simplifies the
derivation of solutions for the wave equation in such media. Additionally, it permits to construct operators
for wave-mode separation.

As a result, we show that the elastic wave equation can be transformed into two simple differential
equations and a system of two coupled differential equations. The coupled equations system describes
the pseudo-acoustic q-P wavefield and the other two equations represent the q-SV and q-SH wavefields,
respectively. We study these waves looking at issues such as coupling. In this way, we show how a proper
choice of the source term representation can be used to decouple wave modes.

In addition to the extended Helmholtz decomposition, we also derive a parabolic approximation for
the pseudo-acoustic wave equation that is free of artifacts. This equation can be used for wave-equation
migration. Moreover, we provide a rigorous derivation of the dispersion relation that Alkhalifah (2000)
used to formulate his pseudo-acoustic wave equation.
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VTI ELASTIC WAVE EQUATION

Our starting point is the elastic wave equation for a heterogeneous VTI media with weak anisotropy (Bloot
et al., 2011),

ρ
∂2

∂t2
u = f + ∇ · [µ∇u] +∇[(λ+ µ)∇ · u] +∇µ× (∇× u) + 2(∇µ · ∇)u

+ ∇̂[δ(λ+ 2µ)∇ · u] +∇[δ(λ+ 2µ)∇̂ · u]− 2∇̂[δ(λ+ 2µ)∇̂ · u]

+ 2∇̂⊥[µγ∇̂⊥ · u] + 4J∇u∇̂⊥[µγ] + ∇̂[ε(λ+ 2µ)∇̂ · u], (1)

where u = u(x, t) is the displacement vector, f = f(x, t) is the source term, ρ is density, λ and µ are
the Lamé parameters, and ε, δ and γ are the anisotropy parameters of Thomsen (Thomsen, 1986), with
|δ| � 1. No restrictions apply to ε and γ. We have also used the notations,

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)T
, ∇̂ ≡

(
∂

∂x
,
∂

∂y
, 0

)T
, ∇̂⊥ ≡ J∇̂ =

(
∂

∂y
,− ∂

∂x
, 0

)T
, (2)

with

J =

 0 1 0
−1 0 0

0 0 0

 , (3)

and the elements of the Jacobian matrix∇u are the partial derivatives of ui (i = 1, 2, 3) with respect to the
Cartesian coordinates. Equation (1) describes a system of three coupled differential equations, because all
components of u appear in all three equations of system (1).

In the case of a homogeneous VTI medium, equation (1) reduces to

∂2

∂t2
u =

1

ρ
f + α2∇(∇ · u)− β2∇×∇× u + 2α2(ε− δ)∇̂(∇̂ · u)

+ δα2∇̂(∇ · u) + δα2∇(∇̂ · u) + 2β2γ∇̂⊥(∇̂⊥ · u), (4)

where α and β represents the velocities of the q-P and q-SV waves along the axis of symmetry and are
given by (Tsvankin, 2001)

α =

√
λ+ 2µ

ρ
and β =

√
µ

ρ
. (5)

If δ = γ = ε = 0, equation (4) reduces to the well-known isotropic form

∂2

∂t2
u =

1

ρ
f + α2∇(∇ · u)− β2∇×∇× u, (6)

which can be separated by Helmholtz decomposition using scalar and vector potentials.
The Helmholtz decomposition ensures that for any vector field Ω there exist a scalar potential ψ and a

vector potential Ψ so that
Ω = ∇ψ +∇×Ψ with ∇ ·Ψ = 0. (7)

Upon the use of decomposition (7), it is possible to solve equation (6) analytically. This procedure demon-
strates that P and S waves decouple in homogeneous, isotropic, elastic media, allowing to study them
independently. For more details see Pujol (2003) and Aki and Richards (1980).

In this paper we show that the homogeneous VTI wave equation (4) can be solved in a similar way. For
this purpose, we show that the wavefield in a VTI medium can be decomposed into other types of potential
fields by using an extension of the Helmholtz theorem. The idea is to find a decomposition for a general
vector field and verify that the vector field for a VTI medium can be written in an identical manner. The
generalized Helmholtz decomposition relies on the fact that for an arbitrary vector field Ω̂ = (Ω1,Ω2, 0)T ,
there exist scalar functions φ and Φ such that arbitrary vector field Ω̂

Ω̂ = ∇̂φ+ ∇̂⊥Φ. (8)
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It is immediately visible that that identity (8) is valid if there is a vector field W = (W1,W2, 0)T , such
that Ω̂ can be written as

Ω̂ = ∂xxW + ∂yyW . (9)

because
Ω̂ = ∂xxW + ∂yyW = ∇̂

(
∇̂ ·W

)
+ ∇̂⊥

(
∇̂⊥ ·W

)
. (10)

In this case, we simply need to choose φ = ∇̂ ·W and Φ = ∇̂⊥ ·W to achieve decomposition (8).
Therefore, since it is always possible to find a solution W to the two-dimensional Poisson equation (9), the
decomposition is valid for any arbitrary vector field Ω̂. Decomposition (8) can be viewed as an extension
of Helmholtz theorem for horizontal vector fields.

Together, decompositions (7) and (8) provide us with the means to obtain a generalized Helmholtz
decomposition for vector wavefields in VTI media. For this purpose, let us consider an arbitrary vector
field u and write it as a sum of two fields Ω and Ω̂, i.e., u = Ω + Ω̂. Of course, several such sums exist,
for example, Ω = u and Ω̂ = 0, or Ω = (0, 0, u3)T and Ω̂ = (u1, u2, 0)T . We know from equations (7)
and (8) that there exist scalar potentials ψ, φ and Φ, and a vector potential Ψ such that

u = ∇ψ +∇×Ψ + ∇̂φ+ ∇̂⊥Φ with ∇ ·Ψ = 0. (11)

This is the generalization of Helmholtz decomposition which is clearly not unique for a fixed field u, but
it is unique for fixed Ω and Ω̂, such that u = Ω + Ω̂. To impose uniqueness, we can still require one
additional property for the set of potential fields φ, Φ, ψ, and Ψ. We choose the condition

∇̂ · (∇×Ψ) = 0. (12)

To solve equation (4) using decomposition (11), we first consider the source term to be decomposed
accordingly as

f = ∇ψf +∇×Ψf + ∇̂φf + ∇̂⊥Φf with ∇ ·Ψf = 0. (13)

with three scalar potentials φf , Φf , and ψf , and one vector potential Ψf . Again, this decomposition is
unique under the condition

∇̂ · (∇×Ψf ) = 0. (14)

Substituting expression (13) in (4), we find

∂2

∂t2
u =

1

ρ
∇ψf +

1

ρ
∇×Ψf +

1

ρ
∇̂φf +

1

ρ
∇̂⊥Φf + α2∇(∇ · u + δ∇̂ · u)

− β2∇×∇× u + α2∇̂(δ∇ · u + 2(ε− δ)∇̂ · u) + β2∇̂⊥(2γ∇̂⊥ · u). (15)

Double integration of this equation in the variable t immediately leads to an expression for u of the form
of equation (11), with

ψ = α2

∫ t

0

∫ τ

0

[(
∇ · u + δ∇̂ · u

)
+

1

ρα2
ψf

]
dτ ′dτ, (16)

Ψ = −β2

∫ t

0

∫ τ

0

[
∇× u− 1

ρβ2
Ψf

]
dτ ′dτ, (17)

φ = α2

∫ t

0

∫ τ

0

[(
δ∇ · u + 2(ε− δ)∇̂ · u

)
+

1

ρα2
φf

]
dτ ′dτ, (18)

and

Φ = β2

∫ t

0

∫ τ

0

[(
2γ∇̂⊥ · u

)
+

1

ρβ2
Φf

]
dτ ′dτ. (19)



148 Annual WIT report 2012

Potential Functions

We are primarily interested in finding a solution to equation (4). Equations (11) and (16)-(19) suggest
that there should be functions ψ, φ, Φ and Ψ which together form the field u. For homogeneous VTI
media theoretical (Tsvankin, 2001) and experimental work de Figueiredo et al. (2012) has shown that q-P
and q-SV waves do not vary with azimuth. This observations motivated us to impose the mathematical
condition

∇̂ · (∇×Ψ) = 0, (20)

which is equivalent to

∂

∂z

(
∂Ψ2

∂x
− ∂Ψ1

∂y

)
= 0, (21)

guaranteeing invariance of rotational symmetry along the vertical axis.
In this way, the generalized decomposition (11) is a true extension of the isotropic one (7) to VTI media.

In the limit of weak anisotropy, it does not contradict the Lamé solution for the isotropic case. In other
words, for ε, δ, γ → 0, expressions (16)-(19) become

u = ∇ψ +∇×Ψ with ∇ ·Ψ = 0, (22)

when the anisotropic source terms vanish, i.e., φf = Φf = 0. This ensures that this technique reduces to
the isotropic case when ε = δ = γ = 0.

The generalized Helmholtz decomposition (11) for VTI media leads to simpler differential equations
for the wave potentials. Introducing the auxiliary notations for the radial Laplacian,

∆ = ∆r +
∂2

∂z2
, with ∆r =

∂2

∂x2
+

∂2

∂y2
, (23)

we can formulate the

Wavefield Separation Theorem: Consider u(x, t) to denote a continuous vector field which is differen-
tiable up to fourth order in IR3 and satisfies equation (21) as well as the initial conditions

u(x, 0) = 0 and ut(x, 0) = 0. (24)

Then
u(x, t) = ∇ψ(x, t) +∇×Ψ(x, t) + ∇̂φ(x, t) + ∇̂⊥Φ(x, t) (25)

is a solution for equation (4) provided that ψ, φ, Φ and Ψ solve the following equations

1

α2

∂2

∂t2
ψ = (1 + δ)∆r(ψ + φ) +

∂2

∂z2
ψ + F1,

1

α2

∂2

∂t2
φ = (2ε− δ)∆r(ψ + φ) + δ

∂2

∂z2
ψ + F2; (26)

1

β2

∂2

∂t2
Φ = (1 + 2γ)∆rΦ +

∂2

∂z2
Φ + F3; (27)

1

β2

∂2

∂t2
Ψ = ∆Ψ +∇×

(
∇̂φ+ ∇̂⊥Φ

)
+ F4; (28)

with

∇ ·Ψ = 0; and ∇̂ · (∇×Ψ) = 0. (29)

Functions F1, F2, F3 and F4 depend only on the source term f .

The proof of this theorem, as well as the expressions for source functions, can be found in Appendix A.
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Note that potentials ψ and φ are coupled. To determine them it is necessary to solve equation sys-
tem (26). Also note that equation (27), which determines potential Φ that describes the q-SH wave, is
completely decoupled. Once φ and Φ are known, equation (28) can be solved for the vector potential Ψ.

To obtain the solutions of both equations (27) and (28) it is sufficient to study the problem of finding a
scalar function χ, solution of

1

c2
∂2

∂t2
χ = ν2∆rχ+

∂2

∂z2
χ+ F, (30)

where F is the source term, ν =
√

1 + 2γ for (27) and ν = 1 for (28), and c is the wave velocity. Note
that equation (30) is a wave equation for an elliptic medium. We denote by G the Green’s function of the
above problem, i.e., the solution for the case F (x, t) = δ(x)δ(t). Below, we will show that

G(x, t) =
1

4π‖d‖ν2
δ

(
t− ‖d‖

c

)
with d =

(x
ν
,
y

ν
, z
)T

, (31)

and then,
χ(x, t) = G(x, t) ∗ F (x, t), (32)

where ∗ denotes convolution in space and time.
The above extension of Helmholtz decomposition to VTI media has important applications in seismic

processing, modelling, and imaging. In the next section, we derive the two-way and one-way pseudo-
acoustic wave equations for weak VTI medium. In the section afterwards, we present a new algorithm for
wave-mode separation as another important application of the decomposition.

PSEUDO-ACOUSTIC APPROXIMATIONS IN VTI MEDIA

The existence of a source term determines the behaviour of the wavefield. In the isotropic case, if the
wavefield is generated by an omnidirectional point source, then no S-waves are generated and there is
only P-wave propagation (Aki and Richards, 1980). Unfortunately, in a VTI medium, the situation is more
complicated. To analyse it, let us start by considering an omnidirectional point source in equation (4), i.e., a
source term of the form f(x, t) = F (t)∇δ(x). Then, from equation (13), we have Ψf = 0, φf = Φf = 0.
Therefore, we see from equation (32) that Φ vanishes, i.e., the q-SH wave does not propagate. Thus, the
situation is described by

1

α2

∂2

∂t2
ψ = (1 + δ)∆r(ψ + φ) +

∂2

∂z2
ψ +

1

ρα2
δ(x)F (t), (33)

1

α2

∂2

∂t2
φ = (2ε− δ)∆r(ψ + φ) + δ

∂2

∂z2
ψ (34)

and

1

β2

∂2

∂t2
Ψ = ∆Ψ +∇×

(
∇̂φ
)
. (35)

Equation (35) indicates that if β 6= 0, the presence of a omnidirectional point source induces the propaga-
tion of a q-S wave, here described by the vector potential Ψ.

Two-Way Pseudo-Acoustic Equation

We have just seen that in the presence of an omnidirectional point source, there is a q-S wave propagating
and this fact is directly related to the presence of potential φ [see equation (35)]. However, for this wave
to propagate, the shear-wave velocity β needs to be nonzero. To eliminate this wave, we can perform the
same procedure as Alkhalifah (2000), which consists of simulating the propagation in a medium where
β = 0. Then, equations (33) and (34) can be rewritten as

1

α2

∂2

∂t2
ϕ = (1 + 2ε)∆rϕ+ (1 + δ)

∂2

∂z2
ψ +

1

ρα2
δ(x)F (t) (36)
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and
1

α2

∂2

∂t2
ψ = (1 + δ)∆rϕ+

∂2

∂z2
ψ +

1

ρα2
δ(x)F (t), (37)

where ϕ = ψ+φ. Note that the above equations have the same form of the equation obtained by Duveneck
et al. (2008), but in our derivation, we have relied on a linearization in δ. A fact that should be emphasised
is that although our equations are represented in terms of the scalar potentials ψ and φ, systems (33)–(34)
and (36)–(37) are equivalent. In the remainder of this work, we choose to use representation (36)–(37)
because it offers a simpler way to deduce the one-way wave equation.

One-Way Approximation. We now disregard the source term in the pseudo-acoustic equation system
(36)–(37). It is possible to show that the 2D wave equation in one direction is given by (see Appendix B)

∂2

∂z2
ψ̂ + k2

z ψ̂ = 0, (38)

where

kz =
ω

α

√
1− m2

1− 2ηm2
, m2 =

V 2
NMOk

2
x

ω2
, VNMO = α

√
1 + 2δ, and η =

ε− δ
1 + 2δ

. (39)

The expression for kz is denominated dispersion relation and coincides with the one suggested heuristically
by Alkhalifah (2000). Our method presents a generalization of the isotropic case to VTI media. If ε = δ =
0 the dispersion relation kz reduces to isotropic case and ψ is the classic isotropic P wave. We can use
equation (38) to show that the upgoing wave is given by the solution of

∂ψ̂(kx, z, ω)

∂z
= −ikzψ̂(kx, z, ω). (40)

For an initial condition ψ̂(kx, z0, ω), it is easy to see that

ψ̂(kx, z, ω) = ψ̂(kx, z0, ω)e−ikz(z−z0). (41)

This is the unidirectional solution for a VTI medium.
Recently, Amazonas et al. (2010) used the pseudo-acoustic wave equation of Alkhalifah (2000) to

develop a migration in a VTI medium by finite differences using a complex Padé approximation. Our
derivation provides a sound theoretical basis to this approach.

Elliptic case. Let us now investigate the case ε = δ (Helbig, 1983). Expressions (16) and (18) allow us
to recognise that

δψ = φ+ O(δ2). (42)

Taking into account that we are neglecting terms of second order in δ, we can consider φ = δψ. Therefore,
ϕ = ψ + φ = (1 + δ)ψ. Substituting this relationship into equation (37), we find under the linear
approximation (1 + δ)2 ≈ 1 + 2δ (see Appendix B)

1

α2

∂2

∂t2
ψ = (1 + 2δ)∆rψ +

∂2

∂z2
ψ +

1

ρα2
δ(x)F (t). (43)

The solution to this problem can be found directly from (31)–(32), with ν =
√

1 + 2δ and c = α. Thus,

ψ(x, t) =
1

4π‖d‖(1 + 2δ)

1

ρα2
F

(
t− ‖d‖

α

)
, (44)

where

‖d‖ =

√
x2

1 + 2δ
+

y2

1 + 2δ
+ z2. (45)
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(a) (b)

Figure 1: 2D snapshots of potential ψ in the elliptic case, for a point source located at the origin with
α = 1.5km/s: (a) ε = δ = 0.2; (b) ε = δ = −0.39.

From this analytical solution, it is clear that the wavefront has an elliptical shape for ε = δ and |δ| � 1
(see Figure 1.) Therefore, in elliptical media with weak anisotropy the system of coupled equations reduces
to a single partial differential equation. Moreover, no artifacts are present, in agreement with the comments
of Helbig (1983), Dellinger and Muir (1988), Tsvankin (1996), Cohen (1996), Alkhalifah (2000), and
Amazonas et al. (2010). This results validates the prescription of using a locally elliptical medium around
the source position to avoid the excitation of spurious modes when performing numerical modelling using
the pseudo-acoustic wave equation (Fei and Liner, 2008; Pestana et al., 2011; Bloot et al., 2011).

WAVE-MODE SEPARATION

There is an important application of the generalized Helmholtz decomposition of vector wavefields in VTI
media: the separation of wavefields that travel with different velocities. Such a separation is essential
for the application of wave-equation migration, because wavefield components that travel with different
velocities cannot be treated correctly at once and will thus lead to cross-talk and other spurious events.

In the case of an isotropic elastic medium with multi-component data, Helmholtz decomposition (7)
can be used to separate the original wavefield in other two: a pressure field P and a transverse field S. In
this section we show that it is possible to define operators that enable the separation of the q-P and q-S
wave fields in VTI media. Other attempts in this directions have previously been made in the literature.
Dellinger and Etgen (1990) suggested separating the wavefield in an anisotropic medium by projection of
the wavefield in directions where the q-P and q-S waves are polarised. For heterogeneous media Yan and
Sava (2009) suggested solving the Christoffel equation using finite-difference approximations to compute
wavefield derivatives. In this section, we demonstrate that our generalized Helmholtz decomposition en-
ables us to establish two combined potentials, φqP and ψqSV , which separately describe the corresponding
wave-modes in a VTI medium. These scalar fields can be used in imaging conditions to reduce cross-talk
when migrating multicomponent seismic data.

q-P Wave-Mode

According to equation (16), the potential φqP describing the q-P wave mode is given by

φqP = ∇ · u + δ∇̂ · u. (46)

Expression (46) indicates that for a homogeneous medium we can separate the q-P wave from the q-SV
wave.
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(a) (b)

Figure 2: 2D snapshots for (a) u1 and (b) u3 in a VTI homogeneous medium with ε = −0.2187 and
δ = −0.2704. We can observe the coupling between P and S waves.

(a) (b)

Figure 3: Wavefields after applying the (a) divergence operator and (b) operator (46) to the snapshots u1

and u3 in Figure 2. We can observe a better suppression of the S wave for the operator given by (46).

We can see that our method provides a simple way to obtain a pure q-P wavefield potential. Figure 2
shows the snapshots of the horizontal (u1) and vertical (u3) components of the wavefield for a homogeneous
VTI medium with δ = −0.2704 and ε = −0.2187 at some fixed time t > 0. Applying operation (46) to
components u1 and u3 we get the q-P wavefield, which is shown in Figure 3b. Figure 3a shows result after
the application of the isotropic operator (divergence) to the snapshots in Figure 2. Equation (46) enables
us to separate the q-P wave mode only by knowing δ. It is evident from Figure 2 that there is a coupling
between the waves and in the homogeneous case the operator (46) provides only the q-P wave. Our operator
achieves a better suppression of the S wave as compared to the isotropic divergence operator∇ · u.

q-SV wave-mode

Yan and Sava (2009) show in their work, by means of numerical experiments, that the rotational (curl)
operator, when applied to u1 and u3 cannot completely separate the q-P and q-SV wave-modes. Let us
now show that our method offers a better understanding of this fact, as well as a different way, similar to
the isotropic classic case, of solving this problem for a homogeneous VTI medium.
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(a) (b)

Figure 4: Wavefields after applying the (a) curl operator and (b) operator (52) to the snapshots u1 and u3

in Figure 2. The curl operator fails to completely separate P and S wavefields for the direct wave, whereas
our provides a much better result.

According to our decomposition, in the 2D case the wavefield u is given by

u = ∇ψ + ∇̂φ+∇×Ψ with ∇ ·Ψ = 0, and ∇̂ · (∇×Ψ) = 0. (47)

Applying the curl, we find
∇× u = ∇× ∇̂φ−∆Ψ. (48)

From this expression it becomes immediately clear that the curl does not remove the φ influence. This
explains the results of Yan and Sava (2009) demonstrating that it is unsuccessful to use this operator to
separate wavefields in a VTI medium.

However, application of the modified divergence (∇̂·) to equation (48) leads to

∇̂ · (∇× u) = −∇̂ ·∆Ψ, (49)

where we have used that ∇̂ ·
(
∇× ∇̂φ

)
= 0. Therefore, the dependence on φ is removed. Now, using

equation (17), we find
∂2

∂t2
Ψ = −β2∇× u, (50)

and thus,
∂2

∂t2

(
∇̂ ·Ψ

)
= β2∆

(
∇̂ ·Ψ

)
. (51)

Equation (51) has the same form of equation (28). Thus, we can extract the q-SV wavefield by means of
the operator

ψqSV = ∇̂ · (∇× u) . (52)

In Figure 4a we show the application of the above operator to the data depicted in Figure 2. We observe that
the q-P wave mode of the direct wave was removed in a better way then by the curl operator (Figure 4b).

CONCLUSIONS

In homogeneous isotropic media, elastic wave propagation can be decomposed into two independent contri-
butions described by separate wave equations. In this work, we have derived an extension of this Helmholtz
decomposition for a homogeneous VTI medium. For this purpose, we have represented the elastic wave-
field in VTI media by means of generalized potential functions, which help in the construction of analytical
solutions to the wave equation for weakly anisotropic VTI media (Bloot et al., 2011). These potentials can
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be obtained by solving a simpler set of equations, each containing a reduced number of anisotropy param-
eters.

This generalized Helmholtz decomposition can be applied for the analytical or numerical description
of q-P and q-S waves in weakly anisotropic VTI media. In this paper, we have explored some of the
consequences of the decomposition. Specifically, we have deduced a new set of two-way pseudo-acoustic
wave equation and a new approximation for qP waves. Moreover, we were able to provide a new derivation
of the dispersion relations for the one-way pseudo-acoustic wave equation given by Alkhalifah (2000).
These results are useful for modelling and imaging of seismic wavefields.

The generalized Helmholtz decomposition leads to a new algorithm for wave-mode separation, which
we have tested on a simple synthetic example. Our numerical experiments indicate the effectiveness of the
proposed algorithm in a heterogeneous VTI medium. This new approach can be a feasible way to reduce
cross-talk between wave modes in elastic imaging.
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APPENDIX A

PROOF OF THE WAVEFIELD SEPARATION THEOREM

Applying the divergence operator to equation (4), we find

∂2

∂t2
∇ · u = α2∆ (∇ · u) + α2∆r

(
2(ε− δ)∇̂ · u

)
+ α2∆

(
δ∇̂ · u

)
+α2∆r

(
δ∇̂ · u

)
+ ∆

(
ψf
ρ

)
+ ∆r

(
φf
ρ

)
, (53)

which can be rewritten as

∂2

∂t2
∇ · u = ∆

(
α2

[
∇ · u + δ∇̂ · u +

ψf
ρα2

])
+ ∆r

(
α2

[
δ∇ · u + 2(ε− δ)∇̂ · u +

φf
ρα2

])
. (54)

Integrating twice in the variable t, we have

∇ · u = ∆

(∫ t

0

∫ τ

0

α2

[
∇ · u + δ∇̂ · u +

ψf
ρα2

]
dτ ′dτ

)
+∆r

(∫ t

0

∫ τ

0

α2

[
δ∇ · u + 2(ε− δ)∇̂ · u +

φf
ρα2

]
dτ ′dτ

)
, (55)

and using equations (16) and (18), it follows that

∇ · u = ∆r (ψ + φ) +
∂2

∂z2
ψ. (56)

Analogously, applying the operator ∇̂· to equation (4) and using condition (21), we have

∂2

∂t2
∇̂ · u = α2∆r (∇ · u) + α2∆r

(
2(ε− δ)δ∇̂ · u

)
+ α2∆r

(
δ∇̂ · u

)
+∆r (δ∇ · u) + ∆r

(
ψf + φf

ρ

)
+
∇̂ · (∇×Ψf )

ρ
, (57)

and integrating twice in the variable t again, we obtain

∇̂ · u = α2∆r (ψ + φ) +
1

ρ

∫ t

0

∫ τ

0

∇̂ · (∇×Ψf ) dτ ′dτ. (58)

With expressions (56) and (58), we can show that ψ and φ satisfy equations (26) and (27). For that purpose,
we take the second time-derivative of equation (16) to find

∂2

∂t2
ψ = α2

[
(1 + δ)∆r (ψ + φ) +

∂2

∂z2
ψ

]
+
ψf
ρ

+
α2δ

ρ

∫ t

0

∫ τ

0

∇̂ · (∇×Ψf ) dτ ′dτ. (59)

In an analogous way, we find from equation (17) that

∂2

∂t2
φ = α2

[
(2ε− δ)∆r (ψ + φ) + δ

∂2

∂z2
ψ

]
+
φf
ρ

+
2(ε− δ)α2

ρ

∫ t

0

∫ τ

0

∇̂ · (∇×Ψf ) dτ ′dτ. (60)
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Using condition (14), we can take

F1 =
ψf
ρ

and F2 =
φf
ρ
, (61)

which demonstrates that ψ and φ satisfy equation (26).
Next, we apply the operator ∇̂⊥· to equation (4),

∂2

∂t2
∇̂⊥ · u = β2∆

(
∇̂⊥ · u

)
+ 2γβ2∆r

(
∇̂⊥ · u

)
+ ∆r

(
Φf
ρ

)
. (62)

Multiplying the above equation by 2γ and integrating twice in time, we find

2γ∇̂⊥ · u = β2∆

(
β2

∫ t

0

∫ τ

0

[(
2γ∇̂⊥ · u

)
+

1

ρβ2
Φf

]
dτ ′dτ

)
+ 2γβ2∆r

(
β2

∫ t

0

∫ τ

0

[(
2γ∇̂⊥ · u

)
+

1

ρβ2
Φf

]
dτ ′dτ

)
−∆

(
Φf
ρβ2

)
, (63)

which allows us to conclude that

1

β2

∂2

∂t2
Φ = (1 + 2γ)∆rΦ +

∂2

∂z2
Φ +

1

ρβ2
Φf −∆

(
Φf
ρβ2

)
, (64)

which is equation (27) with the choice

F3 =
1

ρβ2
Φf −∆

(
Φf
ρβ2

)
. (65)

To confirm equation (28) we must apply the curl operator to equation (4) and integrate twice in t. Then,
we have that expression (17) satisfies equation (27). Moreover, condition (29) follows immediately from
condition (21).

APPENDIX B

THE ONE-WAY SOLUTION

System (36)–(37) can be written as

1

α2

∂2

∂t2
ϕ− (1 + 2ε)

∂2ϕ

∂x2
= (1 + δ)

∂2ψ

∂z2

1

α2

∂2

∂t2
ψ − ∂2ψ

∂z2
= (1 + δ)

∂2ϕ

∂x2
. (66)

Applying the two-dimensional Fourier transform in time and space to the above equations, we obtain

ϕ̂ =

[
−(1 + δ)

ω2/α2 − (1 + 2ε)k2
x

]
∂2ψ̂

∂z2
(67)

and
ω2

α2
ψ̂ +

∂2ψ̂

∂z2
= (1 + δ)k2

xϕ̂. (68)

Substitution of equation (67) in (68) leads to

ω2

α2
ψ̂ +

∂2ψ̂

∂z2
=

[
−(1 + δ)2k2

x
ω2

α2 − (1 + 2ε)k2
x

]
∂2ψ̂

∂z2
. (69)

Since we are assuming |δ| � 1, the following expression is valid

(1 + δ)2 = 1 + 2δ + δ2 ≈ 1 + 2δ. (70)
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Thus, expression (69) reduces to

ω2

α2
ψ̂ +

[
1 +

(1 + 2δ)k2
x

ω2

α2 − (1 + 2ε)k2
x

]
∂2ψ̂

∂z2
= 0. (71)

After some algebraic manipulations, we have

∂2ψ̂

∂z2
+
ω2

α2

[
ω2

α2 − (1 + 2ε)k2
x

ω2

α2 − 2(ε− δ)k2
x

]
ψ̂ = 0. (72)

Defining the anisotropic parameter η in accordance with Alkhalifah (2000) as

η =
ε− δ

1 + 2δ
, (73)

we can write
∂2ψ̂

∂z2
+ k2

z ψ̂ = 0, (74)

where

k2
z =

ω2

α2

[
ω2

α2 − (1 + 2δ)(1 + 2η)k2
x

ω2

α2 − 2(1 + 2δ)ηk2
x

]
. (75)

From the definition of the NMO velocity (Tsvankin, 2001),

VNMO = α
√

1 + 2δ, (76)

we obtain

kz = ±ω
α

√√√√1−
V 2
NMOk

2
x

ω2

1− 2η
V 2
NMOk

2
x

ω2

. (77)

Finally, using the notation

m2 =
V 2
NMOk

2
x

ω2
, (78)

introduced by Fei and Liner (2008), we arrive at

kz = ±ω
α

√
1− m2

1− 2ηm2
. (79)


